1
|
Li J, Yu X, Shu D, Liu H, Gu M, Zhang K, Mao G, Yang S, Yang R. Accelerated Activity-Based Sensing by Fluorogenic Reporter Engineering Enables to Rapidly Determine Unstable Analyte. Anal Chem 2024; 96:7723-7729. [PMID: 38695281 DOI: 10.1021/acs.analchem.4c00945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2024]
Abstract
Accurate detection of labile analytes through activity based fluorogenic sensing is meaningful but remains a challenge because of nonrapid reaction kinetic. Herein, we present a signaling reporter engineering strategy to accelerate azoreduction reaction by positively charged fluorophore promoted unstable anion recognition for rapidly sensing sodium dithionite (Na2S2O4), a kind of widespread used but harmful inorganic reducing agent. Its quick decomposition often impedes application reliability of traditional fluorogenic probes in real samples because of their slow responses. In this work, four azo-based probes with different charged fluorophores (positive, zwitterionic, neutral, and negative) were synthesized and compared. Among of them, with sequestration effect of positively charged anthocyanin fluorophore for dithionite anion via electrostatic attraction, the cationic probe Azo-Pos displayed ultrafast fluorogenic response (∼2 s) with the fastest response kinetic (kpos' = 0.373 s-1) that is better than other charged ones (kzwi' = 0.031 s-1, kneu' = 0.013 s-1, kneg' = 0.003 s-1). Azo-Pos was demonstrated to be capable to directly detect labile Na2S2O4 in food samples and visualize the presence of Na2S2O4 in living systems in a timely fashion. This new probe has potential as a robust tool to fluorescently monitor excessive food additives and biological invasion of harmful Na2S2O4. Moreover, our proposed accelerating strategy would be versatile to develop more activity-based sensing probes for quickly detecting other unstable analytes of interest.
Collapse
Affiliation(s)
- Jingjing Li
- Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
| | - Xizi Yu
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, P. R. China
| | - Dunji Shu
- Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
| | - Huihong Liu
- Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, P. R. China
| | - Maoxin Gu
- Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
| | - Kai Zhang
- Department of Chemistry, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, P. R. China
| | - Guojiang Mao
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, P. R. China
| | - Sheng Yang
- Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
| | - Ronghua Yang
- Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
| |
Collapse
|
2
|
Li D, Ren T, Wang X, Xiao Z, Sun G, Zhang N, Zhao L, Zhong R. Development and in vitro evaluation of carmustine delivery platform: A hypoxia-sensitive anti-drug resistant nanomicelle with BBB penetrating ability. Biomed Pharmacother 2023; 167:115631. [PMID: 37804814 DOI: 10.1016/j.biopha.2023.115631] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/29/2023] [Accepted: 10/03/2023] [Indexed: 10/09/2023] Open
Abstract
Glioma is extremely difficult to be completely excised by surgery due to its invasive nature. Thus, chemotherapy still is the mainstay in the treatment of glioma after surgery. However, the natural blood-brain barrier (BBB) greatly restricts the penetration of chemotherapeutic agents into the central nervous system. As a front-line anti-glioma agent in clinical, carmustine (BCNU) exerts antitumor effect by inducing DNA damage at the O6 position of guanine. However, the therapeutic effect of BCNU was largely decreased because of the drug resistance mediated by O6-alkylguanine-DNA alkyltransferase (AGT) and insufficient local drug concentrations. To overcome these obstacles, we synthesized a BCNU-loaded hypoxia-responsive nano-micelle with BBB penetrating capacity and AGT inhibitory activity, named as T80-HA-AZO-BG/BCNU NPs. In this nano-system, Tween 80 (T80) serves as a functional coating on the surface of the micelle, promoting transportation across the BBB. Hyaluronic acid (HA) with active tumor-targeting capability was linked with the hydrophobic O6-benzylguanine (BG) analog via a hypoxia-sensitive azo bond. Under hypoxic tumor microenvironment, the azo bond selectively breaks to release O6-BG as AGT inhibitor and BCNU as DNA alkylating agent. The synthesized T80-HA-AZO-BG/BCNU NPs showed good stability, favorable biocompatibility and hypoxia-responsive drug-releasing ability. T80 modification improved the transportation of the micelle across an in vitro BBB model. Moreover, T80-HA-AZO-BG/BCNU NPs exhibited significantly enhanced cytotoxicity against glioma cell lines with high AGT expression compared with traditional combined medication of BCNU plus O6-BG. We expect that the tumor-targeting nano-micelle designed for chloroethylnitrosourea will provide new tools for the development of effective glioma therapy.
Collapse
Affiliation(s)
- Duo Li
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing 100124, China
| | - Ting Ren
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing 100124, China
| | - Xiaoli Wang
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing 100124, China
| | - Zhixuan Xiao
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing 100124, China
| | - Guohui Sun
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing 100124, China
| | - Na Zhang
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing 100124, China
| | - Lijiao Zhao
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing 100124, China.
| | - Rugang Zhong
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
3
|
Zhao R, Xu Y, Wang X, Zhou X, Liu Y, Jiang S, Zhang L, Yu Z. Withaferin A Enhances Mitochondrial Biogenesis and BNIP3-Mediated Mitophagy to Promote Rapid Adaptation to Extreme Hypoxia. Cells 2022; 12:cells12010085. [PMID: 36611879 PMCID: PMC9818179 DOI: 10.3390/cells12010085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Rapid adaptation to extreme hypoxia is a challenging problem, and there is no effective scheme to achieve rapid adaptation to extreme hypoxia. In this study, we found that withaferin A (WA) can significantly reduce myocardial damage, maintain cardiac function, and improve survival in rats in extremely hypoxic environments. Mechanistically, WA protects against extreme hypoxia by affecting BCL2-interacting protein 3 (BNIP3)-mediated mitophagy and the peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α)-mediated mitochondrial biogenesis pathway among mitochondrial quality control mechanisms. On the one hand, enhanced mitophagy eliminates hypoxia-damaged mitochondria and prevents the induction of apoptosis; on the other hand, enhanced mitochondrial biogenesis can supplement functional mitochondria and maintain mitochondrial respiration to ensure mitochondrial ATP production under acute extreme hypoxia. Our study shows that WA can be used as an effective drug to improve tolerance to extreme hypoxia.
Collapse
Affiliation(s)
- Ruzhou Zhao
- Department of Aerospace Physiology, Air Force Medical University, 169# Changle West Road, Xi’an 710032, China
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences (AMMS), Beijing 100071, China
| | - Yixin Xu
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences (AMMS), Beijing 100071, China
- Department of Hepatobiliary Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning 530021, China
| | - Xiaobo Wang
- Department of Aerospace Physiology, Air Force Medical University, 169# Changle West Road, Xi’an 710032, China
| | - Xiang Zhou
- Department of Aerospace Physiology, Air Force Medical University, 169# Changle West Road, Xi’an 710032, China
| | - Yanqi Liu
- Department of Aerospace Physiology, Air Force Medical University, 169# Changle West Road, Xi’an 710032, China
| | - Shuai Jiang
- Department of Aerospace Physiology, Air Force Medical University, 169# Changle West Road, Xi’an 710032, China
| | - Lin Zhang
- Department of Aerospace Physiology, Air Force Medical University, 169# Changle West Road, Xi’an 710032, China
| | - Zhibin Yu
- Department of Aerospace Physiology, Air Force Medical University, 169# Changle West Road, Xi’an 710032, China
- Correspondence:
| |
Collapse
|
4
|
Proteasome Inhibitors Decrease the Viability of Pulmonary Arterial Smooth Muscle Cells by Restoring Mitofusin-2 Expression under Hypoxic Conditions. Biomedicines 2022; 10:biomedicines10040873. [PMID: 35453623 PMCID: PMC9030547 DOI: 10.3390/biomedicines10040873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/01/2022] [Accepted: 04/07/2022] [Indexed: 02/04/2023] Open
Abstract
Pulmonary hypertension (PH) is a severe progressive disease, and the uncontrolled proliferation of pulmonary artery smooth muscle cells (PASMCs) is one of the main causes. Mitofusin-2 (MFN2) profoundly inhibits cell growth and proliferation in a variety of tumor cell lines and rat vascular smooth muscle cells. Down-regulation of MFN2 is known to contribute to PH. Proteasome inhibitors have been shown to inhibit the proliferation of PASMCs; however, there is no study on the regulation of proteasome inhibitors through MFN-2 in the proliferation of PASMCs, a main pathophysiology of PH. In this study, PASMCs were exposed to hypoxic conditions and the expression of MFN2 and cleaved-PARP1 were detected by Western blotting. The effects of hypoxia and proteasome inhibitors on the cell viability of PASMC cells were detected by CCK8 assay. The results indicated that hypoxia increases the viability and reduces the expression of MFN2 in a PASMCs model. MFN2 overexpression inhibits the hypoxia-induced proliferation of PASMCs. In addition, proteasome inhibitors, bortezomib and marizomib, restored the decreased expression of MFN2 under hypoxic conditions, inhibited hypoxia-induced proliferation and induced the expression of cleaved-PARP1. These results suggest that bortezomib and marizomib have the potential to improve the hypoxia-induced proliferation of PASMCs by restoring MFN2 expression.
Collapse
|
5
|
Khalil NN, McCain ML. Engineering the Cellular Microenvironment of Post-infarct Myocardium on a Chip. Front Cardiovasc Med 2021; 8:709871. [PMID: 34336962 PMCID: PMC8316619 DOI: 10.3389/fcvm.2021.709871] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 06/14/2021] [Indexed: 01/02/2023] Open
Abstract
Myocardial infarctions are one of the most common forms of cardiac injury and death worldwide. Infarctions cause immediate necrosis in a localized region of the myocardium, which is followed by a repair process with inflammatory, proliferative, and maturation phases. This repair process culminates in the formation of scar tissue, which often leads to heart failure in the months or years after the initial injury. In each reparative phase, the infarct microenvironment is characterized by distinct biochemical, physical, and mechanical features, such as inflammatory cytokine production, localized hypoxia, and tissue stiffening, which likely each contribute to physiological and pathological tissue remodeling by mechanisms that are incompletely understood. Traditionally, simplified two-dimensional cell culture systems or animal models have been implemented to elucidate basic pathophysiological mechanisms or predict drug responses following myocardial infarction. However, these conventional approaches offer limited spatiotemporal control over relevant features of the post-infarct cellular microenvironment. To address these gaps, Organ on a Chip models of post-infarct myocardium have recently emerged as new paradigms for dissecting the highly complex, heterogeneous, and dynamic post-infarct microenvironment. In this review, we describe recent Organ on a Chip models of post-infarct myocardium, including their limitations and future opportunities in disease modeling and drug screening.
Collapse
Affiliation(s)
- Natalie N Khalil
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States
| | - Megan L McCain
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States.,Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
6
|
Long M, Liu X, Huang X, Lu M, Wu X, Weng L, Chen Q, Wang X, Zhu L, Chen Z. Alendronate-functionalized hypoxia-responsive polymeric micelles for targeted therapy of bone metastatic prostate cancer. J Control Release 2021; 334:303-317. [PMID: 33933517 DOI: 10.1016/j.jconrel.2021.04.035] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/20/2021] [Accepted: 04/27/2021] [Indexed: 12/12/2022]
Abstract
Bone metastasis is one of the leading causes of cancer-related death and remains incurable in spite of great efforts. Bone-targeted nanoparticle-based drug carriers can overcome the difficulties in delivering therapeutic agents to metastatic bone and endowing them with a stimuli-responsive feature for controllable drug release can further maximize their therapeutic outcome. In light of hypoxic microenvironment of bone metastasis, we herein reported a bone-targeted and hypoxia-responsive polymeric micelle system for effective treatment of bone metastatic prostate cancer. The micelles were self-assembled from a polyethylene glycol and poly-l-lysine based copolymer using alendronate as a bone-targeted moiety and azobenzene as a hypoxia-responsive linker, showing a high affinity to metastatic bone and a high sensitivity in responding to hypoxia in vitro. In vivo studies further showed that after a selective accumulation in metastatic bone, the micelles could respond to hypoxic bone metastasis for rapid drug release to an effective therapeutic dosage. As a result, the micelles could suppress tumor growth in bone and inhibit bone destruction by inhibiting osteoclast activity and promoting osteoblast activity, achieving an enhanced therapeutic outcome with relieved bone pain and prolonged survival time. Bone-targeted and hypoxia-responsive nanocarriers therefore represent a promising advancement for treating bone metastasis. To our best knowledge, it might be the first example of the application of hypoxia-responsive nanocarriers in treating bone metastasis.
Collapse
Affiliation(s)
- Mengmeng Long
- Institute of Special Environmental Medicine, Nantong University, Nantong, People's Republic of China
| | - Xuemeng Liu
- Institute of Special Environmental Medicine, Nantong University, Nantong, People's Republic of China
| | - Xu Huang
- Institute of Special Environmental Medicine, Nantong University, Nantong, People's Republic of China
| | - Min Lu
- Institute of Special Environmental Medicine, Nantong University, Nantong, People's Republic of China
| | - Xiaomei Wu
- Institute of Special Environmental Medicine, Nantong University, Nantong, People's Republic of China
| | - Lingyan Weng
- Institute of Special Environmental Medicine, Nantong University, Nantong, People's Republic of China
| | - Qiuping Chen
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, People's Republic of China
| | - Xueting Wang
- Institute of Special Environmental Medicine, Nantong University, Nantong, People's Republic of China.
| | - Li Zhu
- Institute of Special Environmental Medicine, Nantong University, Nantong, People's Republic of China.
| | - Zhongping Chen
- Institute of Special Environmental Medicine, Nantong University, Nantong, People's Republic of China.
| |
Collapse
|
7
|
Zhao RZ, Wang XB, Jiang S, Ru NY, Jiao B, Wang YY, Yu ZB. Elevated ROS depress mitochondrial oxygen utilization efficiency in cardiomyocytes during acute hypoxia. Pflugers Arch 2020; 472:1619-1630. [PMID: 32940783 DOI: 10.1007/s00424-020-02463-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 07/24/2020] [Accepted: 09/07/2020] [Indexed: 11/28/2022]
Abstract
Mitochondria are important sites for the production of ATP and the generation of ROS in cells. However, whether acute hypoxia increases ROS generation in cells or affects ATP production remains unclear, and therefore, monitoring the changes in ATP and ROS in living cells in real time is important. In this study, cardiomyocytes were transfected with RoGFP for ROS detection and MitGO-Ateam2 for ATP detection, whereby ROS and ATP production in cardiomyocytes were respectively monitored in real time. Furthermore, the oxygen consumption rate (OCR) of cardiomyocytes was measured. Similar results were produced for adult and neonatal rat cardiomyocytes. Hypoxia (1% O2) reduced the basal OCR, ATP-linked OCR, and maximal OCR in cardiomyocytes compared with these OCR levels in the cardiomyocytes in the normoxic group (21% O2). However, ATP-linked OCR, normalized to maximal OCR, was increased during hypoxia, indicating that the electron leakage of complex III exacerbated the increase of ATP-linked oxygen consumption during hypoxia and vice versa. Combined with the result that cardiomyocytes expressing MitGO-Ateam2 showed a significant decrease in ATP production during hypoxia compared with that of normoxic group, acute hypoxia might depress the mitochondrial oxygen utilization efficiency of the cardiomyocytes. Moreover, cardiomyocytes expressing Cyto-RoGFP or IMS-RoGFP showed an increase in ROS generation in the cytosol and the mitochondrial intermembrane space (IMS) during hypoxia. All of these results indicate that acute hypoxia generated more ROS in complex III and increased mitochondrial oxygen consumption, leading to less ATP production. In conclusion, acute hypoxia depresses the mitochondrial oxygen utilization efficiency by decreasing ATP production and increasing oxygen consumption as a result of the enhanced ROS generation at mitochondrial complex III.
Collapse
Affiliation(s)
- Ru-Zhou Zhao
- Department of Aerospace Physiology, Fourth Military Medical University, 169# Changle West Road, Xi'an, 710032, China
| | - Xiao-Bo Wang
- Department of Aerospace Physiology, Fourth Military Medical University, 169# Changle West Road, Xi'an, 710032, China
| | - Shuai Jiang
- Department of Aerospace Physiology, Fourth Military Medical University, 169# Changle West Road, Xi'an, 710032, China
| | - Ning-Yu Ru
- Department of Aerospace Physiology, Fourth Military Medical University, 169# Changle West Road, Xi'an, 710032, China
| | - Bo Jiao
- Department of Aerospace Physiology, Fourth Military Medical University, 169# Changle West Road, Xi'an, 710032, China
| | - Yun-Ying Wang
- Department of Aerospace Physiology, Fourth Military Medical University, 169# Changle West Road, Xi'an, 710032, China.
| | - Zhi-Bin Yu
- Department of Aerospace Physiology, Fourth Military Medical University, 169# Changle West Road, Xi'an, 710032, China.
| |
Collapse
|