1
|
Orhan A, Çiçek ÖF, Öztürk B, Akbayrak H, Ünlükal N, Vatansev H, Solmaz M, Büyükateş M, Aniç S, Ovalı F, Almaghrebi E, Akat F, Vatansev H. The Effects of Colchicum Dispert and Bone Marrow-Derived Mesenchymal Stem Cell Therapy on Skeletal Muscle Injury in a Rat Aortic Ischemia-Reperfusion Model. J Cardiovasc Dev Dis 2024; 11:251. [PMID: 39195159 DOI: 10.3390/jcdd11080251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/02/2024] [Accepted: 08/15/2024] [Indexed: 08/29/2024] Open
Abstract
BACKGROUND Abdominal aortic aneurysms and peripheral artery disease pose significant health risks, ranking third after heart attacks and cerebral strokes. Surgical interventions often involve temporary aortic clamping, leading to ischemia-reperfusion injury and tissue damage. Colchicine and mesenchymal stem cells have shown promise, individually, in mitigating ischemia-reperfusion injury, but their combined effects remain understudied. METHODS This study utilized 42 male Wistar rats, divided into six groups: Control, Sham, Ischemia-Reperfusion, Colchicine, Mesenchymal stem cell, and Mix (colchicine and mesenchymal stem cell). The ischemia-reperfusion model involved clamping the abdominal aorta for 60 min, followed by 120 min of reperfusion. Colchicine and mesenchymal stem cell treatments were administered as pre- and post-ischemia interventions, respectively. Mesenchymal stem cells were cultured, characterized by flow cytometry, and verified for specific surface antigens. Blood and tissue samples were analyzed for oxidative stress markers, nitric oxide metabolites, and apoptosis using TUNEL. RESULTS There were significant differences between the groups in terms of the serum total antioxidant capacity (p < 0.001) and inflammation markers (ischemia-modified albumin, p = 0.020). The combined therapy group (Mix) exhibited the lowest inflammation levels. Arginine levels also showed significant variation (p = 0.028), confirming the ischemia-reperfusion injury model. In muscle tissues, the total antioxidant capacity (p = 0.022), symmetric dimethylarginine, and citrulline levels (p < 0.05) indicated nitric oxide metabolism. Apoptosis was notably high in the ischemia-reperfusion injury group as anticipated. It appeared to be reduced by colchicine, mesenchymal stem cells, and their combination, with the most significant decrease observed in the Mix group (p < 0.001). CONCLUSIONS This study highlights the potential of using combined colchicine and mesenchymal stem cell therapy to reduce muscle damage caused by ischemia-reperfusion injury. Further research is needed to understand the underlying mechanisms and confirm the clinical significance of this approach in treating extremity ischemia-reperfusion injuries.
Collapse
Affiliation(s)
- Atilla Orhan
- Department of Cardiovascular Surgery, Medical Faculty, Selçuk University, Konya 42250, Turkey
| | - Ömer Faruk Çiçek
- Department of Cardiovascular Surgery, Medical Faculty, Selçuk University, Konya 42250, Turkey
| | - Bahadır Öztürk
- Department of Biochemistry, Medical Faculty, Selçuk University, Konya 42250, Turkey
| | - Hakan Akbayrak
- Department of Cardiovascular Surgery, Medical Faculty, Selçuk University, Konya 42250, Turkey
| | - Nejat Ünlükal
- Department of Histology, Medical Faculty, Selçuk University, Konya 42250, Turkey
| | - Hakan Vatansev
- Department of Food Processing, Meram Vocational School, Necmettin Erbakan University, Konya 42092, Turkey
| | - Merve Solmaz
- Department of Histology, Medical Faculty, Selçuk University, Konya 42250, Turkey
| | - Mustafa Büyükateş
- Department of Cardiovascular Surgery, Medical Faculty, Selçuk University, Konya 42250, Turkey
| | - Seda Aniç
- Department of Histology, Medical Faculty, Selçuk University, Konya 42250, Turkey
| | - Fadime Ovalı
- Department of Medical Biochemistry, Institute of Health Sciences, Selçuk University, Konya 42250, Turkey
| | - Eissa Almaghrebi
- Department of Biochemistry, Medical Faculty, Selçuk University, Konya 42250, Turkey
| | - Fatma Akat
- Department of Biochemistry, Medical Faculty, Selçuk University, Konya 42250, Turkey
| | - Hüsamettin Vatansev
- Department of Biochemistry, Medical Faculty, Selçuk University, Konya 42250, Turkey
| |
Collapse
|
2
|
Elzaitony AS, Al-Najjar AH, Gomaa AA, Eraque AMS, Sallam AS. Re-positioning of low dose paclitaxel against depressive-like behavior and neuroinflammation induced by lipopolysaccharide in rats: Crosstalk between NLRP3/caspase-1/IL-1β and Sphk1/S1P/ NF-κB signaling pathways. Toxicol Appl Pharmacol 2024; 490:117043. [PMID: 39059506 DOI: 10.1016/j.taap.2024.117043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 07/12/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
AIMS Depression is a potentially fatal illness affecting millions of individuals worldwide, across all age groups. Neuroinflammation is a key factor in depression development. Paclitaxel (PXL), a well-known chemotherapeutic agent has been used as therapy for several types of cancer. This study aims to evaluate the ameliorative effect of low-dose PXL against lipopolysaccharide (LPS)-induced depression in rats. MATERIALS AND METHODS Adult male Sprague-Dawley rats were administrated a single dose of LPS (5 mg/kg, i.p.); 2 h later, rats received PXL (0.3 mg/kg, i.p. three times/week) for one week. KEY FINDINGS Low-dose PXL alleviated LPS-induced depressive-like behavior in rats as evidenced by significantly improving behavioral changes in both forced swim test (FST) and open field test (OFT), successfully mitigated depletion of monoamines (serotonin, norepinephrine, and dopamine), in addition to markedly decreasing lipid peroxidation with antioxidant levels elevation in brain tissues. Low-dose PXL substantially decreased inflammation triggered by LPS in brain tissue via repressing the expression of NLRP3 and its downstream markers level, caspase-1 and IL-1β jointly with a corresponding decrease in proinflammatory cytokine levels (TNF-α). Furthermore, low-dose PXL remarkably down-regulated Sphk1/S1P signaling pathway. Concurrent with these biochemical findings, there was a noticeable improvement in the brain tissue's histological changes. SIGNIFICANCE These findings prove the role of low-dose PXL in treatment of LPS-induced neuroinflammation and depressive-like behavior through their anti-depressant, antioxidant and anti-inflammatory actions. The suggested molecular mechanism may entail focusing the interconnection among Sphk1/S1P, and NLRP3/caspase-1/IL-1β signaling pathways. Hence PXL could be used as a novel treatment against LPS-induced depression.
Collapse
Affiliation(s)
- Asmaa S Elzaitony
- Pharmacology and Toxicology Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Aya H Al-Najjar
- Pharmacology and Toxicology Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt.
| | - Asmaa A Gomaa
- Department of pharmacology and Toxicology, Faculty of pharmacy, Ahram Canadian University, Egypt
| | - Ayat M S Eraque
- Biochemistry department, Faculty of Medicine for girls, Al -Azhar University, Cairo, Egypt
| | - Amany Said Sallam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Menoufia University, Menoufia, Egypt
| |
Collapse
|
3
|
Jantan I, Norahmad NA, Yuandani, Haque MA, Mohamed-Hussein ZA, Mohd Abd Razak MR, Syed Mohamed AF, Lam KW, Ibrahim S. Inhibitory effect of food-functioned phytochemicals on dysregulated inflammatory pathways triggered by SARS-CoV-2: a mechanistic review. Crit Rev Food Sci Nutr 2024:1-26. [PMID: 38619217 DOI: 10.1080/10408398.2024.2341266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Inflammatory cascades of the dysregulated inflammatory pathways in COVID-19 can cause excessive production of pro-inflammatory cytokines and chemokines leading to cytokine storm syndrome (CSS). The molecular cascades involved in the pathways may be targeted for discovery of new anti-inflammatory agents. Many plant extracts have been used clinically in the management of COVID-19, however, their immunosuppressive activities were mainly investigated based on in silico activity. Dietary flavonoids of the extracts such as quercetin, luteolin, kaempferol, naringenin, isorhamnetin, baicalein, wogonin, and rutin were commonly identified as responsible for their inhibitory effects. The present review critically analyzes the anti-inflammatory effects and mechanisms of phytochemicals, including dietary compounds against cytokine storm (CS) and hyperinflammation via inhibition of the altered inflammatory pathways triggered by SARS-CoV-2, published since the emergence of COVID-19 in December 2019. Only a few phytochemicals, mainly dietary compounds such as nanocurcumin, melatonin, quercetin, 6-shagoal, kaempferol, resveratrol, andrographolide, and colchicine have been investigated either in in silico or preliminary clinical studies to evaluate their anti-inflammatory effects against COVID-19. Sufficient pre-clinical studies on safety and efficacy of anti-inflammatory effects of the phytochemicals must be performed prior to proper clinical studies to develop them into therapeutic adjuvants in the prevention and treatmemt of COVID-19 symptoms.
Collapse
Affiliation(s)
- Ibrahim Jantan
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi, Malaysia
- Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Nor Azrina Norahmad
- Herbal Medicine Research Centre, Institute for Medical Research, Shah Alam, Malaysia
| | - Yuandani
- Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Md Areeful Haque
- Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Zeti-Azura Mohamed-Hussein
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi, Malaysia
- Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| | | | | | - Kok Wai Lam
- Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Sarah Ibrahim
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| |
Collapse
|
4
|
Ali RAH, Altimimi M, Hadi NR. The potential renoprotective effect of Raloxifene in renal ischemia-reperfusion injury in a male rat model. J Med Life 2023; 16:1274-1281. [PMID: 38024816 PMCID: PMC10652674 DOI: 10.25122/jml-2023-0100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/30/2023] [Indexed: 12/01/2023] Open
Abstract
Renal ischemia-reperfusion injury is caused by a temporary reduction in oxygen-carrying blood flow to the kidney, followed by reperfusion. During ischemia, kidney tissue damage induces overproduction of reactive oxygen species, which produces oxidative stress. The blood flow restoration during the reperfusion period causes further production of reactive oxygen species that ends with apoptosis and cell death. This study aimed to investigate the potential renoprotective effects of Raloxifene on bilateral renal ischemia-reperfusion injury in rats by looking into kidney function biomarkers, urea and creatinine, inflammatory cytokines, such as tumor necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1β). Additionally, antioxidant markers such as total antioxidant capacity (TAC) and the pro-apoptotic marker caspase-3 were assessed. Histopathological scores were also employed for evaluation. Our experimental design involved 20 rats divided into four groups: the sham group underwent median laparotomy without ischemia induction, the control group experienced bilateral renal ischemia for 30 minutes followed by 2 hours of reperfusion, the vehicle group received pretreatment with a mixture of corn oil and dimethyl sulfoxide (DMSO) before ischemia induction, and the Raloxifene-treated group was administered Raloxifene at a dose of 10 mg/kg before ischemia induction, followed by ischemia-reperfusion. Urea and creatinine, TNF-α, IL-1β, and caspase-3 in the Raloxifene group were significantly lower compared to the control and vehicle groups. On the other hand, TAC levels in the Raloxifene group were significantly higher than in the control and vehicle groups. This study concluded that Raloxifene had a renoprotective impact via multiple actions as an anti-inflammatory, anti-apoptotic, and antioxidant agent.
Collapse
Affiliation(s)
- Raghad Abdul Hameed Ali
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Kufa, Kufa, Iraq
| | - Murooj Altimimi
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Kufa, Kufa, Iraq
| | - Najah Rayish Hadi
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Kufa, Kufa, Iraq
| |
Collapse
|
5
|
Soliman E, Elshazly SM, Shewaikh SM, El-Shaarawy F. Reno- and hepato-protective effect of allopurinol after renal ischemia/reperfusion injury: Crosstalk between xanthine oxidase and peroxisome proliferator-activated receptor gamma signaling. Food Chem Toxicol 2023:113868. [PMID: 37269893 DOI: 10.1016/j.fct.2023.113868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/21/2023] [Accepted: 05/31/2023] [Indexed: 06/05/2023]
Abstract
Renal ischemia/reperfusion (I/R) is a common cause of acute kidney injury and remote liver damage is an ultimate negative outcome. Current treatments for I/R typically involve the use of antioxidants and anti-inflammatory to protect against oxidative stress and inflammation. Xanthine oxidase (XO) and PPAR-γ contribute to renal I/R-induced oxidative stress; however, the crosstalk between the two pathways remains unexplored. In the present study, we report that XO inhibitor, allopurinol (ALP), protects kidney and liver after renal I/R by PPAR-γ activation. Rats with renal I/R showed reduced kidney and liver functions, increased XO, and decreased PPAR-γ. ALP increased PPAR-γ expression and improved liver and kidney functions. ALP also reduced inflammation and nitrosative stress indicated by reduction in TNF-α, iNOS, nitric oxide (NO), and peroxynitrite formation. Interestingly, rats co-treated with PPAR-γ inhibitor, BADGE, and ALP showed diminished beneficial effect on renal and kidney functions, inflammation, and nitrosative stress. This data suggests that downregulation of PPAR-γ contributes to nitrosative stress and inflammation in renal I/R and the use of ALP reverses this effect by increasing PPAR-γ expression. In conclusion, this study highlights the potential therapeutic value of ALP and suggests targeting XO-PPAR-γ pathway as a promising strategy for preventing I/R injury.
Collapse
Affiliation(s)
- Eman Soliman
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt.
| | - Shimaa Mustafa Elshazly
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt.
| | - Samar M Shewaikh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt.
| | - Fatma El-Shaarawy
- Department of Biochemistry, Faculty of Pharmacy, Sinai University, El-Arish, 45511, Egypt.
| |
Collapse
|
6
|
Zhang Z, Li X, Wang Y, Wei Y, Wei X. Involvement of inflammasomes in tumor microenvironment and tumor therapies. J Hematol Oncol 2023; 16:24. [PMID: 36932407 PMCID: PMC10022228 DOI: 10.1186/s13045-023-01407-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 02/08/2023] [Indexed: 03/19/2023] Open
Abstract
Inflammasomes are macromolecular platforms formed in response to damage-associated molecular patterns (DAMPs) and pathogen-associated molecular patterns, whose formation would cause maturation of interleukin-1 (IL-1) family members and gasdermin D (GSDMD), leading to IL-1 secretion and pyroptosis respectively. Several kinds of inflammasomes detecting different types of dangers have been found. The activation of inflammasomes is regulated at both transcription and posttranscription levels, which is crucial in protecting the host from infections and sterile insults. Present findings have illustrated that inflammasomes are involved in not only infection but also the pathology of tumors implying an important link between inflammation and tumor development. Generally, inflammasomes participate in tumorigenesis, cell death, metastasis, immune evasion, chemotherapy, target therapy, and radiotherapy. Inflammasome components are upregulated in some tumors, and inflammasomes can be activated in cancer cells and other stromal cells by DAMPs, chemotherapy agents, and radiation. In some cases, inflammasomes inhibit tumor progression by initiating GSDMD-mediated pyroptosis in cancer cells and stimulating IL-1 signal-mediated anti-tumor immunity. However, IL-1 signal recruits immunosuppressive cell subsets in other cases. We discuss the conflicting results and propose some possible explanations. Additionally, we also summarize interventions targeting inflammasome pathways in both preclinical and clinical stages. Interventions targeting inflammasomes are promising for immunotherapy and combination therapy.
Collapse
Affiliation(s)
- Ziqi Zhang
- grid.13291.380000 0001 0807 1581Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041 Sichuan People’s Republic of China
| | - Xue Li
- grid.13291.380000 0001 0807 1581Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041 Sichuan People’s Republic of China
| | - Yang Wang
- grid.13291.380000 0001 0807 1581Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041 Sichuan People’s Republic of China
| | - Yuquan Wei
- grid.13291.380000 0001 0807 1581Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041 Sichuan People’s Republic of China
| | - Xiawei Wei
- grid.13291.380000 0001 0807 1581Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041 Sichuan People’s Republic of China
| |
Collapse
|
7
|
Hameed Ali RA, Altimimi M, Hadi NR. THE POTENTIAL RENOPROTECTIVE EFFECT OF TILIANIN IN RENAL ISCHEMIA REPERFUSION INJURY IN MALE RAT MODEL. WIADOMOSCI LEKARSKIE (WARSAW, POLAND : 1960) 2023; 76:2657-2667. [PMID: 38290030 DOI: 10.36740/wlek202312115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
OBJECTIVE The aim: To determine whether Tilianin (TIL) may have Nephroprotective effects on bilateral renal IRI in rats by analyzing kidney function biomarkers U and Cr, inflammatory cytokines like TNF α and IL-1β, antioxidant marker total anti-oxidant Capacity (TAC), anti-apoptotic markers caspase-3, and histopathological scores. PATIENTS AND METHODS Materials and methods: 20 rats divided into even 4 groups as: Sham group: Rats underwent median laparotomies without having their ischemia induced. Control group: Rats had bilateral renal ischemia for 30 minutes, followed by 2 hours of reperfusion. Vehicle group: 30 minutes prior to the onset of ischemia, rats were given a pretreatment of corn oil and DMSO. Tilianin treated group: Rats administered Tilianin 5 mg/kg for 30 min prior to ischemia induction, then IRI. RESULTS Results: The study found that the serum levels of TNF, IL-1, caspase-3, urea and creatinine, as well as TNF and creatinine in the Tilianin group were significantly lower than those of the control and vehicle groups. On the other hand, it revealed that TAC levels are remarkably higher in the Tilianin group than they are in the control and vehicle groups. CONCLUSION Conclusions: This study concluded that Tilianin have a Nephroprotective effect via multiple impacts as anti-inflammatory, anti-apoptotic, and anti-oxidant agents.
Collapse
Affiliation(s)
- Raghad Abdul Hameed Ali
- PHARMACY, PHARMACOLOGY AND THERAPEUTICS DEPARTMENT, FACULTY OF PHARMACY, UNIVERSITY OF KUFA, KUFA, IRAQ
| | - Murooj Altimimi
- DEPARTMENT OF PHARMACOLOGY & THERAPEUTICS, FACULTY OF MEDICINE, UNIVERSITY OF KUFA, IRAQ
| | - Najah Rayish Hadi
- DEPARTMENT OF PHARMACOLOGY & THERAPEUTICS, FACULTY OF MEDICINE, UNIVERSITY OF KUFA, IRAQ
| |
Collapse
|
8
|
Zhang D, Li L, Li J, Wei Y, Tang J, Man X, Liu F. Colchicine improves severe acute pancreatitis-induced acute lung injury by suppressing inflammation, apoptosis and oxidative stress in rats. Biomed Pharmacother 2022; 153:113461. [DOI: 10.1016/j.biopha.2022.113461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/17/2022] [Accepted: 07/21/2022] [Indexed: 11/27/2022] Open
|
9
|
Huang J, Zhang Z, Hao C, Qiu Y, Tan R, Liu J, Wang X, Yang W, Qu H. Identifying Drug-Induced Liver Injury Associated With Inflammation-Drug and Drug-Drug Interactions in Pharmacologic Treatments for COVID-19 by Bioinformatics and System Biology Analyses: The Role of Pregnane X Receptor. Front Pharmacol 2022; 13:804189. [PMID: 35979235 PMCID: PMC9377275 DOI: 10.3389/fphar.2022.804189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 06/24/2022] [Indexed: 11/13/2022] Open
Abstract
Of the patients infected with coronavirus disease 2019 (COVID-19), approximately 14–53% developed liver injury resulting in poor outcomes. Drug-induced liver injury (DILI) is the primary cause of liver injury in COVID-19 patients. In this study, we elucidated liver injury mechanism induced by drugs of pharmacologic treatments against SARS-CoV-2 (DPTS) using bioinformatics and systems biology. Totally, 1209 genes directly related to 216 DPTS (DPTSGs) were genes encoding pharmacokinetics and therapeutic targets of DPTS and enriched in the pathways related to drug metabolism of CYP450s, pregnane X receptor (PXR), and COVID-19 adverse outcome. A network, constructed by 110 candidate targets which were the shared part of DPTSGs and 445 DILI targets, identified 49 key targets and four Molecular Complex Detection clusters. Enrichment results revealed that the 4 clusters were related to inflammatory responses, CYP450s regulated by PXR, NRF2-regualted oxidative stress, and HLA-related adaptive immunity respectively. In cluster 1, IL6, IL1B, TNF, and CCL2 of the top ten key targets were enriched in COVID-19 adverse outcomes pathway, indicating the exacerbation of COVID-19 inflammation on DILI. PXR-CYP3A4 expression of cluster 2 caused DILI through inflammation-drug interaction and drug-drug interactions among pharmaco-immunomodulatory agents, including tocilizumab, glucocorticoids (dexamethasone, methylprednisolone, and hydrocortisone), and ritonavir. NRF2 of cluster 3 and HLA targets of cluster four promoted DILI, being related to ritonavir/glucocorticoids and clavulanate/vancomycin. This study showed the pivotal role of PXR associated with inflammation-drug and drug-drug interactions on DILI and highlighted the cautious clinical decision-making for pharmacotherapy to avoid DILI in the treatment of COVID-19 patients.
Collapse
Affiliation(s)
- Jingjing Huang
- Department of Pharmacy, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhaokang Zhang
- Department of Pharmacy, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Chenxia Hao
- Department of Pharmacy, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Pharmacy, Shanghai Children’s Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yuzhen Qiu
- Department of Critical Care, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ruoming Tan
- Department of Critical Care, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jialin Liu
- Department of Critical Care, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiaoli Wang
- Department of Critical Care, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- *Correspondence: Xiaoli Wang, ; Wanhua Yang, ; Hongping Qu,
| | - Wanhua Yang
- Department of Pharmacy, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- *Correspondence: Xiaoli Wang, ; Wanhua Yang, ; Hongping Qu,
| | - Hongping Qu
- Department of Critical Care, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- *Correspondence: Xiaoli Wang, ; Wanhua Yang, ; Hongping Qu,
| |
Collapse
|
10
|
Prem PN, Sivakumar B, Boovarahan SR, Kurian GA. Recent advances in potential of Fisetin in the management of myocardial ischemia-reperfusion injury-A systematic review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 101:154123. [PMID: 35533608 DOI: 10.1016/j.phymed.2022.154123] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 03/26/2022] [Accepted: 04/17/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND The primary therapeutic strategy in managing ischemic heart diseases is to restore the perfusion of the myocardial ischemic area by surgical methods that often result in an unavoidable injury called ischemia-reperfusion injury (IR). Fisetin is an effective flavonoid with antioxidant and anti-inflammatory properties, proven to be cardioprotective against IR injury in both in-vitro and invivo models, apart from its promising health benefits against cancer, diabetes, and neurodegenerative ailments. PURPOSE The potential of fisetin in attenuating myocardial IR is inconclusive as the effectiveness of fisetin needs more understanding in terms of its possible target sites and underlying different mechanisms. Considering the surge in recent scientific interests in fisetin as a pharmacological agent, this review not only updates the existing preclinical and clinical studies with fisetin and its underlying mechanisms but also summarizes its possible targets during IR protection. METHODS We performed a literature survey using search engines Pubmed, PMC, Science direct, Google, and research gate published across the years 2006-2021. The relevant studies were extracted from the databases with the combinations of the following keywords and summarized: myocardial ischemia-reperfusion injury, natural products, flavonoid, fisetin, PI3K, JAK-STAT, Nrf2, PKC, JNK, autophagy. RESULTS Fisetin is reported to be effective in attenuating IR injury by delaying the clotting time, preserving the mitochondrial function, reducing oxidative stress, and inhibiting GSK 3β. But it failed to protect diseased cardiomyocytes challenged to IR. As discussed in the current review, fisetin not only acts as a conventional antioxidant and anti-inflammatory agent to exert its biological effect but may also exert modulatory action on the cellular metabolism and adaptation via direct action on various signalling pathways that comprise PI3K, JAK-STAT, Nrf2, PKC, JNK, and autophagy. Moreover, the dosage of fisetin and co-morbidities like diabetes and obesity are found to be detrimental factors for cardioprotection. CONCLUSION For further evaluation and smooth clinical translation of the fisetin molecule in IR treatment, researchers should pay close attention to the potential of fisetin to possibly alter the key cardioprotective pathways and dosage, as the efficacy of fisetin is tissue and cell type-specific and varies with different doses.
Collapse
Affiliation(s)
- Priyanka N Prem
- Vascular Biology lab, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, India
| | - Bhavana Sivakumar
- Vascular Biology lab, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, India
| | - Sri Rahavi Boovarahan
- Vascular Biology lab, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, India
| | - Gino A Kurian
- Vascular Biology lab, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, India; School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur, 613401, Tamil Nadu, India.
| |
Collapse
|
11
|
Combination of Colchicine and Ticagrelor Inhibits Carrageenan-Induced Thrombi in Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3087198. [PMID: 35082966 PMCID: PMC8786461 DOI: 10.1155/2022/3087198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/04/2021] [Accepted: 12/16/2021] [Indexed: 12/14/2022]
Abstract
The formation of a thrombus is closely related to oxidative stress and inflammation. Colchicine is one of the most commonly prescribed medication for gout treatment, with anti-inflammation and antioxidative stress properties. Therefore, we speculated that it is possible for colchicine to treat thrombosis. In this study, we used carrageenan to induce thrombosis in BALB/c mice and fed mice with colchicine, ticagrelor, and their combination, respectively. We found colchicine inhibited carrageenan-induced thrombi in mouse tail, and the inhibition was enhanced by ticagrelor. In vitro, colchicine inhibited thrombin-induced retraction of human platelet clots. Mechanically, colchicine inhibited platelet activation by reducing the expression of platelet receptors, protease-activated receptor 4 (PAR4) and CD36, and inactivating of AKT and ERK1/2 pathways. Furthermore, in human umbilical vein endothelial cells (HUVECs), colchicine showed antioxidative stress effects through increasing protein expression of glutathione peroxidase-1 (GPx-1), and mRNA levels of forkhead box O3 (FOXO3a) and superoxide dismutase 2 (SOD2). In RAW264.7 cells, colchicine reduced LPS-enhanced inflammatory response through attenuating toll-like receptor 4 (TLR4) activation. In addition, colchicine reduced LPS or ox-LDL-induced monocyte adhesion to HUVECs by inhibiting intercellular adhesion molecule-1 (ICAM-1) and vascular adhesion molecule-1 (VCAM-1) levels. Taken together, our study demonstrates that colchicine exerts antithrombotic function by attenuating platelet activation and inhibiting oxidative stress and inflammation. We also provide a potential new strategy for clinical treatment.
Collapse
|
12
|
Awad AS, Elariny HA, Sallam AS. Colchicine attenuates renal ischemia-reperfusion-induced liver damage: implication of TLR4/NF-κB, TGF-β, and BAX and Bcl-2 gene expression. Can J Physiol Pharmacol 2022; 100:12-18. [PMID: 34411492 DOI: 10.1139/cjpp-2021-0007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ischemia-reperfusion injury (IRI) is typically associated with a vigorous inflammatory and oxidative stress response to hypoxia and reperfusion that disturbs the function of the organ. The remote effects of renal IRI on the liver, however, require further study. Renal damage associated with liver disease is a common clinical problem. Colchicine, a polymerization inhibitor of microtubules, has been used as an anti-inflammatory and anti-fibrotic drug for liver diseases. The goal of the current study was to investigate the possible protective mechanisms of colchicine on liver injury following renal IRI. Forty rats were divided randomly into four groups: sham group, colchicine-treated group, IRI group, and colchicine-treated + IRI group. Treatment with colchicine significantly reduced hepatic toll-like receptor 4 (TLR4), nuclear factor kappa B (NF-κB) transcription factor, myeloid differentiation factor 88 (MyD88), and tumor necrosis factor-alpha (TNF-α) contents; downregulated BCL2 associated X apoptosis regulator (BAX) gene expression, transforming growth factor-β (TGF-β) content, and upregulated hepatic B cell lymphoma 2 (Bcl-2) gene expression as compared with the IRI group. Finally, hepatic histopathological examinations have confirmed the biochemical results. Renal IRI-induced liver damage in rats was alleviated by colchicine through its anti-inflammatory, anti-apoptotic, and anti-fibrotic actions.
Collapse
Affiliation(s)
- Azza Sayed Awad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Girls), Al-Azhar University, Egypt
| | - Hemat A Elariny
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Girls), Al-Azhar University, Egypt
| | - Amany Said Sallam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Menoufia University, Egypt
| |
Collapse
|
13
|
Ali Reza ASM, Nasrin MS, Hossen MA, Rahman MA, Jantan I, Haque MA, Sobarzo-Sánchez E. Mechanistic insight into immunomodulatory effects of food-functioned plant secondary metabolites. Crit Rev Food Sci Nutr 2021; 63:5546-5576. [PMID: 34955042 DOI: 10.1080/10408398.2021.2021138] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Medicinally important plant-foods offer a balanced immune function, which is essential for protecting the body against antigenic invasion, mainly by microorganisms. Immunomodulators play pivotal roles in supporting immune function either suppressing or stimulating the immune system's response to invading pathogens. Among different immunomodulators, plant-based secondary metabolites have emerged as high potential not only for immune defense but also for cellular immunoresponsiveness. These natural immunomodulators can be developed into safer alternatives to the clinically used immunosuppressants and immunostimulant cytotoxic drugs which possess serious side effects. Many plants of different species have been reported to possess strong immunomodulating properties. The immunomodulatory effects of plant extracts and their bioactive metabolites have been suggested due to their diverse mechanisms of modulation of the complex immune system and their multifarious molecular targets. Phytochemicals such as alkaloids, flavonoids, terpenoids, carbohydrates and polyphenols have been reported as responsible for the immunomodulatory effects of several medicinal plants. This review illustrates the potent immunomodulatory effects of 65 plant secondary metabolites, including dietary compounds and their underlying mechanisms of action on cellular and humoral immune functions in in vitro and in vivo studies. The clinical potential of some of the compounds to be used for various immune-related disorders is highlighted.
Collapse
Affiliation(s)
- A S M Ali Reza
- Department of Biochemistry and Molecular Biology, University of Chittagong, Chittagong, Bangladesh
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, Bangladesh
| | - Mst Samima Nasrin
- Department of Biochemistry and Molecular Biology, University of Chittagong, Chittagong, Bangladesh
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, Bangladesh
| | - Md Amjad Hossen
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, Bangladesh
| | - Md Atiar Rahman
- Department of Biochemistry and Molecular Biology, University of Chittagong, Chittagong, Bangladesh
| | - Ibrahim Jantan
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Md Areeful Haque
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, Bangladesh
- Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | | |
Collapse
|
14
|
Elmazoglu Z, Aydın Bek Z, Saribas SG, Özoğul C, Goker B, Bitik B, Aktekin CN, Karasu Ç. S-Allylcysteine Inhibits Chondrocyte Inflammation to Reduce Human Osteoarthritis via Targeting RAGE, TLR4, JNK and Nrf2 Signaling: Comparison with Colchicine. Biochem Cell Biol 2021; 99:645-654. [PMID: 33930279 DOI: 10.1139/bcb-2021-0004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Discovery of new pharmacological agents is needed to control the progression of osteoarthritis (OA) characterized by progressive joint cartilage damage. Human OA chondrocyte cultures (OAC) were either applied to S-Allyl cysteine (SAC), a sulfur-containing amino acid derivative, or colchicine, an ancient anti-inflammatory therapeutic, for 24 hours. SAC or colchicine did not change viability at 1 nM-10 µM but inhibited p-JNK/pan-JNK. While SAC seems to be more effective, both agents inhibited reactive oxygen species (ROS), 3-nitrotyrosine (3-NT), lipid-hydroperoxides (LPO), advanced lipoxidation end-products (ALEs as 4-hydroxy-2-nonenal, HNE) and advanced glycation end-products (AGEs), and increased glutathione-peroxidase (GPx) and type-II-collagen (COL2). IL-1β, IL-6 and osteopontin (OPN) were more strongly inhibited by SAC than in colchicine. In contrast, TNF-α was inhibited only by SAC, and COX2 only by colchicine. Casp-1/ICE, GM-CSF, receptor for advanced glycation end-products (RAGE) and toll-like receptors (TLR4) were inhibited by both agents, but bone morphogenetic protein 7 (BMP7) was partially inhibited by SAC while induced by colchicine. The nuclear factor erythroid 2-related factor 2 (Nrf2) was induced by SAC; in contrast it was inhibited by colchicine. Although exerting opposite effects on TNF-α, COX2, BMP7 and Nrf2, SAC and colchicine exhibit anti-osteoarthritic properties in OAC by modulating redox sensitive inflammatory signaling.
Collapse
Affiliation(s)
- Zubeyir Elmazoglu
- Gazi University Faculty of Medicine, 64001, Medical Pharmacology, Ankara, BEŞEVLER, Turkey;
| | - Zehra Aydın Bek
- Gazi University Faculty of Medicine, 64001, Medical Pharmacology, Ankara, BEŞEVLER, Turkey;
| | - Sanem Gulistan Saribas
- Kirsehir Ahi Evran University, 187470, Faculty of Medicine, Department of Histology and Embryology, Kirsehir, Kırşehir, Turkey;
| | - Candan Özoğul
- University of Kyrenia, 530180, Faculty of Medicine, Department of Histology and Embryology, Girne, Girne, Cyprus;
| | - Berna Goker
- Gazi University Faculty of Medicine, 64001, Department of Rheumatology, Ankara, BEŞEVLER, Turkey;
| | - Berivan Bitik
- Ankara Training and Research Hospital, 162301, Ankara, Ankara, Turkey;
| | - Cem Nuri Aktekin
- Yildirim Beyazit University Faculty of Medicine, 442146, Department of Orthopedics and Traumatology, Ankara, Ankara, Turkey;
| | - Çimen Karasu
- Gazi University Faculty of Medicine, 64001, Medical Pharmacology, GAZI UNIVERSITY, FACULTY OF MEDICINE, DEPARTMENT OF MEDICAL PHARMACOLOGY, ANKARA, Ankara, BEŞEVLER, Turkey, 06500;
| |
Collapse
|