1
|
Atewologun FA, Okesanya OJ, Okon II, Kayode HH, Ukoaka BM, Olaleke NO, Ogaya JB, Okikiola LA, Manirambona E, Lucero-Prisno Iii DE. Examining the potentials of stem cell therapy in reducing the burden of selected non-communicable diseases in Africa. Stem Cell Res Ther 2024; 15:253. [PMID: 39135088 PMCID: PMC11321202 DOI: 10.1186/s13287-024-03864-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 07/27/2024] [Indexed: 08/15/2024] Open
Abstract
Stem cell therapy (SCT) is a promising solution for addressing health challenges in Africa, particularly non-communicable diseases (NCDs). With their regenerative potential, stem cells have the inherent capacity to differentiate into numerous cell types for tissue repair. Despite infrastructural, ethical, and legal challenges, SCT holds immense promise for managing chronic illnesses and deep-seated tissue injuries. The rising prevalence of NCDs in Africa highlights the need for innovative strategies and treatment options. SCT offers hope in combating conditions like burns, osteoarthritis, diabetes, Alzheimer's disease, stroke, heart failure and cancer, potentially reducing the burden of NCDs on the continent. Despite SCT's opportunities in Africa, there are significant obstacles. However, published research on SCT in Africa is scarce, but recent initiatives such as the Basic School on Neural Stem Cells (NSC) express interest in developing NSC research in Africa. SCT research in African regions, notably on neurogenesis, demonstrates a concentration on studying neurological processes in indigenous settings. While progress has been made in South Africa and Nigeria, issues such as brain drain and impediments to innovation remain. Clinical trials have investigated the efficacy of stem cell treatments, emphasising both potential benefits and limitations in implementing these therapies efficiently. Financing research, developing regulatory frameworks, and resolving affordability concerns are critical steps toward realizing the potential of stem cell treatment in Africa.
Collapse
Affiliation(s)
| | | | - Inibehe Ime Okon
- Department of Research, Medical Research Circle (MedReC), Democratic Republic of the Congo, Postal Code 50 Goma, Bukavu, Democratic Republic of Congo.
| | - Hassan Hakeem Kayode
- Department of Medical Laboratory Science, Federal Medical Centre, Bida, Niger State, Nigeria
| | | | - Noah Olabode Olaleke
- Obafemi Awolowo University Teaching Hospital Complex, Ile-Ife, Osun State, Nigeria
| | - Jerico Bautista Ogaya
- Department of Medical Technology, Far Eastern University, Manila, Philippines
- Center for University Research, University of Makati, Makati City, Philippines
| | - Lawal Azeez Okikiola
- Department of Biology, University of Texas at Tyler, Tyler, USA
- Department of Medical Laboratory Science, Kwara State University, Malete, Nigeria
| | - Emery Manirambona
- College of Medicine and Health Sciences, University of Rwanda, Kigali, Rwanda
| | - Don Eliseo Lucero-Prisno Iii
- Department of Global Health and Development, London School of Hygiene and Tropical Medicine, London, UK
- Research and Innovation Office, Southern Leyte State University, Sogod, Southern Leyte, Philippines
| |
Collapse
|
2
|
Chepeleva EV. Cell Therapy in the Treatment of Coronary Heart Disease. Int J Mol Sci 2023; 24:16844. [PMID: 38069167 PMCID: PMC10706847 DOI: 10.3390/ijms242316844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Heart failure is a leading cause of death in patients who have suffered a myocardial infarction. Despite the timely use of modern reperfusion therapies such as thrombolysis, surgical revascularization and balloon angioplasty, they are sometimes unable to prevent the development of significant areas of myocardial damage and subsequent heart failure. Research efforts have focused on developing strategies to improve the functional status of myocardial injury areas. Consequently, the restoration of cardiac function using cell therapy is an exciting prospect. This review describes the characteristics of various cell types relevant to cellular cardiomyoplasty and presents findings from experimental and clinical studies investigating cell therapy for coronary heart disease. Cell delivery methods, optimal dosage and potential treatment mechanisms are discussed.
Collapse
Affiliation(s)
- Elena V. Chepeleva
- Federal State Budgetary Institution National Medical Research Center Named after Academician E.N. Meshalkin of the Ministry of Health of the Russian Federation, 15, Rechkunovskaya Str., 630055 Novosibirsk, Russia;
- Research Institute of Clinical and Experimental Lymphology—Branch of the Institute of Cytology and Genetics Siberian Branch of Russian Academy of Sciences, 2, Timakova Str., 630060 Novosibirsk, Russia
| |
Collapse
|
3
|
Lancaster JJ, Grijalva A, Fink J, Ref J, Daugherty S, Whitman S, Fox K, Gorman G, Lancaster LD, Avery R, Acharya T, McArthur A, Strom J, Pierce MK, Moukabary T, Borgstrom M, Benson D, Mangiola M, Pandey AC, Zile MR, Bradshaw A, Koevary JW, Goldman S. Biologically derived epicardial patch induces macrophage mediated pathophysiologic repair in chronically infarcted swine hearts. Commun Biol 2023; 6:1203. [PMID: 38007534 PMCID: PMC10676365 DOI: 10.1038/s42003-023-05564-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 11/09/2023] [Indexed: 11/27/2023] Open
Abstract
There are nearly 65 million people with chronic heart failure (CHF) globally, with no treatment directed at the pathologic cause of the disease, the loss of functioning cardiomyocytes. We have an allogeneic cardiac patch comprised of cardiomyocytes and human fibroblasts on a bioresorbable matrix. This patch increases blood flow to the damaged heart and improves left ventricular (LV) function in an immune competent rat model of ischemic CHF. After 6 months of treatment in an immune competent Yucatan mini swine ischemic CHF model, this patch restores LV contractility without constrictive physiology, partially reversing maladaptive LV and right ventricular remodeling, increases exercise tolerance, without inducing any cardiac arrhythmias or a change in myocardial oxygen consumption. Digital spatial profiling in mice with patch placement 3 weeks after a myocardial infarction shows that the patch induces a CD45pos immune cell response that results in an infiltration of dendritic cells and macrophages with high expression of macrophages polarization to the anti-inflammatory reparative M2 phenotype. Leveraging the host native immune system allows for the potential use of immunomodulatory therapies for treatment of chronic inflammatory diseases not limited to ischemic CHF.
Collapse
Affiliation(s)
- J J Lancaster
- Sarver Heart Center, Department of Medicine, University of Arizona, 1501 North Campbell Avenue, Tucson, AZ, 85724, USA
| | - A Grijalva
- Sarver Heart Center, Department of Medicine, University of Arizona, 1501 North Campbell Avenue, Tucson, AZ, 85724, USA
| | - J Fink
- Division of Blood & Marrow Transplant & Cellular Therapy, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55455, USA
| | - J Ref
- Sarver Heart Center, Department of Medicine, University of Arizona, 1501 North Campbell Avenue, Tucson, AZ, 85724, USA
| | - S Daugherty
- Sarver Heart Center, Department of Medicine, University of Arizona, 1501 North Campbell Avenue, Tucson, AZ, 85724, USA
| | - S Whitman
- Sarver Heart Center, Department of Medicine, University of Arizona, 1501 North Campbell Avenue, Tucson, AZ, 85724, USA
| | - K Fox
- Sarver Heart Center, Department of Medicine, University of Arizona, 1501 North Campbell Avenue, Tucson, AZ, 85724, USA
- Division of Cardiothoracic Surgery, Department of Surgery, University of Arizona, 1501 North Campbell Avenue, Tucson, AZ, 85724, USA
| | - G Gorman
- Sarver Heart Center, Department of Medicine, University of Arizona, 1501 North Campbell Avenue, Tucson, AZ, 85724, USA
| | - L D Lancaster
- Sarver Heart Center, Department of Medicine, University of Arizona, 1501 North Campbell Avenue, Tucson, AZ, 85724, USA
| | - R Avery
- Sarver Heart Center, Department of Medicine, University of Arizona, 1501 North Campbell Avenue, Tucson, AZ, 85724, USA
| | - T Acharya
- Sarver Heart Center, Department of Medicine, University of Arizona, 1501 North Campbell Avenue, Tucson, AZ, 85724, USA
| | - A McArthur
- Sarver Heart Center, Department of Medicine, University of Arizona, 1501 North Campbell Avenue, Tucson, AZ, 85724, USA
| | - J Strom
- Sarver Heart Center, Department of Medicine, University of Arizona, 1501 North Campbell Avenue, Tucson, AZ, 85724, USA
| | - M K Pierce
- Sarver Heart Center, Department of Medicine, University of Arizona, 1501 North Campbell Avenue, Tucson, AZ, 85724, USA
| | - T Moukabary
- Sarver Heart Center, Department of Medicine, University of Arizona, 1501 North Campbell Avenue, Tucson, AZ, 85724, USA
| | - M Borgstrom
- Research & Discovery Tech, Research Computing Specialist, Principal, University of Arizona, 1501 North Campbell Avenue, Tucson, AZ, 85724, USA
| | - D Benson
- Sarver Heart Center, Department of Medicine, University of Arizona, 1501 North Campbell Avenue, Tucson, AZ, 85724, USA
| | - M Mangiola
- Department of Pathology, NYU Grossman School of Medicine, New York City, NY, 11016, USA
| | - A C Pandey
- Section of Cardiology, Tulane University Heart and Vascular Institute, John W. Deming Department of Medicine, Section of Cardiology, Department of Medicine, Southeast Louisiana Veterans Healthcare System, Tulane University School of Medicine, New Orleans, LA, 70122, USA
| | - M R Zile
- Ralph H. Johnson VA Medical Center, Division of Cardiology, Medical University of South Carolina, Thurmond/Gazes Building, 30 Courtenay Drive, Charleston, SC, 29425, USA
| | - A Bradshaw
- Ralph H. Johnson VA Medical Center, Division of Cardiology, Medical University of South Carolina, Thurmond/Gazes Building, 30 Courtenay Drive, Charleston, SC, 29425, USA
| | - J W Koevary
- Sarver Heart Center, Department of Medicine, University of Arizona, 1501 North Campbell Avenue, Tucson, AZ, 85724, USA
- Biomedical Engineering, College of Engineering, University of Arizona, 1127 E. James E. Rogers Way, Tucson, AZ, 85721, USA
| | - S Goldman
- Sarver Heart Center, Department of Medicine, University of Arizona, 1501 North Campbell Avenue, Tucson, AZ, 85724, USA.
| |
Collapse
|
4
|
Schwarzkopf L, Büttner P, Scholtyssek K, Schröter T, Hiller R, Hindricks G, Bollmann A, Laufs U, Ueberham L. C-kit pos cells in the human left atrial appendage. Heliyon 2023; 9:e21268. [PMID: 37954289 PMCID: PMC10637945 DOI: 10.1016/j.heliyon.2023.e21268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/09/2023] [Accepted: 10/18/2023] [Indexed: 11/14/2023] Open
Abstract
Background Subpopulations of myocardial c-kitpos cells have the ability to stimulate regeneration in ischemic heart disease by paracrine effects. The left atrial appendage (LAA), which is easy accessible during cardiac surgery, may represent a perfect source for c-kitpos cell extraction for autologous cell therapies in the living human. So far, frequency and distribution of c-kitpos cells in LAA are unknown. Methods LAAs of patients who underwent cardiac surgery due to coronary artery disease (coronary artery bypass graft, CABG), valvular heart disease or both and of two body donors were examined. Tissue was fixed in 4 % paraformaldehyde, embedded in paraffin, dissected in consecutive sections and stained for c-kitpos cells. In parallel, grade of fibrosis, amount of fat per section and cells positive for mast cell tryptase were examined. Results We collected 27 LAAs (37.0 % female, mean left ventricular ejection fraction 50.4 %, 63.0 % persistent atrial fibrillation (AF)). Most of the patients underwent combined CABG and valve surgery (51.9 %). C-kitpos cells were detected in 3 different regions: A) Attached to the epicardial fat layer, B) close to vascular structures and C) between cardiomyocytes. C-kitpos cells ranged from 0.05 c-kitpos cells per mm2 to 67.5 c-kitpos cells per mm2. We found no association between number of c-kitpos cells and type of AF, amount of fibrosis or amount of fat. Up to 72 % of c-kitpos cells also showed a positive staining for mast cell tryptase. Conclusion C-kitpos cells are frequent in LAAs of cardiovascular patients with a rather homogenous distribution throughout the LAA. The LAA can therefore be considered as a source for extraction of a reasonable quantity of autologous cardiac progenitor cells in the living human patient.
Collapse
Affiliation(s)
- Lea Schwarzkopf
- St. Elisabeth-Krankenhaus Leipzig, Department of Anaesthesiology, Leipzig, Germany
- German Heart Center Berlin, Department of Electrophysiology, Berlin, Germany
| | - Petra Büttner
- Heart Center Leipzig at University of Leipzig, Department of Cardiology, Leipzig, Germany
| | - Karl Scholtyssek
- German Heart Center Berlin, Department of Electrophysiology, Berlin, Germany
| | - Thomas Schröter
- Heart Center Leipzig at University of Leipzig, Department of Cardiac Surgery, Leipzig, Germany
| | - Ruth Hiller
- Insitut für Pathologie, University of Leipzig Medical Center, Leipzig, Germany
| | - Gerhard Hindricks
- German Heart Center Berlin, Department of Electrophysiology, Berlin, Germany
- Leipzig Heart Institute, Leipzig, Germany
| | - Andreas Bollmann
- German Heart Center Berlin, Department of Electrophysiology, Berlin, Germany
- Leipzig Heart Institute, Leipzig, Germany
| | - Ulrich Laufs
- Klinik und Poliklinik für Kardiologie, University of Leipzig Medical Center, Leipzig, Germany
| | - Laura Ueberham
- German Heart Center Berlin, Department of Electrophysiology, Berlin, Germany
- Leipzig Heart Institute, Leipzig, Germany
- Klinik und Poliklinik für Kardiologie, University of Leipzig Medical Center, Leipzig, Germany
| |
Collapse
|
5
|
Minakawa T, Yamashita JK. Extracellular vesicles and microRNAs in the regulation of cardiomyocyte differentiation and proliferation. Arch Biochem Biophys 2023; 749:109791. [PMID: 37858665 DOI: 10.1016/j.abb.2023.109791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/15/2023] [Accepted: 10/17/2023] [Indexed: 10/21/2023]
Abstract
Cardiomyocyte differentiation and proliferation are essential processes for the regeneration of an injured heart. In recent years, there have been several reports highlighting the involvement of extracellular vesicles (EVs) in cardiomyocyte differentiation and proliferation. These EVs originate from mesenchymal stem cells, pluripotent stem cells, and heart constituting cells (cardiomyocytes, cardiac fibroblasts, cardiac progenitor cells, epicardium). Numerous reports also indicate the involvement of microRNAs (miRNAs) in cardiomyocyte differentiation and proliferation. Among them, miRNA-1, miRNA-133, and miRNA-499, recently demonstrated to promote cardiomyocyte differentiation, and miRNA-199, shown to promote cardiomyocyte proliferation, were found effective in various studies. MiRNA-132 and miRNA-133 have been identified as cargo in EVs and are reported to induce cardiomyocyte differentiation. Similarly, miRNA-30a, miRNA-100, miRNA-27a, miRNA-30e, miRNA-294 and miRNA-590 have also been identified as cargo in EVs and are shown to have a role in the promotion of cardiomyocyte proliferation. Regeneration of the heart by EVs or artificial nanoparticles containing functional miRNAs is expected in the future. In this review, we outline recent advancements in understanding the roles of EVs and miRNAs in cardiomyocyte differentiation and proliferation. Additionally, we explore the related challenges when utilizing EVs and miRNAs as a less risky approach to cardiac regeneration compared to cell transplantation.
Collapse
Affiliation(s)
- Tomohiro Minakawa
- Department of Cellular and Tissue Communication, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Jun K Yamashita
- Department of Cellular and Tissue Communication, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan.
| |
Collapse
|
6
|
Dergilev K, Tsokolaeva Z, Goltseva Y, Beloglazova I, Ratner E, Parfyonova Y. Urokinase-Type Plasminogen Activator Receptor Regulates Prosurvival and Angiogenic Properties of Cardiac Mesenchymal Stromal Cells. Int J Mol Sci 2023; 24:15554. [PMID: 37958542 PMCID: PMC10650341 DOI: 10.3390/ijms242115554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/29/2023] [Accepted: 10/21/2023] [Indexed: 11/15/2023] Open
Abstract
One of the largest challenges to the implementation of cardiac cell therapy is identifying selective reparative targets to enhance stem/progenitor cell therapeutic efficacy. In this work, we hypothesized that such a target could be an urokinase-type plasminogen activator receptor (uPAR)-a glycosyl-phosphatidyl-inositol-anchored membrane protein, interacting with urokinase. uPAR is able to form complexes with various transmembrane proteins such as integrins, activating intracellular signaling pathway and thus regulating multiple cell functions. We focused on studying the CD117+ population of cardiac mesenchymal progenitor cells (MPCs), expressing uPAR on their surface. It was found that the number of CD117+ MPCs in the heart of the uPAR-/- mice is lower, as well as their ability to proliferate in vitro compared with cells from wild-type animals. Knockdown of uPAR in CD117+ MPCs of wild-type animals was accompanied by a decrease in survival rate and Akt signaling pathway activity and by an increase in the level of caspase activity in these cells. That suggests the role of uPAR in supporting cell survival. After intramyocardial transplantation of uPAR(-) MPCs, reduced cell retention and angiogenesis stimulation were observed in mice with myocardial infarction model compared to uPAR(+) cells transplantation. Taken together, the present results appear to prove a novel mechanism of uPAR action in maintaining the survival and angiogenic properties of CD117+ MPCs. These results emphasize the importance of the uPAR as a potential pharmacological target for the regulation of reparative properties of myocardial mesenchymal progenitor cells.
Collapse
Affiliation(s)
- Konstantin Dergilev
- Institute of Experimental Cardiology Named after Academician V.N. Smirnov, Federal State Budgetary Institution National Medical Research Center of Cardiology Named after Academician E.I. Chazov, Ministry of Health of the Russian Federation, 121552 Moscow, Russia; (K.D.)
| | - Zoya Tsokolaeva
- Institute of Experimental Cardiology Named after Academician V.N. Smirnov, Federal State Budgetary Institution National Medical Research Center of Cardiology Named after Academician E.I. Chazov, Ministry of Health of the Russian Federation, 121552 Moscow, Russia; (K.D.)
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 107031 Moscow, Russia
| | - Yulia Goltseva
- Institute of Experimental Cardiology Named after Academician V.N. Smirnov, Federal State Budgetary Institution National Medical Research Center of Cardiology Named after Academician E.I. Chazov, Ministry of Health of the Russian Federation, 121552 Moscow, Russia; (K.D.)
| | - Irina Beloglazova
- Institute of Experimental Cardiology Named after Academician V.N. Smirnov, Federal State Budgetary Institution National Medical Research Center of Cardiology Named after Academician E.I. Chazov, Ministry of Health of the Russian Federation, 121552 Moscow, Russia; (K.D.)
| | - Elizaveta Ratner
- Institute of Experimental Cardiology Named after Academician V.N. Smirnov, Federal State Budgetary Institution National Medical Research Center of Cardiology Named after Academician E.I. Chazov, Ministry of Health of the Russian Federation, 121552 Moscow, Russia; (K.D.)
| | - Yelena Parfyonova
- Institute of Experimental Cardiology Named after Academician V.N. Smirnov, Federal State Budgetary Institution National Medical Research Center of Cardiology Named after Academician E.I. Chazov, Ministry of Health of the Russian Federation, 121552 Moscow, Russia; (K.D.)
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Lomonosov Moscow State University, 119192 Moscow, Russia
| |
Collapse
|
7
|
Tang XL, Bolli R. Repeated Intravenous Administration of Mesenchymal Stromal Cells Produces Cumulative Beneficial Effects in Chronic Ischemic Cardiomyopathy. Tex Heart Inst J 2023; 50:e238244. [PMID: 37840224 PMCID: PMC10658144 DOI: 10.14503/thij-23-8244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Affiliation(s)
- Xian-Liang Tang
- Institute of Molecular Cardiology, University of Louisville, Louisville, Kentucky
| | - Roberto Bolli
- Institute of Molecular Cardiology, University of Louisville, Louisville, Kentucky
| |
Collapse
|
8
|
Li J, Song F, Chen R, Yang J, Liu J, Huang L, Duan F, Kou M, Lian BX, Zhou X, Han W, Mao L, Wu C, Wu W, Wei R, Chen H, Xu A, Tse HF, Lian Q, Li G, Wang Y. Bradykinin-pretreated Human cardiac-specific c-kit + Cells Enhance Exosomal miR-3059-5p and Promote Angiogenesis Against Hindlimb Ischemia in mice. Stem Cell Rev Rep 2023; 19:2481-2496. [PMID: 37535186 DOI: 10.1007/s12015-023-10591-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2023] [Indexed: 08/04/2023]
Abstract
BACKGROUND Protection of cardiac function following myocardial infarction was largely enhanced by bradykinin-pretreated cardiac-specific c-kit+ (BK-c-kit+) cells, even without significant engraftment, indicating that paracrine actions of BK-c-kit+ cells play a pivotal role in angiogenesis. Nevertheless, the active components of the paracrine actions of BK-c-kit+ cells and the underlying mechanisms remain unknown. This study aimed to define the active components of exosomes from BK-c-kit+ cells and elucidate their underlying protective mechanisms. METHODS Matrigel tube formation assay, cell cycle, and mobility in human umbilical vein endothelial cells (HUVECs) and hindlimb ischemia (HLI) in mice were applied to determine the angiogenic effect of condition medium (CM) and exosomes. Proteome profiler, microRNA sponge, Due-luciferase assay, microRNA-sequencing, qRT-PCR, and Western blot were used to determine the underlying mechanism of the angiogenic effect of exosomes from BK-c-kit+. RESULTS As a result, BK-c-kit+ CM and exosomes promoted tube formation in HUVECs and the repair of HLI in mice. Angiogenesis-related proteomic profiling and microRNA sequencing revealed highly enriched miR-3059-5p as a key angiogenic component of BK-c-kit+ exosomes. Meanwhile, loss- and gain-of-function experiments revealed that the promotion of angiogenesis by miR-3059-5p was mainly through suppression of TNFSF15-inhibited effects on vascular tube formation, cell proliferation and cell migration. Moreover, enhanced angiogenesis of miR-3059-5p-inhibited TNFSF15 has been associated with Akt/Erk1/2/Smad2/3-modulated signaling pathway. CONCLUSION Our results demonstrated a novel finding that BK-c-kit+ cells enrich exosomal miR-3059-5p to suppress TNFSF15 and promote angiogenesis against hindlimb ischemia in mice.
Collapse
Affiliation(s)
- Jingzhou Li
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Fei Song
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Ruolan Chen
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Jinjuan Yang
- Cord Blood Bank, Institute of Eugenics and Perinatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jie Liu
- Cord Blood Bank, Institute of Eugenics and Perinatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
- Department of Medicine, State Key Laboratory of Pharmaceutical Biotechnology, the University of Hong Kong, Hong Kong, China
| | - Li Huang
- Cord Blood Bank, Institute of Eugenics and Perinatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Fuyu Duan
- Cord Blood Bank, Institute of Eugenics and Perinatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Meng Kou
- Cord Blood Bank, Institute of Eugenics and Perinatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Boon Xuan Lian
- University of Adelaide Medical School, Adelaide, Australia
| | - Xiaoxia Zhou
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Weimin Han
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Liang Mao
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Chan Wu
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Weiyin Wu
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Rui Wei
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 510080, Guangzhou, China
| | - Hao Chen
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 510080, Guangzhou, China
| | - Aimin Xu
- Department of Medicine, State Key Laboratory of Pharmaceutical Biotechnology, the University of Hong Kong, Hong Kong, China
| | - Hung-Fat Tse
- Department of Medicine, State Key Laboratory of Pharmaceutical Biotechnology, the University of Hong Kong, Hong Kong, China
| | - Qizhou Lian
- Cord Blood Bank, Institute of Eugenics and Perinatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China.
- Department of Medicine, State Key Laboratory of Pharmaceutical Biotechnology, the University of Hong Kong, Hong Kong, China.
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, State Key Laboratory of Pharmaceutical Biotechnology, Chinese Academy of Sciences, the University of Hong Kong, Shenzhen, China.
| | - Gang Li
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China.
| | - Yan Wang
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China.
| |
Collapse
|
9
|
Li H, Weng W, Zhou B. Perfect duet: Dual recombinases improve genetic resolution. Cell Prolif 2023; 56:e13446. [PMID: 37060165 PMCID: PMC10212704 DOI: 10.1111/cpr.13446] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/25/2023] [Accepted: 03/01/2023] [Indexed: 04/16/2023] Open
Abstract
As a powerful genetic tool, site-specific recombinases (SSRs) have been widely used in genomic manipulation to elucidate cell fate plasticity in vivo, advancing research in stem cell and regeneration medicine. However, the low resolution of conventional single-recombinase-mediated lineage tracing strategies, which rely heavily on the specificity of one marker gene, has led to controversial conclusions in many scientific questions. Therefore, different SSRs systems are combined to improve the accuracy of lineage tracing. Here we review the recent advances in dual-recombinase-mediated genetic approaches, including the development of novel genetic recombination technologies and their applications in cell differentiation, proliferation, and genetic manipulation. In comparison with the single-recombinase system, we also discuss the advantages of dual-genetic strategies in solving scientific issues as well as their technical limitations.
Collapse
Affiliation(s)
- Hongxin Li
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghaiChina
| | - Wendong Weng
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghaiChina
| | - Bin Zhou
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghaiChina
- Key Laboratory of Systems Health Science of Zhejiang ProvinceSchool of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of SciencesHangzhouChina
- School of Life Science and TechnologyShanghaiTech UniversityShanghaiChina
- New Cornerstone Science LaboratoryShenzhenChina
| |
Collapse
|
10
|
Guo QY, Yang JQ, Feng XX, Zhou YJ. Regeneration of the heart: from molecular mechanisms to clinical therapeutics. Mil Med Res 2023; 10:18. [PMID: 37098604 PMCID: PMC10131330 DOI: 10.1186/s40779-023-00452-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/22/2023] [Indexed: 04/27/2023] Open
Abstract
Heart injury such as myocardial infarction leads to cardiomyocyte loss, fibrotic tissue deposition, and scar formation. These changes reduce cardiac contractility, resulting in heart failure, which causes a huge public health burden. Military personnel, compared with civilians, is exposed to more stress, a risk factor for heart diseases, making cardiovascular health management and treatment innovation an important topic for military medicine. So far, medical intervention can slow down cardiovascular disease progression, but not yet induce heart regeneration. In the past decades, studies have focused on mechanisms underlying the regenerative capability of the heart and applicable approaches to reverse heart injury. Insights have emerged from studies in animal models and early clinical trials. Clinical interventions show the potential to reduce scar formation and enhance cardiomyocyte proliferation that counteracts the pathogenesis of heart disease. In this review, we discuss the signaling events controlling the regeneration of heart tissue and summarize current therapeutic approaches to promote heart regeneration after injury.
Collapse
Affiliation(s)
- Qian-Yun Guo
- Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Beijing Institute of Heart Lung and Blood Vessel Disease, Clinical Center for Coronary Heart Disease, Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - Jia-Qi Yang
- Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Beijing Institute of Heart Lung and Blood Vessel Disease, Clinical Center for Coronary Heart Disease, Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - Xun-Xun Feng
- Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Beijing Institute of Heart Lung and Blood Vessel Disease, Clinical Center for Coronary Heart Disease, Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - Yu-Jie Zhou
- Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Beijing Institute of Heart Lung and Blood Vessel Disease, Clinical Center for Coronary Heart Disease, Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China.
| |
Collapse
|
11
|
Williams K, Khan A, Lee YS, Hare JM. Cell-based therapy to boost right ventricular function and cardiovascular performance in hypoplastic left heart syndrome: Current approaches and future directions. Semin Perinatol 2023; 47:151725. [PMID: 37031035 PMCID: PMC10193409 DOI: 10.1016/j.semperi.2023.151725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/10/2023]
Abstract
Congenital heart disease remains one of the most frequently diagnosed congenital diseases of the newborn, with hypoplastic left heart syndrome (HLHS) being considered one of the most severe. This univentricular defect was uniformly fatal until the introduction, 40 years ago, of a complex surgical palliation consisting of multiple staged procedures spanning the first 4 years of the child's life. While survival has improved substantially, particularly in experienced centers, ventricular failure requiring heart transplant and a number of associated morbidities remain ongoing clinical challenges for these patients. Cell-based therapies aimed at boosting ventricular performance are under clinical evaluation as a novel intervention to decrease morbidity associated with surgical palliation. In this review, we will examine the current burden of HLHS and current modalities for treatment, discuss various cells therapies as an intervention while delineating challenges and future directions for this therapy for HLHS and other congenital heart diseases.
Collapse
Affiliation(s)
- Kevin Williams
- Department of Pediatrics, University of Miami Miller School of Medicine. Miami FL, USA; Batchelor Children's Research Institute University of Miami Miller School of Medicine. Miami FL, USA
| | - Aisha Khan
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami FL, USA
| | - Yee-Shuan Lee
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami FL, USA
| | - Joshua M Hare
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami FL, USA; Division of Cardiology, Department of Medicine, University of Miami Miller School of Medicine. Miami FL, USA.
| |
Collapse
|
12
|
Tonkin D, Yee-Goh A, Katare R. Healing the Ischaemic Heart: A Critical Review of Stem Cell Therapies. Rev Cardiovasc Med 2023; 24:122. [PMID: 39076280 PMCID: PMC11273058 DOI: 10.31083/j.rcm2404122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 07/31/2024] Open
Abstract
Ischaemic heart disease (IHD) remains the leading cause of mortality worldwide. Current pharmaceutical treatments focus on delaying, rather than preventing disease progression. The only curative treatment available is orthotopic heart transplantation, which is greatly limited by a lack of available donors and the possibility for immune rejection. As a result, novel therapies are consistently being sought to improve the quality and duration of life of those suffering from IHD. Stem cell therapies have garnered attention globally owing to their potential to replace lost cardiac cells, regenerate the ischaemic myocardium and to release protective paracrine factors. Despite recent advances in regenerative cardiology, one of the biggest challenges in the clinical translation of cell-based therapies is determining the most efficacious cell type for repair. Multiple cell types have been investigated in clinical trials; with inconsistent methodologies and isolation protocols making it difficult to draw strong conclusions. This review provides an overview of IHD focusing on pathogenesis and complications, followed by a summary of different stem cells which have been trialled for use in the treatment of IHD, and ends by exploring the known mechanisms by which stem cells mediate their beneficial effects on ischaemic myocardium.
Collapse
Affiliation(s)
- Devin Tonkin
- Department of Physiology, HeartOtago, School of Biomedical Sciences, University of Otago, 9010 Dunedin, New Zealand
| | - Anthony Yee-Goh
- Department of Physiology, HeartOtago, School of Biomedical Sciences, University of Otago, 9010 Dunedin, New Zealand
| | - Rajesh Katare
- Department of Physiology, HeartOtago, School of Biomedical Sciences, University of Otago, 9010 Dunedin, New Zealand
| |
Collapse
|
13
|
Shen L, Fan G, Yang G, Yang Z, Gui C. Paracrine effects of mir-210-3p on angiogenesis in hypoxia-treated c-kit-positive cardiac cells. Ann Med 2023; 55:2237690. [PMID: 37480581 PMCID: PMC10364570 DOI: 10.1080/07853890.2023.2237690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/01/2023] [Accepted: 07/12/2023] [Indexed: 07/24/2023] Open
Abstract
Objective: Treatment with c-kit-positive cardiac cells (CPCs) has been shown to improve the prognosis of ischemic heart disease. MicroRNAs (miRNAs) confer protection by enhancing the cardiac repair process, but their specific functional mechanisms remain unclear. This study aimed to screen for differentially expressed miRNAs in CPCs under hypoxia and explore their effects on the function of CPCs.Methods: We harvested CPCs from C57 adult mice and later performed a high-throughput miRNA sequencing for differential expression profiling analysis. Subsequently, we intervened with the differentially expressed gene miR-210-3p in CPCs and detected changes in the secretion of angiogenesis-related factors through a protein-chip analysis. Finally, we applied CPC supernatants of different groups as conditioned medium to treat mouse cardiac microvascular endothelial cells (CMECs) and further investigated the functional effects of miR-210-3p on c-kit+CPCs under ischemia and hypoxia conditions.Results: The miR-210-3p was highly increased in hypoxia-treated CPCs. Protein-chip detection revealed that CPCs expressed cytokines such as FGF basic, angiogenin, and vascular endothelial growth factor (VEGF) and that hypoxia enhanced their release. Silencing miR-210-3p resulted in a reduction in the release of these angiogenesis-related factors. In addition, the conditioned medium of hypoxia-treated CPCs promoted the proliferation, migration, and tube-forming capabilities of CMECs. In contrast, the conditioned media of CPCs with silenced miR-210-3p after hypoxia decreased the proliferation, migration, and tube-forming ability of CMEC.Conclusions: The CPCs exert proangiogenic effects via paracrine pathways mediated by miR-210-3p. Upregulation of miR-210-3p in hypoxia-treated CPCs may enhance their paracrine function by regulating the secretion of angiogenic factors, thereby promoting angiogenesis in ischemic heart disease.
Collapse
Affiliation(s)
- Louyi Shen
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory Base of Precision Medicine in Cardiocerebrovascular Diseases Control and Prevention, Nanning, China
- Guangxi Clinical Research Center for Cardiocerebrovascular Diseases, Nanning, China
| | - Guan Fan
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory Base of Precision Medicine in Cardiocerebrovascular Diseases Control and Prevention, Nanning, China
- Guangxi Clinical Research Center for Cardiocerebrovascular Diseases, Nanning, China
| | - Guoliang Yang
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory Base of Precision Medicine in Cardiocerebrovascular Diseases Control and Prevention, Nanning, China
- Guangxi Clinical Research Center for Cardiocerebrovascular Diseases, Nanning, China
| | - Zhijie Yang
- Department of Cardiology, Liuzhou People's Hospital, Liuzhou, China
| | - Chun Gui
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory Base of Precision Medicine in Cardiocerebrovascular Diseases Control and Prevention, Nanning, China
- Guangxi Clinical Research Center for Cardiocerebrovascular Diseases, Nanning, China
| |
Collapse
|
14
|
Hoang DM, Pham PT, Bach TQ, Ngo ATL, Nguyen QT, Phan TTK, Nguyen GH, Le PTT, Hoang VT, Forsyth NR, Heke M, Nguyen LT. Stem cell-based therapy for human diseases. Signal Transduct Target Ther 2022; 7:272. [PMID: 35933430 PMCID: PMC9357075 DOI: 10.1038/s41392-022-01134-4] [Citation(s) in RCA: 289] [Impact Index Per Article: 144.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 02/07/2023] Open
Abstract
Recent advancements in stem cell technology open a new door for patients suffering from diseases and disorders that have yet to be treated. Stem cell-based therapy, including human pluripotent stem cells (hPSCs) and multipotent mesenchymal stem cells (MSCs), has recently emerged as a key player in regenerative medicine. hPSCs are defined as self-renewable cell types conferring the ability to differentiate into various cellular phenotypes of the human body, including three germ layers. MSCs are multipotent progenitor cells possessing self-renewal ability (limited in vitro) and differentiation potential into mesenchymal lineages, according to the International Society for Cell and Gene Therapy (ISCT). This review provides an update on recent clinical applications using either hPSCs or MSCs derived from bone marrow (BM), adipose tissue (AT), or the umbilical cord (UC) for the treatment of human diseases, including neurological disorders, pulmonary dysfunctions, metabolic/endocrine-related diseases, reproductive disorders, skin burns, and cardiovascular conditions. Moreover, we discuss our own clinical trial experiences on targeted therapies using MSCs in a clinical setting, and we propose and discuss the MSC tissue origin concept and how MSC origin may contribute to the role of MSCs in downstream applications, with the ultimate objective of facilitating translational research in regenerative medicine into clinical applications. The mechanisms discussed here support the proposed hypothesis that BM-MSCs are potentially good candidates for brain and spinal cord injury treatment, AT-MSCs are potentially good candidates for reproductive disorder treatment and skin regeneration, and UC-MSCs are potentially good candidates for pulmonary disease and acute respiratory distress syndrome treatment.
Collapse
Affiliation(s)
- Duc M Hoang
- Department of Research and Development, Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi, Vietnam.
| | - Phuong T Pham
- Department of Cellular Therapy, Vinmec High-Tech Center, Vinmec Healthcare System, Hanoi, Vietnam
| | - Trung Q Bach
- Department of Research and Development, Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi, Vietnam
| | - Anh T L Ngo
- Department of Cellular Therapy, Vinmec High-Tech Center, Vinmec Healthcare System, Hanoi, Vietnam
| | - Quyen T Nguyen
- Department of Research and Development, Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi, Vietnam
| | - Trang T K Phan
- Department of Research and Development, Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi, Vietnam
| | - Giang H Nguyen
- Department of Research and Development, Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi, Vietnam
| | - Phuong T T Le
- Department of Research and Development, Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi, Vietnam
| | - Van T Hoang
- Department of Research and Development, Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi, Vietnam
| | - Nicholas R Forsyth
- Institute for Science & Technology in Medicine, Keele University, Keele, UK
| | - Michael Heke
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Liem Thanh Nguyen
- Department of Research and Development, Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi, Vietnam
| |
Collapse
|
15
|
Salerno N, Salerno L, Marino F, Scalise M, Chiefalo A, Panuccio G, De Angelis A, Cianflone E, Urbanek K, Torella D. Myocardial regeneration protocols towards the routine clinical scenario: An unseemly path from bench to bedside. EClinicalMedicine 2022; 50:101530. [PMID: 35799845 PMCID: PMC9253597 DOI: 10.1016/j.eclinm.2022.101530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/31/2022] [Accepted: 06/06/2022] [Indexed: 12/11/2022] Open
Abstract
UNLABELLED Heart failure secondary to cardiomyocyte loss and/or dysfunction is the number one killer worldwide. The field of myocardial regeneration with its far-reaching primary goal of cardiac remuscularization and its hard-to-accomplish translation from bench to bedside, has been filled with ups and downs, steps forward and steps backward, controversies galore and, unfortunately, scientific scandals. Despite the present morass in which cardiac remuscularization is stuck in, the search for clinically effective regenerative approaches remains keenly active. Starting with a concise overview of the still highly debated regenerative capacity of the adult mammalian heart, we focus on the main interventions, that have reached or are close to clinical use, critically discussing key findings, successes, and failures. Finally, some promising and innovative approaches for myocardial repair/regeneration still at the pre-clinical stage are discussed to offer a holistic view on the future of myocardial repair/regeneration for the prevention/management of heart failure in the clinical scenario. FUNDING This research was funded by Grants from the Ministry of University and Research PRIN2015 2015ZTT5KB_004; PRIN2017NKB2N4_005; PON-AIM - 1829805-2.
Collapse
Affiliation(s)
- Nadia Salerno
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100, Catanzaro, Italy
| | - Luca Salerno
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100, Catanzaro, Italy
| | - Fabiola Marino
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100, Catanzaro, Italy
| | - Mariangela Scalise
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100, Catanzaro, Italy
| | - Antonio Chiefalo
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100, Catanzaro, Italy
| | - Giuseppe Panuccio
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100, Catanzaro, Italy
| | - Antonella De Angelis
- Department of Experimental Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy
| | - Eleonora Cianflone
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100, Catanzaro, Italy
| | - Konrad Urbanek
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100, Catanzaro, Italy
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples “Federico II”, 80125, Naples, Italy
| | - Daniele Torella
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100, Catanzaro, Italy
- Corresponding author.
| |
Collapse
|
16
|
Mishra R, Saha P, Datla SR, Mellacheruvu P, Gunasekaran M, Guru SA, Fu X, Chen L, Bolli R, Sharma S, Kaushal S. Transplanted allogeneic cardiac progenitor cells secrete GDF-15 and stimulate an active immune remodeling process in the ischemic myocardium. J Transl Med 2022; 20:323. [PMID: 35864544 PMCID: PMC9306063 DOI: 10.1186/s12967-022-03534-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 07/13/2022] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Despite promising results in clinical studies, the mechanism for the beneficial effects of allogenic cell-based therapies remains unclear. Macrophages are not only critical mediators of inflammation but also critical players in cardiac remodeling. We hypothesized that transplanted allogenic rat cardiac progenitor cells (rCPCs) augment T-regulatory cells which ultimately promote proliferation of M2 like macrophages by an as-yet undefined mechanism. METHODS AND RESULTS To test this hypothesis, we used crossover rat strains for exploring the mechanism of myocardial repair by allogenic CPCs. Human CPCs (hCPCs) were isolated from adult patients undergoing coronary artery bypass grafting, and rat CPCs (rCPCs) were isolated from male Wistar-Kyoto (WKY) rat hearts. Allogenic rCPCs suppressed the proliferation of T-cells observed in mixed lymphocyte reactions in vitro. Transplanted syngeneic or allogeneic rCPCs significantly increased cardiac function in a rat myocardial infarct (MI) model, whereas xenogeneic CPCs did not. Allogeneic rCPCs stimulated immunomodulatory responses by specifically increasing T-regulatory cells and M2 polarization, while maintaining their cardiac recovery potential and safety profile. Mechanistically, we confirmed the inactivation of NF-kB in Treg cells and increased M2 macrophages in the myocardium after MI by transplanted CPCs derived GDF15 and it's uptake by CD48 receptor on immune cells. CONCLUSION Collectively, these findings strongly support the active immunomodulatory properties and robust therapeutic potential of allogenic CPCs in post-MI cardiac dysfunction.
Collapse
Affiliation(s)
- Rachana Mishra
- grid.16753.360000 0001 2299 3507Department of Cardiovascular-Thoracic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL USA ,grid.413808.60000 0004 0388 2248Department of Pediatrics, Ann & Robert H. Lurie Children’s Hospital, Chicago, IL USA
| | - Progyaparamita Saha
- grid.16753.360000 0001 2299 3507Department of Cardiovascular-Thoracic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL USA ,grid.413808.60000 0004 0388 2248Department of Pediatrics, Ann & Robert H. Lurie Children’s Hospital, Chicago, IL USA
| | - Srinivasa Raju Datla
- grid.411024.20000 0001 2175 4264Department of Surgery, University of Maryland School of Medicine, Baltimore, MD USA
| | - Pranav Mellacheruvu
- grid.16753.360000 0001 2299 3507Department of Cardiovascular-Thoracic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Muthukumar Gunasekaran
- grid.16753.360000 0001 2299 3507Department of Cardiovascular-Thoracic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL USA ,grid.413808.60000 0004 0388 2248Department of Pediatrics, Ann & Robert H. Lurie Children’s Hospital, Chicago, IL USA
| | - Sameer Ahmad Guru
- grid.16753.360000 0001 2299 3507Department of Cardiovascular-Thoracic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL USA ,grid.413808.60000 0004 0388 2248Department of Pediatrics, Ann & Robert H. Lurie Children’s Hospital, Chicago, IL USA
| | - Xubin Fu
- grid.16753.360000 0001 2299 3507Department of Cardiovascular-Thoracic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL USA ,grid.413808.60000 0004 0388 2248Department of Pediatrics, Ann & Robert H. Lurie Children’s Hospital, Chicago, IL USA
| | - Ling Chen
- grid.16753.360000 0001 2299 3507Department of Cardiovascular-Thoracic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL USA ,grid.413808.60000 0004 0388 2248Department of Pediatrics, Ann & Robert H. Lurie Children’s Hospital, Chicago, IL USA
| | - Roberto Bolli
- grid.266623.50000 0001 2113 1622Division of Cardiovascular Medicine and Institute of Molecular Cardiology, University of Louisville, Louisville, USA
| | - Sudhish Sharma
- Department of Cardiovascular-Thoracic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA. .,Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital, Chicago, IL, USA.
| | - Sunjay Kaushal
- Department of Cardiovascular-Thoracic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA. .,Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital, Chicago, IL, USA.
| |
Collapse
|
17
|
Understanding potential barriers and enablers to a perioperative early phase cell therapy trial. Cytotherapy 2022; 24:629-638. [PMID: 35396169 DOI: 10.1016/j.jcyt.2021.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND AIMS Early-phase cell therapy clinical trials depend on patient and physician involvement, yet barriers can impede their participation. METHODS To optimize engagement for a planned cell therapy trial to prevent perioperative cardiac complications, the authors conducted semi-structured interviews with at-risk patients and physicians who could potentially be involved in the study. The authors used the theoretical domains framework to systematically identify potential barriers and enablers. RESULTS Forty-one interviews were conducted to reach data saturation, and four overall potential barriers to participation (themes) were identified. Theme 1 emphasizes that patients and physicians need accessible information to better understand the benefits and risks of the novel therapy and trial procedures and to address misconceptions. Theme 2 underscores the need for clarity on whether the trial's primary purpose is safety or efficacy, as this may influence patient and physician decisions. Theme 3 recognizes the resource and logistic realities for patients (e.g., convenient follow-up appointments) and physicians (e.g., personnel to assist in trial procedures, competing priorities). Theme 4 describes the importance of social influences (e.g., physicians and family, peers/colleagues) that may affect decisions to participate and the importance of patient preferences (e.g., availability of physicians to discuss the trial, including caregivers in discussions). CONCLUSIONS Prospectively addressing these issues may help optimize feasibility prior to conducting an expensive, resource-intensive trial.
Collapse
|
18
|
Tang XL, Wysoczynski M, Gumpert AM, Li Y, Wu WJ, Li H, Stowers H, Bolli R. Effect of intravenous cell therapy in rats with old myocardial infarction. Mol Cell Biochem 2022; 477:431-444. [PMID: 34783963 PMCID: PMC8896398 DOI: 10.1007/s11010-021-04283-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 10/21/2021] [Indexed: 10/19/2022]
Abstract
Mounting evidence shows that cell therapy provides therapeutic benefits in experimental and clinical settings of chronic heart failure. However, direct cardiac delivery of cells via transendocardial injection is logistically complex, expensive, entails risks, and is not amenable to multiple dosing. Intravenous administration would be a more convenient and clinically applicable route for cell therapy. Thus, we determined whether intravenous infusion of three widely used cell types improves left ventricular (LV) function and structure and compared their efficacy. Rats with a 30-day-old myocardial infarction (MI) received intravenous infusion of vehicle (PBS) or 1 of 3 types of cells: bone marrow mesenchymal stromal cells (MSCs), cardiac mesenchymal cells (CMCs), and c-kit-positive cardiac cells (CPCs), at a dose of 12 × 106 cells. Rats were followed for 35 days after treatment to determine LV functional status by serial echocardiography and hemodynamic studies. Blood samples were collected for Hemavet analysis to determine inflammatory cell profile. LV ejection fraction (EF) dropped ≥ 20 points in all hearts at 30 days after MI and deteriorated further at 35-day follow-up in the vehicle-treated group. In contrast, deterioration of EF was halted in rats that received MSCs and attenuated in those that received CMCs or CPCs. None of the 3 types of cells significantly altered scar size, myocardial content of collagen or CD45-positive cells, or Hemavet profile. This study demonstrates that a single intravenous administration of 3 types of cells in rats with chronic ischemic cardiomyopathy is effective in attenuating the progressive deterioration in LV function. The extent of LV functional improvement was greatest with CPCs, intermediate with CMCs, and least with MSCs.
Collapse
Affiliation(s)
- Xian-Liang Tang
- Institute of Molecular Cardiology, University of Louisville, 550 S Jackson Street, ACB Bldg, 3rd Floor, Louisville, KY, 40202, USA
| | - Marcin Wysoczynski
- Institute of Molecular Cardiology, University of Louisville, 550 S Jackson Street, ACB Bldg, 3rd Floor, Louisville, KY, 40202, USA
| | - Anna M Gumpert
- Institute of Molecular Cardiology, University of Louisville, 550 S Jackson Street, ACB Bldg, 3rd Floor, Louisville, KY, 40202, USA
| | - Yan Li
- Institute of Molecular Cardiology, University of Louisville, 550 S Jackson Street, ACB Bldg, 3rd Floor, Louisville, KY, 40202, USA
| | - Wen-Jian Wu
- Institute of Molecular Cardiology, University of Louisville, 550 S Jackson Street, ACB Bldg, 3rd Floor, Louisville, KY, 40202, USA
| | - Hong Li
- Institute of Molecular Cardiology, University of Louisville, 550 S Jackson Street, ACB Bldg, 3rd Floor, Louisville, KY, 40202, USA
| | - Heather Stowers
- Institute of Molecular Cardiology, University of Louisville, 550 S Jackson Street, ACB Bldg, 3rd Floor, Louisville, KY, 40202, USA
| | - Roberto Bolli
- Institute of Molecular Cardiology, University of Louisville, 550 S Jackson Street, ACB Bldg, 3rd Floor, Louisville, KY, 40202, USA.
| |
Collapse
|
19
|
Effects of Heme Oxygenase-1 on c-Kit-Positive Cardiac Cells. Int J Mol Sci 2021; 22:ijms222413448. [PMID: 34948245 PMCID: PMC8704354 DOI: 10.3390/ijms222413448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/09/2021] [Accepted: 12/12/2021] [Indexed: 01/02/2023] Open
Abstract
Heme oxygenase-1 (HO-1) is one of the most powerful cytoprotective proteins known. The goal of this study was to explore the effects of HO-1 in c-kit-positive cardiac cells (CPCs). LinNEG/c-kitPOS CPCs were isolated and expanded from wild-type (WT), HO-1 transgenic (TG), or HO-1 knockout (KO) mouse hearts. Compared with WT CPCs, cell proliferation was significantly increased in HO-1TG CPCs and decreased in HO-1KO CPCs. HO-1TG CPCs also exhibited a marked increase in new DNA synthesis during the S-phase of cell division, not only under normoxia (21% O2) but after severe hypoxia (1% O2 for 16 h). These properties of HO-1TG CPCs were associated with nuclear translocation (and thus activation) of Nrf2, a key transcription factor that regulates antioxidant genes, and increased protein expression of Ec-SOD, the only extracellular antioxidant enzyme. These data demonstrate that HO-1 upregulates Ec-SOD in CPCs and suggest that this occurs via activation of Nrf2, which thus is potentially involved in the crosstalk between two antioxidants, HO-1 in cytoplasm and Ec-SOD in extracellular matrix. Overexpression of HO-1 in CPCs may improve the survival and reparative ability of CPCs after transplantation and thus may have potential clinical application to increase efficacy of cell therapy.
Collapse
|
20
|
Zhang J, Bolli R, Garry DJ, Marbán E, Menasché P, Zimmermann WH, Kamp TJ, Wu JC, Dzau VJ. Basic and Translational Research in Cardiac Repair and Regeneration: JACC State-of-the-Art Review. J Am Coll Cardiol 2021; 78:2092-2105. [PMID: 34794691 PMCID: PMC9116459 DOI: 10.1016/j.jacc.2021.09.019] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/13/2021] [Accepted: 09/13/2021] [Indexed: 12/25/2022]
Abstract
This paper aims to provide an important update on the recent preclinical and clinical trials using cell therapy strategies and engineered heart tissues for the treatment of postinfarction left ventricular remodeling and heart failure. In addition to the authors’ own works and opinions on the roadblocks of the field, they discuss novel approaches for cardiac remuscularization via the activation of proliferative mechanisms in resident cardiomyocytes or direct reprogramming of somatic cells into cardiomyocytes. This paper’s main mindset is to present current and future strategies in light of their implications for the design of future patient trials with the ultimate objective of facilitating the translation of discoveries in regenerative myocardial therapies to the clinic.
Collapse
Affiliation(s)
- Jianyi Zhang
- Department of Biomedical Engineering, School of Medicine, School of Engineering, The University of Alabama at Birmingham, Birmingham, Alabama, USA.
| | - Roberto Bolli
- Institute of Molecular Cardiology, University of Louisville, Louisville, Kentucky, USA
| | - Daniel J Garry
- Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, Minnesota, USA
| | - Eduardo Marbán
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles California, USA
| | - Philippe Menasché
- Department of Cardiovascular Surgery, Hôpital Européen Georges Pompidou, University of Paris, PARCC, INSERM, F-75015, Paris, France
| | - Wolfram-Hubertus Zimmermann
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, and DZHK (German Center for Cardiovascular Research), partner site Göttingen, Göttingen, Germany
| | - Timothy J Kamp
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California, USA
| | - Victor J Dzau
- Mandel Center for Hypertension Research, Duke Cardiovascular Center, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
21
|
Taylor DA, Chacon-Alberty L, Sampaio LC, Del Hierro MG, Perin EC, Mesquita FCP, Henry TD, Traverse JH, Pepine CJ, Hare JM, Murphy MP, Yang PC, March KL, Vojvodic RW, Ebert RF, Bolli R. Recommendations for Nomenclature and Definition Of Cell Products Intended for Human Cardiovascular Use. Cardiovasc Res 2021; 118:2428-2436. [PMID: 34387303 DOI: 10.1093/cvr/cvab270] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 08/10/2021] [Indexed: 12/15/2022] Open
Abstract
Exogenous cell-based therapy has emerged as a promising new strategy to facilitate repair of hearts damaged by acute or chronic injury. However, the field of cell-based therapy is handicapped by the lack of standardized definitions and terminology, making comparisons across studies challenging. Even the term "stem cell therapy" is misleading because only a small percentage of cells derived from adult bone marrow, peripheral blood, or adipose tissue meets the accepted hematopoietic or developmental definition of stem cells. Furthermore, cells (stem or otherwise) are dynamic biological products, meaning that their surface marker expression, phenotypic and functional characteristics, and the products they secrete in response to their microenvironment can change. It is also important to point out that most surface markers are seldom specific for a cell type. In this article, we discuss the lack of consistency in the descriptive terminology used in cell-based therapies and offer guidelines aimed at standardizing nomenclature and definitions to improve communication among investigators and the general public.
Collapse
Affiliation(s)
- Doris A Taylor
- Regenerative Medicine Research, Texas Heart Institute, Houston, Texas.,RegenMedix Consulting LLC, Houston, Texas
| | | | - Luiz C Sampaio
- Regenerative Medicine Research, Texas Heart Institute, Houston, Texas
| | | | - Emerson C Perin
- Regenerative Medicine Research, Texas Heart Institute, Houston, Texas
| | | | - Timothy D Henry
- The Carl and Edyth Lindner Center for Research and Education, The Christ Hospital, Cincinnati, Ohio
| | - Jay H Traverse
- Minneapolis Heart Institute Foundation at Abbott Northwestern Hospital, and University of Minnesota School of Medicine, Minneapolis, Minnesota
| | - Carl J Pepine
- University of Florida College of Medicine, Gainesville, Florida
| | - Joshua M Hare
- University of Miami School of Medicine, Miami, Florida
| | | | - Phillip C Yang
- Stanford University School of Medicine, Stanford, California
| | - Keith L March
- University of Florida College of Medicine, Gainesville, Florida
| | - Rachel W Vojvodic
- University of Texas Health Science Center at Houston School of Public Health, Houston, Texas
| | - Ray F Ebert
- National Heart, Lung, and Blood Institute, Bethesda, Maryland
| | | | | |
Collapse
|
22
|
Wu C, Zhou XX, Li JZ, Qiang HF, Wang Y, Li G. Pretreatment of cardiac progenitor cells with bradykinin attenuates H 2O 2-induced cell apoptosis and improves cardiac function in rats by regulating autophagy. Stem Cell Res Ther 2021; 12:437. [PMID: 34353364 PMCID: PMC8340370 DOI: 10.1186/s13287-021-02503-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 07/01/2021] [Indexed: 02/07/2023] Open
Abstract
Background Previous studies have demonstrated that human cardiac c-Kit+ progenitor cells (hCPCs) can effectively improve ischemic heart disease. However, the major challenge in applying hCPCs to clinical therapy is the low survival rate of graft hCPCs in the host heart, which limited the benefit of transplanted hCPCs. Bradykinin (BK) is a principal active agent of the tissue kinin-kallikrein system. Our previous studies have highlighted that BK mediated the growth and migration of CPCs by regulating Ca2+ influx. However, the protective effect of BK on CPCs, improvement in the survival rate of BK-pretreated hCPCs in the infarcted heart, and the related mechanism remain elusive. Methods HCPCs were treated with H2O2 to induce cell apoptosis and autophagy, and different concentration of BK was applied to rescue the H2O2-induced injury detected by MTT assay, TUNEL staining, flow cytometry, western blotting, and mitoSOX assays. The role of autophagy in the anti-apoptotic effect of BK was chemically activated or inhibited using the autophagy inducer, rapamycin, or the inhibitor, 3-methyladenine (3-MA). To explore the protective effect of BK on hCPCs, 3-MA or BK-pretreated hCPCs were transplanted into the myocardial infarcted rats. An echocardiogram was used to determine cardiac function, H&E and Masson staining were employed to assess pathological characteristics, HLA gene expression was quantified by qRT-PCR, and immunostaining was applied to examine neovascularization using confocal microscopy. Results The in vitro results showed that BK suppressed H2O2-induced hCPCs apoptosis and ROS production in a concentration-dependent manner by promoting pAkt and Bcl-2 expression and reducing cleaved caspase 3 and Bax expression. Moreover, BK restrained the H2O2-induced cell autophagy by decreasing LC3II/I, Beclin1, and ATG5 expression and increasing P62 expression. In the in vivo experiment, the transplanted BK- or 3-MA-treated hCPCs were found to be more effectively improved cardiac function by decreasing cardiomyocyte apoptosis, inflammatory infiltration, and myocardial fibrosis, and promoting neovascularization in the infarcted heart, compared to untreated-hCPCs or c-kit- cardiomyocytes (CPC- cells). Conclusions Our present study established a new method to rescue transplanted hCPCs in the infarcted cardiac area via regulating cell apoptosis and autophagy of hCPCs by pretreatment with BK, providing a new therapeutic option for heart failure. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02503-6.
Collapse
Affiliation(s)
- Chan Wu
- Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, 361015, Fujian, China
| | - Xiao-Xia Zhou
- Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, 361015, Fujian, China
| | - Jing-Zhou Li
- Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, 361015, Fujian, China
| | - Hai-Feng Qiang
- Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, 361015, Fujian, China
| | - Yan Wang
- Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, 361015, Fujian, China.
| | - Gang Li
- Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, 361015, Fujian, China.
| |
Collapse
|
23
|
Bolli R, Solankhi M, Tang XL, Kahlon A. Cell Therapy in Patients with Heart Failure: A Comprehensive Review and Emerging Concepts. Cardiovasc Res 2021; 118:951-976. [PMID: 33871588 PMCID: PMC8930075 DOI: 10.1093/cvr/cvab135] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 04/15/2021] [Indexed: 12/16/2022] Open
Abstract
This review summarizes the results of clinical trials of cell therapy in patients with heart failure (HF). In contrast to acute myocardial infarction (where results have been consistently negative for more than a decade), in the setting of HF the results of Phase I–II trials are encouraging, both in ischaemic and non-ischaemic cardiomyopathy. Several well-designed Phase II studies have met their primary endpoint and demonstrated an efficacy signal, which is remarkable considering that only one dose of cells was used. That an efficacy signal was seen 6–12 months after a single treatment provides a rationale for larger, rigorous trials. Importantly, no safety concerns have emerged. Amongst the various cell types tested, mesenchymal stromal cells derived from bone marrow (BM), umbilical cord, or adipose tissue show the greatest promise. In contrast, embryonic stem cells are not likely to become a clinical therapy. Unfractionated BM cells and cardiosphere-derived cells have been abandoned. The cell products used for HF will most likely be allogeneic. New approaches, such as repeated cell treatment and intravenous delivery, may revolutionize the field. As is the case for most new therapies, the development of cell therapies for HF has been slow, plagued by multifarious problems, and punctuated by many setbacks; at present, the utility of cell therapy in HF remains to be determined. What the field needs is rigorous, well-designed Phase III trials. The most important things to move forward are to keep an open mind, avoid preconceived notions, and let ourselves be guided by the evidence.
Collapse
Affiliation(s)
- Roberto Bolli
- Institute of Molecular Cardiology, University of Louisville, Louisville, KY 40292
| | - Mitesh Solankhi
- Institute of Molecular Cardiology, University of Louisville, Louisville, KY 40292
| | - Xiang-Liang Tang
- Institute of Molecular Cardiology, University of Louisville, Louisville, KY 40292
| | - Arunpreet Kahlon
- Institute of Molecular Cardiology, University of Louisville, Louisville, KY 40292
| |
Collapse
|
24
|
Bolli R, Mitrani RD, Hare JM, Pepine CJ, Perin EC, Willerson JT, Traverse JH, Henry TD, Yang PC, Murphy MP, March KL, Schulman IH, Ikram S, Lee DP, O’Brien C, Lima JA, Ostovaneh MR, Ambale-Venkatesh B, Lewis G, Khan A, Bacallao K, Valasaki K, Longsomboon B, Gee AP, Richman S, Taylor DA, Lai D, Sayre SL, Bettencourt J, Vojvodic RW, Cohen ML, Simpson L, Aguilar D, Loghin C, Moyé L, Ebert RF, Davis BR, Simari RD. A Phase II study of autologous mesenchymal stromal cells and c-kit positive cardiac cells, alone or in combination, in patients with ischaemic heart failure: the CCTRN CONCERT-HF trial. Eur J Heart Fail 2021; 23:661-674. [PMID: 33811444 PMCID: PMC8357352 DOI: 10.1002/ejhf.2178] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 03/19/2021] [Accepted: 03/23/2021] [Indexed: 12/21/2022] Open
Abstract
AIMS CONCERT-HF is an NHLBI-sponsored, double-blind, placebo-controlled, Phase II trial designed to determine whether treatment with autologous bone marrow-derived mesenchymal stromal cells (MSCs) and c-kit positive cardiac cells (CPCs), given alone or in combination, is feasible, safe, and beneficial in patients with heart failure (HF) caused by ischaemic cardiomyopathy. METHODS AND RESULTS Patients were randomized (1:1:1:1) to transendocardial injection of MSCs combined with CPCs, MSCs alone, CPCs alone, or placebo, and followed for 12 months. Seven centres enrolled 125 participants with left ventricular ejection fraction of 28.6 ± 6.1% and scar size 19.4 ± 5.8%, in New York Heart Association class II or III. The proportion of major adverse cardiac events (MACE) was significantly decreased by CPCs alone (-22% vs. placebo, P = 0.043). Quality of life (Minnesota Living with Heart Failure Questionnaire score) was significantly improved by MSCs alone (P = 0.050) and MSCs + CPCs (P = 0.023) vs. placebo. Left ventricular ejection fraction, left ventricular volumes, scar size, 6-min walking distance, and peak oxygen consumption did not differ significantly among groups. CONCLUSIONS This is the first multicentre trial assessing CPCs and a combination of two cell types from different tissues in HF patients. The results show that treatment is safe and feasible. Even with maximal guideline-directed therapy, both CPCs and MSCs were associated with improved clinical outcomes (MACE and quality of life, respectively) in ischaemic HF without affecting left ventricular function or structure, suggesting possible systemic or paracrine cellular mechanisms. Combining MSCs with CPCs was associated with improvement in both these outcomes. These results suggest potential important beneficial effects of CPCs and MSCs and support further investigation in HF patients.
Collapse
Affiliation(s)
- Roberto Bolli
- University of Louisville, School of Medicine, Louisville, KY, USA
| | - Raul D. Mitrani
- University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Joshua M. Hare
- University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Carl J. Pepine
- University of Florida College of Medicine, Gainesville, FL, USA
| | - Emerson C. Perin
- Texas Heart Institute, CHI St. Luke’s Health Baylor College of Medicine Medical Center, Houston, TX, USA
| | - James T. Willerson
- Texas Heart Institute, CHI St. Luke’s Health Baylor College of Medicine Medical Center, Houston, TX, USA
| | - Jay H. Traverse
- Minneapolis Heart Institute Foundation at Abbott Northwestern Hospital, and University of Minnesota School of Medicine, Minneapolis, MN, USA
| | - Timothy D. Henry
- The Carl and Edyth Lindner Center for Research and Education, The Christ Hospital, Cincinnati, OH, USA
| | | | | | - Keith L. March
- University of Florida College of Medicine, Gainesville, FL, USA
| | | | - Sohail Ikram
- University of Louisville, School of Medicine, Louisville, KY, USA
| | - David P. Lee
- Stanford University School of Medicine, Stanford, CA, USA
| | - Connor O’Brien
- Stanford University School of Medicine, Stanford, CA, USA
| | - Joao A. Lima
- Johns Hopkins University, Cardiovascular Imaging, Baltimore, MD, USA
| | | | | | - Gregory Lewis
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Aisha Khan
- University of Miami, Miller School of Medicine, Interdisciplinary Stem Cell Institute, Miami, FL, USA
| | - Ketty Bacallao
- University of Miami, Miller School of Medicine, Interdisciplinary Stem Cell Institute, Miami, FL, USA
| | - Krystalenia Valasaki
- University of Miami, Miller School of Medicine, Interdisciplinary Stem Cell Institute, Miami, FL, USA
| | - Bangon Longsomboon
- University of Miami, Miller School of Medicine, Interdisciplinary Stem Cell Institute, Miami, FL, USA
| | - Adrian P. Gee
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
| | - Sara Richman
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
| | - Doris A. Taylor
- Texas Heart Institute, CHI St. Luke’s Health Baylor College of Medicine Medical Center, Houston, TX, USA
| | - Dejian Lai
- UTHealth University of Texas Health Science Center at Houston School of Public Health, Houston, TX, USA
| | - Shelly L. Sayre
- UTHealth University of Texas Health Science Center at Houston School of Public Health, Houston, TX, USA
| | - Judy Bettencourt
- UTHealth University of Texas Health Science Center at Houston School of Public Health, Houston, TX, USA
| | - Rachel W. Vojvodic
- UTHealth University of Texas Health Science Center at Houston School of Public Health, Houston, TX, USA
| | - Michelle L. Cohen
- UTHealth University of Texas Health Science Center at Houston School of Public Health, Houston, TX, USA
| | - Lara Simpson
- UTHealth University of Texas Health Science Center at Houston School of Public Health, Houston, TX, USA
| | - David Aguilar
- UTHealth University of Texas Health Science Center at Houston School of Public Health, Houston, TX, USA
- UTHealth University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, USA
| | - Catalin Loghin
- UTHealth University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, USA
| | - Lem Moyé
- UTHealth University of Texas Health Science Center at Houston School of Public Health, Houston, TX, USA
| | - Ray F. Ebert
- NIH, National Heart, Lung and Blood Institute, Bethesda, MD, USA
| | - Barry R. Davis
- UTHealth University of Texas Health Science Center at Houston School of Public Health, Houston, TX, USA
| | | | | |
Collapse
|