1
|
Alam MW, BaQais A, Mir TA, Nahvi I, Zaidi N, Yasin A. Effect of Mo doping in NiO nanoparticles for structural modification and its efficiency for antioxidant, antibacterial applications. Sci Rep 2023; 13:1328. [PMID: 36693936 PMCID: PMC9873629 DOI: 10.1038/s41598-023-28356-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 01/17/2023] [Indexed: 01/25/2023] Open
Abstract
Novel molybdenum (Mo)-doped nickel oxide (NiO) Nanoparticles (NPs) were synthesized by using a simple sonochemical methodology and the synthesized NPs were investigated for antioxidant, and antibacterial applications. The X-ray diffraction (XRD) analysis revealed that the crystal systems of rhombohedral (21.34 nm) and monoclinic (17.76 nm) were observed for pure NiO and Mo-doped NiO NPs respectively. The scanning electron microscopy (SEM) results show that the pure NiO NPs possess irregular spherical shape with an average particle size of 93.89 nm while the Mo-doped NiO NPs exhibit spherical morphology with an average particle size of 85.48 nm. The ultraviolet-visible (UV-Vis) spectrum further indicated that the pure and Mo-doped NiO NPs exhibited strong absorption band at the wavelengths of 365 and 349 nm, respectively. The free radical scavenging activity of NiO and Mo-doped NiO NPs was also investigated by utilizing several biochemical assays. The Mo-doped NiO NPs showed better antioxidant activity (84.2%) towards ABTS. + at 200 µg/mL in comparison to their pure counterpart which confirmed that not only antioxidant potency of the doped NPs was better than pure NPs but this efficacy was also concentration dependant as well. The NiO and Mo-doped NiO NPs were further evaluated for their antibacterial activity against gram-positive (Staphylococcus aureus and Bacillus subtilis) and gram-negative (Pseudomonas aeruginosa and Escherichia coli) bacterial strains. The Mo-doped NiO NPs displayed better antibacterial activity (25 mm) against E. coli in comparison to the pure NPs. The synthesized NPs exhibited excellent aptitude for multi-dimensional applications.
Collapse
Affiliation(s)
- Mir Waqas Alam
- Department of Physics, College of Science, King Faisal University, Al-Ahsa, 31982, Saudi Arabia.
| | - Amal BaQais
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, 11671, Saudi Arabia.
| | - Tanveer Ahmad Mir
- Laboratory of Tissue/Organ Bioengineering and BioMEMS, Transplantation Research & Innovation (Dpt)-R, Organ Transplant Centre of Excellence, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Saudi Arabia
| | - Insha Nahvi
- Department of Basic Sciences, Preparatory Year Deanship, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
| | - Noushi Zaidi
- Department of Basic Sciences, Preparatory Year Deanship, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
| | - Amina Yasin
- Department of Basic Sciences, Preparatory Year Deanship, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
| |
Collapse
|
2
|
Irina ZV, Natalya KI, Vladimir BI, Elena M, Irina R, Alexander G. Ethoxidol as a Broad-spectrum Adaptogen. Curr Mol Pharmacol 2023; 16:109-115. [PMID: 35260065 DOI: 10.2174/1874467215666220308115514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 12/03/2021] [Accepted: 12/13/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Stress factors lead to a shift in the antioxidant-prooxidant relationship, allowing an increase in the generation of reactive oxygen species (ROS) by mitochondria, which results in the development of oxidative stress. Consequently, it is possible to put forward an assumption that drugs which reduce the excessive generation of ROS by these organelles should increase the body's resistance to stress factors. Antioxidants can be used as such drugs. In this regard, the aim of this work was to study the bioenergetics characteristic of mitochondria under stress conditions and under the action of 2-ethyl-6-methyl-3-hydroxypyridinium hydroxybutanedioate (ethoxidol). METHODS The antiradical activity of the drug was evaluated by the chemiluminescent method (CL). The functional state of the mitochondria was studied with reference to the level of lipid peroxidation by the spectrofluorimetry and in terms of fatty acid composition of mitochondrial membranes using the chromatography technique. The study of mitochondrial morphology was performed employing the method of atomic force microscopy. RESULTS The injection in mice of ethoxidol at a dose of 10-5 mol/kg for 7 days led to the prevention of the stress-induced increase in the intensity of LPO in the membranes of the mitochondria, and swelling of these organelles; it also prevented a decrease in the content of unsaturated fatty acids, containing 18 and 20 carbon atoms. At the same time, ethoxidol increased the life expectancy of mice by 3.0-4.2 times in conditions of various types of hypoxia. CONCLUSION The adaptogenic properties of ethoxidol can be attributed to its antiradical and antioxidant properties.
Collapse
Affiliation(s)
- Zhigacheva V Irina
- Emanue Institute of Biochemical Physics of Russian Academy of Sciences, st.Kosygin, 4, Moscow, 119334 Russia
| | - Krikunova I Natalya
- Emanue Institute of Biochemical Physics of Russian Academy of Sciences, st.Kosygin, 4, Moscow, 119334 Russia
| | - Binyukov I Vladimir
- Emanue Institute of Biochemical Physics of Russian Academy of Sciences, st.Kosygin, 4, Moscow, 119334 Russia
| | - Mil Elena
- Emanue Institute of Biochemical Physics of Russian Academy of Sciences, st.Kosygin, 4, Moscow, 119334 Russia
| | - Rusina Irina
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, st. Kosygin, Moscow, 119334 Russia
| | - Goloshchapov Alexander
- Emanue Institute of Biochemical Physics of Russian Academy of Sciences, st.Kosygin, 4, Moscow, 119334 Russia
| |
Collapse
|
3
|
Wang F, Han J, Wang X, Liu Y, Zhang Z. Roles of HIF-1α/BNIP3 mediated mitophagy in mitochondrial dysfunction of letrozole-induced PCOS rats. J Mol Histol 2022; 53:833-842. [PMID: 35951252 DOI: 10.1007/s10735-022-10096-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 07/28/2022] [Indexed: 10/15/2022]
Abstract
Mitochondrial dysfunction plays a crucial role in the pathological physiology of polycystic ovary syndrome (PCOS). Mitochondrial quality control system is vital to maintaining mitochondrial function, includes mitochondrial biosynthesis, dynamics and mitophagy. While mitophagy as a specific autophagy, plays an important role in the mitochondrial quality control system and is mediated by some signaling pathways to eliminate the excessive production of reactive oxygen species (ROS), such as hypoxia-inducible factor (HIF)-1α/B-cell lymphoma-2 adenovirus E1B 19 kDa interacting protein 3 (BNIP3). Our previous studies have found that excessive production of ROS and the decreased expression of HIF-1α in the ovaries of PCOS rats. Thus, we hypothesized that excessive ROS leads to mitochondrial dysfunction, attenuates HIF-1α/BNIP3-mediated mitophagy in the ovaries of PCOS rats, and further reduces the mitophagic defense. Firstly, the oxidative stress status was detected and found excessive ROS damages ovarian tissue in PCOS rats. Secondly, the marker proteins of mitochondrial biosynthesis/dynamics and amount were examined and found that their expression levels were abnormal, which showed that the abnormal mitochondrial quality control system leads to accumulate the excess or damaged mitochondria in PCOS ovaries. Finally, we detected the HIF-1α/BNIP3 pathway and found HIF-1α-mediated mitophagy is impaired in the ovaries of PCOS rats. Together, these results clearly demonstrated excessive ROS causes mitochondrial dysfunction via the abnormal mitochondrial quality control system, and attenuates HIF-1α/BNIP3-mediated mitophagic defense in the granulosa cells of PCOS rats, which will provide a new direction for further understanding the role of HIF-1α in the molecular mechanism of mitochondrial dysfunction in PCOS ovaries.
Collapse
Affiliation(s)
- Fan Wang
- Provincial University Key Laboratory of Sport and Health Science, School of Physical Education and Sport Sciences, Fujian Normal University, Fuzhou, 350007, China.
| | - Junyong Han
- Fujian Key Laboratory of Medical Measurement, Fujian Academy of Medical Sciences, Fuzhou, 350001, China
| | - Xin Wang
- Provincial University Key Laboratory of Sport and Health Science, School of Physical Education and Sport Sciences, Fujian Normal University, Fuzhou, 350007, China
| | - Yiping Liu
- Provincial University Key Laboratory of Sport and Health Science, School of Physical Education and Sport Sciences, Fujian Normal University, Fuzhou, 350007, China
| | - Zhenghong Zhang
- Provincial Key Laboratory for Developmental Biology and Neurosciences, College of Life Sciences, Fujian Normal University, Fuzhou, 350007, China
| |
Collapse
|
4
|
Ge X, Cao Z, Chu L. The Antioxidant Effect of the Metal and Metal-Oxide Nanoparticles. Antioxidants (Basel) 2022; 11:antiox11040791. [PMID: 35453476 PMCID: PMC9030860 DOI: 10.3390/antiox11040791] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/29/2022] [Accepted: 04/04/2022] [Indexed: 02/04/2023] Open
Abstract
Inorganic nanoparticles, such as CeO3, TiO2 and Fe3O4 could be served as a platform for their excellent performance in antioxidant effect. They may offer the feasibility to be further developed for their smaller and controllable sizes, flexibility to be modified, relative low toxicity as well as ease of preparation. In this work, the recent progress of these nanoparticles were illustrated, and the antioxidant mechanism of the inorganic nanoparticles were introduced, which mainly included antioxidant enzyme-mimetic activity and antioxidant ROS/RNS scavenging activity. The antioxidant effects and the applications of several nanoparticles, such as CeO3, Fe3O4, TiO2 and Se, are summarized in this paper. The potential toxicity of these nanoparticles both in vitro and in vivo was well studied for the further applications. Future directions of how to utilize these inorganic nanoparticles to be further applied in some fields, such as medicine, cosmetic and functional food additives were also investigated in this paper.
Collapse
|
5
|
Warraich UEA, Hussain F, Kayani HUR. Aging - Oxidative stress, antioxidants and computational modeling. Heliyon 2020; 6:e04107. [PMID: 32509998 PMCID: PMC7264715 DOI: 10.1016/j.heliyon.2020.e04107] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/12/2020] [Accepted: 05/27/2020] [Indexed: 12/22/2022] Open
Abstract
Aging is a degenerative, biological, time-dependent, universally conserved process thus designed as one of the highest known risk factors for morbidity and mortality. Every individual has its own aging mechanisms as both environmental conditions (75%) and genetics (25%) account for aging. Several theories have been proposed until now but not even a single theory solves this mystery. There are still some queries un-answered to the scientific community regarding mechanisms behind aging. However, oxidative stress theory (OST) is considered one of the famous theories that sees mitochondria as one of the leading organelles which largely contribute to the aging process. Many reactive oxygen species (ROS) are produced endogenously and exogenously that are associated with aging. But the mitochondrial ROS contribute largely to the aging process as mitochondrial dysfunction due to oxidative stress is considered one of the contributors toward aging. Although ROS is known to damage cell machinery, new evidence suggests their role in signal transduction to regulate biological and physiological processes. Moreover, besides mitochondria, other important cell organelles such as peroxisome and endoplasmic reticulum also produce ROS that contribute to aging. However, nature has provided humans with free radical scavengers called antioxidants that protect from harmful effects of ROS. Future predictions regarding aging, biochemical mechanisms involved, biomarkers internal and external factors can be easily done with machine learning algorithms and other computational models. This review explains important aspects of aging, the contribution of ROS producing organelles in aging, importance of antioxidants fighting against ROS, different computational models developed to understand the complexities of the aging.
Collapse
Affiliation(s)
- Umm-e-Ammara Warraich
- Department of Biochemistry, Faculty of Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Fatma Hussain
- Department of Biochemistry, Faculty of Sciences, University of Agriculture, Faisalabad, Pakistan
| | | |
Collapse
|
6
|
Munro D, Pamenter ME. Comparative studies of mitochondrial reactive oxygen species in animal longevity: Technical pitfalls and possibilities. Aging Cell 2019; 18:e13009. [PMID: 31322803 PMCID: PMC6718592 DOI: 10.1111/acel.13009] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 06/03/2019] [Accepted: 06/30/2019] [Indexed: 11/30/2022] Open
Abstract
The mitochondrial oxidative theory of aging has been repeatedly investigated over the past 30 years by comparing the efflux of hydrogen peroxide (H2O2) from isolated mitochondria of long‐ and short‐lived species using horseradish peroxidase‐based assays. However, a clear consensus regarding the relationship between H2O2 production rates and longevity has not emerged. Concomitantly, novel insights into the mechanisms of reactive oxygen species (ROS) handling by mitochondria themselves should have raised concerns about the validity of this experimental approach. Here, we review pitfalls of the horseradish peroxidase/amplex red detection system for the measurement of mitochondrial ROS formation rates, with an emphasis on longevity studies. Importantly, antioxidant systems in the mitochondrial matrix are often capable of scavenging H2O2 faster than mitochondria produce it. As a consequence, as much as 84% of the H2O2 produced by mitochondria may be consumed before it diffuses into the reaction medium, where it can be detected by the horseradish peroxidase/amplex red system, this proportion is likely not consistent across species. Furthermore, previous studies often used substrates that elicit H2O2 formation at a much higher rate than in physiological conditions and at sites of secondary importance in vivo. Recent evidence suggests that the activity of matrix antioxidants may correlate with longevity instead of the rate of H2O2 formation. We conclude that past studies have been methodologically insufficient to address the putative relationship between longevity and mitochondrial ROS. Thus, novel methodological approaches are required that more accurately encompass mitochondrial ROS metabolism.
Collapse
Affiliation(s)
- Daniel Munro
- Department of Biology University of Ottawa Ottawa Ontario Canada
| | - Matthew E. Pamenter
- Department of Biology University of Ottawa Ottawa Ontario Canada
- University of Ottawa Brain and Mind Research Institute Ottawa Ontario Canada
| |
Collapse
|
7
|
Munro D, Baldy C, Pamenter ME, Treberg JR. The exceptional longevity of the naked mole-rat may be explained by mitochondrial antioxidant defenses. Aging Cell 2019; 18:e12916. [PMID: 30768748 PMCID: PMC6516170 DOI: 10.1111/acel.12916] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 10/31/2018] [Accepted: 12/30/2018] [Indexed: 12/21/2022] Open
Abstract
Naked mole-rats (NMRs) are mouse-sized mammals that exhibit an exceptionally long lifespan (>30 vs. <4 years for mice), and resist aging-related pathologies such as cardiovascular and pulmonary diseases, cancer, and neurodegeneration. However, the mechanisms underlying this exceptional longevity and disease resistance remain poorly understood. The oxidative stress theory of aging posits that (a) senescence results from the accumulation of oxidative damage inflicted by reactive oxygen species (ROS) of mitochondrial origin, and (b) mitochondria of long-lived species produce less ROS than do mitochondria of short-lived species. However, comparative studies over the past 28 years have produced equivocal results supporting this latter prediction. We hypothesized that, rather than differences in ROS generation, the capacity of mitochondria to consume ROS might distinguish long-lived species from short-lived species. To test this hypothesis, we compared mitochondrial production and consumption of hydrogen peroxide (H2 O2 ; as a proxy of overall ROS metabolism) between NMR and mouse skeletal muscle and heart. We found that the two species had comparable rates of mitochondrial H2 O2 generation in both tissues; however, the capacity of mitochondria to consume ROS was markedly greater in NMRs. Specifically, maximal observed consumption rates were approximately two and fivefold greater in NMRs than in mice, for skeletal muscle and heart, respectively. Our results indicate that differences in matrix ROS detoxification capacity between species may contribute to their divergence in lifespan.
Collapse
Affiliation(s)
- Daniel Munro
- Department of Biological SciencesUniversity of ManitobaWinnipegManitobaCanada
- Department of BiologyUniversity of OttawaOttawaOntarioCanada
- Centre on AgingUniversity of ManitobaWinnipegManitobaCanada
| | - Cécile Baldy
- Department of BiologyUniversity of OttawaOttawaOntarioCanada
| | - Matthew E. Pamenter
- Department of BiologyUniversity of OttawaOttawaOntarioCanada
- University of Ottawa Brain and Mind Research InstituteOttawaOntarioCanada
| | - Jason R. Treberg
- Department of Biological SciencesUniversity of ManitobaWinnipegManitobaCanada
- Centre on AgingUniversity of ManitobaWinnipegManitobaCanada
- Department of food and Human Nutritional SciencesUniversity of ManitobaWinnipegManitobaCanada
| |
Collapse
|
8
|
Jeffries KM, Brander SM, Britton MT, Fangue NA, Connon RE. Chronic exposures to low and high concentrations of ibuprofen elicit different gene response patterns in a euryhaline fish. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:17397-413. [PMID: 25731088 DOI: 10.1007/s11356-015-4227-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 02/11/2015] [Indexed: 05/16/2023]
Abstract
Ibuprofen is one of the most commonly detected pharmaceuticals in wastewater effluent; however, the effects of ibuprofen on aquatic organisms are poorly understood. This study presents the transcriptome-wide response of the inland silverside, Menidia beryllina, to chronic exposure to ibuprofen. At the lowest exposure concentration (0.0115 mg/L), we detected a downregulation of many genes involved in skeletal development, aerobic respiration, and immune function. At the highest exposure concentration (1.15 mg/L), we detected increased expression of regulatory genes in the arachidonic acid metabolism pathway and several immune genes involved in an inflammatory response. Additionally, there was differential expression of genes involved in oxidative stress responses and a downregulation of genes involved in osmoregulation. This study provides useful information for monitoring the effects of this common wastewater effluent contaminant in the environment and for the generation of biomarkers of exposure to ibuprofen that may be transferable to other fish species.
Collapse
Affiliation(s)
- Ken M Jeffries
- Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA.
- Wildlife, Fish and Conservation Biology, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA.
| | - Susanne M Brander
- Biology and Marine Biology, University of North Carolina, Wilmington, 601 South College Road, Wilmington, NC, 28403, USA
| | - Monica T Britton
- Bioinformatics Core Facility, Genome Center, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Nann A Fangue
- Wildlife, Fish and Conservation Biology, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Richard E Connon
- Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA
| |
Collapse
|
9
|
Stuart JA, Maddalena LA, Merilovich M, Robb EL. A midlife crisis for the mitochondrial free radical theory of aging. LONGEVITY & HEALTHSPAN 2014; 3:4. [PMID: 24690218 PMCID: PMC3977679 DOI: 10.1186/2046-2395-3-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 01/21/2014] [Indexed: 02/06/2023]
Abstract
Since its inception more than four decades ago, the Mitochondrial Free Radical Theory of Aging (MFRTA) has served as a touchstone for research into the biology of aging. The MFRTA suggests that oxidative damage to cellular macromolecules caused by reactive oxygen species (ROS) originating from mitochondria accumulates in cells over an animal’s lifespan and eventually leads to the dysfunction and failure that characterizes aging. A central prediction of the theory is that the ability to ameliorate or slow this process should be associated with a slowed rate of aging and thus increased lifespan. A vast pool of data bearing on this idea has now been published. ROS production, ROS neutralization and macromolecule repair have all been extensively studied in the context of longevity. We review experimental evidence from comparisons between naturally long- or short-lived animal species, from calorie restricted animals, and from genetically modified animals and weigh the strength of results supporting the MFRTA. Viewed as a whole, the data accumulated from these studies have too often failed to support the theory. Excellent, well controlled studies from the past decade in particular have isolated ROS as an experimental variable and have shown no relationship between its production or neutralization and aging or longevity. Instead, a role for mitochondrial ROS as intracellular messengers involved in the regulation of some basic cellular processes, such as proliferation, differentiation and death, has emerged. If mitochondrial ROS are involved in the aging process, it seems very likely it will be via highly specific and regulated cellular processes and not through indiscriminate oxidative damage to macromolecules.
Collapse
Affiliation(s)
- Jeffrey A Stuart
- Department of Biological Sciences, Brock University, St, Catharines, ON L2S 3A1, Canada.
| | | | | | | |
Collapse
|