1
|
Sîrbulescu RF, Ilieş I, Amelung L, Zupanc GKH. Proteomic characterization of spontaneously regrowing spinal cord following injury in the teleost fish Apteronotus leptorhynchus, a regeneration-competent vertebrate. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2022; 208:671-706. [PMID: 36445471 DOI: 10.1007/s00359-022-01591-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/30/2022] [Accepted: 11/01/2022] [Indexed: 11/30/2022]
Abstract
In adult mammals, spontaneous repair after spinal cord injury (SCI) is severely limited. By contrast, teleost fish successfully regenerate injured axons and produce new neurons from adult neural stem cells after SCI. The molecular mechanisms underlying this high regenerative capacity are largely unknown. The present study addresses this gap by examining the temporal dynamics of proteome changes in response to SCI in the brown ghost knifefish (Apteronotus leptorhynchus). Two-dimensional difference gel electrophoresis (2D DIGE) was combined with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and tandem mass spectrometry (MS/MS) to collect data during early (1 day), mid (10 days), and late (30 days) phases of regeneration following caudal amputation SCI. Forty-two unique proteins with significant differences in abundance between injured and intact control samples were identified. Correlation analysis uncovered six clusters of spots with similar expression patterns over time and strong conditional dependences, typically within functional families or between isoforms. Significantly regulated proteins were associated with axon development and regeneration; proliferation and morphogenesis; neuronal differentiation and re-establishment of neural connections; promotion of neuroprotection, redox homeostasis, and membrane repair; and metabolism or energy supply. Notably, at all three time points examined, significant regulation of proteins involved in inflammatory responses was absent.
Collapse
Affiliation(s)
- Ruxandra F Sîrbulescu
- School of Engineering and Science, Jacobs University Bremen, 28725, Bremen, Germany
- Laboratory of Neurobiology, Department of Biology, Northeastern University, Boston, MA, 02115, USA
- Vaccine and Immunotherapy Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA
| | - Iulian Ilieş
- School of Humanities and Social Sciences, Jacobs University Bremen, 28725, Bremen, Germany
- Laboratory of Neurobiology, Department of Biology, Northeastern University, Boston, MA, 02115, USA
| | - Lisa Amelung
- Laboratory of Neurobiology, Department of Biology, Northeastern University, Boston, MA, 02115, USA
| | - Günther K H Zupanc
- School of Engineering and Science, Jacobs University Bremen, 28725, Bremen, Germany.
- Laboratory of Neurobiology, Department of Biology, Northeastern University, Boston, MA, 02115, USA.
| |
Collapse
|
2
|
Zupanc GKH. Adult neurogenesis in the central nervous system of teleost fish: from stem cells to function and evolution. J Exp Biol 2021; 224:258585. [PMID: 33914040 DOI: 10.1242/jeb.226357] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Adult neurogenesis, the generation of functional neurons from adult neural stem cells in the central nervous system (CNS), is widespread, and perhaps universal, among vertebrates. This phenomenon is more pronounced in teleost fish than in any other vertebrate taxon. There are up to 100 neurogenic sites in the adult teleost brain. New cells, including neurons and glia, arise from neural stem cells harbored both in neurogenic niches and outside these niches (such as the ependymal layer and parenchyma in the spinal cord, respectively). At least some, but not all, of the stem cells are of astrocytic identity. Aging appears to lead to stem cell attrition in fish that exhibit determinate body growth but not in those with indeterminate growth. At least in some areas of the CNS, the activity of the neural stem cells results in additive neurogenesis or gliogenesis - tissue growth by net addition of cells. Mathematical and computational modeling has identified three factors to be crucial for sustained tissue growth and correct formation of CNS structures: symmetric stem cell division, cell death and cell drift due to population pressure. It is hypothesized that neurogenesis in the CNS is driven by continued growth of corresponding muscle fibers and sensory receptor cells in the periphery to ensure a constant ratio of peripheral versus central elements. This 'numerical matching hypothesis' can explain why neurogenesis has ceased in most parts of the adult CNS during the evolution of mammals, which show determinate growth.
Collapse
Affiliation(s)
- Günther K H Zupanc
- Laboratory of Neurobiology, Department of Biology, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
3
|
Van Houcke J, Mariën V, Zandecki C, Seuntjens E, Ayana R, Arckens L. Modeling Neuroregeneration and Neurorepair in an Aging Context: The Power of a Teleost Model. Front Cell Dev Biol 2021; 9:619197. [PMID: 33816468 PMCID: PMC8012675 DOI: 10.3389/fcell.2021.619197] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 02/19/2021] [Indexed: 01/10/2023] Open
Abstract
Aging increases the risk for neurodegenerative disease and brain trauma, both leading to irreversible and multifaceted deficits that impose a clear societal and economic burden onto the growing world population. Despite tremendous research efforts, there are still no treatments available that can fully restore brain function, which would imply neuroregeneration. In the adult mammalian brain, neuroregeneration is naturally limited, even more so in an aging context. In view of the significant influence of aging on (late-onset) neurological disease, it is a critical factor in future research. This review discusses the use of a non-standard gerontology model, the teleost brain, for studying the impact of aging on neurorepair. Teleost fish share a vertebrate physiology with mammals, including mammalian-like aging, but in contrast to mammals have a high capacity for regeneration. Moreover, access to large mutagenesis screens empowers these teleost species to fill the gap between established invertebrate and rodent models. As such, we here highlight opportunities to decode the factor age in relation to neurorepair, and we propose the use of teleost fish, and in particular killifish, to fuel new research in the neuro-gerontology field.
Collapse
Affiliation(s)
- Jolien Van Houcke
- Laboratory of Neuroplasticity and Neuroproteomics, Department of Biology, KU Leuven, Leuven, Belgium
| | - Valerie Mariën
- Laboratory of Neuroplasticity and Neuroproteomics, Department of Biology, KU Leuven, Leuven, Belgium
| | - Caroline Zandecki
- Laboratory of Neuroplasticity and Neuroproteomics, Department of Biology, KU Leuven, Leuven, Belgium.,Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Eve Seuntjens
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium.,Leuven Brain Institute, Leuven, Belgium
| | - Rajagopal Ayana
- Laboratory of Neuroplasticity and Neuroproteomics, Department of Biology, KU Leuven, Leuven, Belgium.,Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Lutgarde Arckens
- Laboratory of Neuroplasticity and Neuroproteomics, Department of Biology, KU Leuven, Leuven, Belgium.,Leuven Brain Institute, Leuven, Belgium
| |
Collapse
|
4
|
Lehotzky D, Sipahi R, Zupanc GKH. Cellular automata modeling suggests symmetric stem-cell division, cell death, and cell drift as key mechanisms driving adult spinal cord growth in teleost fish. J Theor Biol 2020; 509:110474. [PMID: 32918922 DOI: 10.1016/j.jtbi.2020.110474] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 08/10/2020] [Accepted: 08/31/2020] [Indexed: 12/13/2022]
Abstract
Adult neurogenesis - the generation of neurons during adulthood - is intensively studied, yet little is known about its consequences at the tissue level. In the teleost fish Apteronotus leptorhynchus, morphometric analysis has revealed that the total number of cells in the spinal cord increases continuously throughout adulthood, driven by the activity of neurogenic stem/progenitor cells in both the ependymal layer at the central canal and in the radially located parenchyma. This net increase in cell numbers demonstrates cellular addition, as opposed to cellular turnover which appears to be the common outcome of adult neurogenesis in mammals. Grounded on a comprehensive set of quantitative data generated through high-resolution mapping of stem cells and their progeny, we constructed a cellular automata model of the stem-cell-driven growth of the spinal cord. Simulations based on this model suggest that three cellular mechanisms play a critical role for promoting sustained tissue growth and acquisition of correct form of the spinal cord, including the development of the ependymal layer and the parenchyma: the number of symmetric stem-cell divisions versus asymmetric divisions; the probability of the progeny of progenitor cells to undergo cell death; and the radial drifting of cells.
Collapse
Affiliation(s)
- Dávid Lehotzky
- Laboratory of Neurobiology, Department of Biology, Northeastern University, Boston, MA, United States.
| | - Rifat Sipahi
- Complex Dynamic Systems and Control Laboratory, Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA, United States.
| | - Günther K H Zupanc
- Laboratory of Neurobiology, Department of Biology, Northeastern University, Boston, MA, United States.
| |
Collapse
|
5
|
Pereira PDC, Henrique EP, Porfírio DM, Crispim CCDS, Campos MTB, de Oliveira RM, Silva IMS, Guerreiro LCF, da Silva TWP, da Silva ADJF, Rosa JBDS, de Azevedo DLF, Lima CGC, Castro de Abreu C, Filho CS, Diniz DLWP, Magalhães NGDM, Guerreiro-Diniz C, Diniz CWP, Diniz DG. Environmental Enrichment Improved Learning and Memory, Increased Telencephalic Cell Proliferation, and Induced Differential Gene Expression in Colossoma macropomum. Front Pharmacol 2020; 11:840. [PMID: 32595498 PMCID: PMC7303308 DOI: 10.3389/fphar.2020.00840] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 05/21/2020] [Indexed: 01/06/2023] Open
Abstract
Fish use spatial cognition based on allocentric cues to navigate, but little is known about how environmental enrichment (EE) affects learning and memory in correlation with hematological changes or gene expression in the fish brain. Here we investigated these questions in Colossoma macropomum (Teleostei). Fish were housed for 192 days in either EE or in an impoverished environment (IE) aquarium. EE contained toys, natural plants, and a 12-h/day water stream for voluntary exercise, whereas IE had no toys, plants, or water stream. A third plus maze aquarium was used for spatial and object recognition tests. Compared with IE, the EE fish showed greater learning rates, body length, and body weight. After behavioral tests, whole brain tissue was taken, stored in RNA-later, and then homogenized for DNA sequencing after conversion of isolated RNA. To compare read mapping and gene expression profiles across libraries for neurotranscriptome differential expression, we mapped back RNA-seq reads to the C. macropomum de novo assembled transcriptome. The results showed significant differential behavior, cell counts and gene expression in EE and IE individuals. As compared with IE, we found a greater number of cells in the telencephalon of individuals maintained in EE but no significant difference in the tectum opticum, suggesting differential plasticity in these areas. A total of 107,669 transcripts were found that ultimately yielded 64 differentially expressed transcripts between IE and EE brains. Another group of adult fish growing in aquaculture conditions were either subjected to exercise using running water flow or maintained sedentary. Flow cytometry analysis of peripheral blood showed a significantly higher density of lymphocytes, and platelets but no significant differences in erythrocytes and granulocytes. Thus, under the influence of contrasting environments, our findings showed differential changes at the behavioral, cellular, and molecular levels. We propose that the differential expression of selected transcripts, number of telencephalic cell counts, learning and memory performance, and selective hematological cell changes may be part of Teleostei adaptive physiological responses triggered by EE visuospatial and somatomotor stimulation. Our findings suggest abundant differential gene expression changes depending on environment and provide a basis for exploring gene regulation mechanisms under EE in C. macropomum.
Collapse
Affiliation(s)
- Patrick Douglas Corrêa Pereira
- Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação, Ciência e Tecnologia do Pará, Bragança, Brazil
| | - Ediely Pereira Henrique
- Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação, Ciência e Tecnologia do Pará, Bragança, Brazil
| | - Danillo Monteiro Porfírio
- Laboratório de Investigação em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brazil
| | | | - Maitê Thaís Barros Campos
- Laboratório de Investigação em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brazil
| | - Renata Melo de Oliveira
- Laboratório de Investigação em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brazil
| | - Isabella Mesquita Sfair Silva
- Laboratório de Investigação em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brazil
| | - Luma Cristina Ferreira Guerreiro
- Laboratório de Investigação em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brazil
| | - Tiago Werley Pires da Silva
- Laboratório de Investigação em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brazil
| | | | - João Batista da Silva Rosa
- Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação, Ciência e Tecnologia do Pará, Bragança, Brazil
| | | | - Cecília Gabriella Coutinho Lima
- Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação, Ciência e Tecnologia do Pará, Bragança, Brazil
| | - Cintya Castro de Abreu
- Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação, Ciência e Tecnologia do Pará, Bragança, Brazil
| | - Carlos Santos Filho
- Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação, Ciência e Tecnologia do Pará, Bragança, Brazil
| | | | - Nara Gyzely de Morais Magalhães
- Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação, Ciência e Tecnologia do Pará, Bragança, Brazil
| | - Cristovam Guerreiro-Diniz
- Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação, Ciência e Tecnologia do Pará, Bragança, Brazil
| | - Cristovam Wanderley Picanço Diniz
- Laboratório de Investigação em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brazil
| | - Daniel Guerreiro Diniz
- Laboratório de Investigação em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brazil
- Laboratório de Microscopia Eletrônica, Instituto Evandro Chagas, Belém, Brazil
| |
Collapse
|
6
|
Zupanc GKH. Development of a sexual dimorphism in a central pattern generator driving a rhythmic behavior: The role of glia-mediated potassium buffering in the pacemaker nucleus of the weakly electric fish Apteronotus leptorhynchus. Dev Neurobiol 2020; 80:6-15. [PMID: 32090501 DOI: 10.1002/dneu.22736] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 01/24/2020] [Accepted: 02/20/2020] [Indexed: 01/09/2023]
Abstract
Central pattern generators play a critical role in the neural control of rhythmic behaviors. One of their characteristic features is the ability to modulate the oscillatory output. An important yet little-studied type of modulation involves the generation of oscillations that are sexually dimorphic in frequency. In the weakly electric fish Apteronotus leptorhynchus, the pacemaker nucleus serves as a central pattern generator that drives the electric organ discharge of the fish in a one-to-one fashion. Males discharge at higher frequencies than females-a sexual dimorphism that develops under the influence of steroid hormones. The two principal neurons that constitute the oscillatory network of the pacemaker nucleus are the pacemaker and relay cells. Whereas the number and size of the pacemaker and relay cells are sexually monomorphic, pronounced sex-dependent differences exist in the morphology, and subcellular properties of astrocytes, which form a syncytium closely associated with these neurons. In females, compared to males, the astrocytic syncytium covers a larger area surrounding the pacemaker and relay cells and exhibits higher levels of expression of connexin-43 expression. The latter indicates a strong gap-junction coupling of the individual cells within the syncytium. It is hypothesized that these sex-specific differences result in an increased capacity for buffering of extracellular potassium ions, thereby lowering the potassium equilibrium potential, which, in turn, leads to a decrease in the oscillation frequency. This hypothesis has received strong support from simulations based on computational models of individual neurons and the whole neural network of the pacemaker nucleus.
Collapse
Affiliation(s)
- Günther K H Zupanc
- Laboratory of Neurobiology, Department of Biology, Northeastern University, Boston, Massachusetts, USA
| |
Collapse
|
7
|
Vitalo AG, Ilieş I, Zupanc GKH. Calbindin-D 28k expression in spinal electromotoneurons of the weakly electric fish Apteronotus leptorhynchus during adult development and regeneration. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2019; 205:595-608. [PMID: 31165281 DOI: 10.1007/s00359-019-01343-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 04/29/2019] [Accepted: 05/04/2019] [Indexed: 12/01/2022]
Abstract
Additive neurogenesis, the net increase in neuronal numbers by addition of new nerve cells to existing tissue, forms the basis for indeterminate spinal cord growth in brown ghost knifefish (Apteronotus leptorhynchus). Among the cells generated through the activity of adult neural stem cells are electromotoneurons, whose axons constitute the electric organ of this weakly electric fish. Electromotoneuron development is organized along a caudo-rostral gradient, with the youngest and smallest of these cells located near the caudal end of the spinal cord. Electromotoneurons start expressing calbindin-D28k when their somata have reached diameters of approximately 10 μm, and they continue expression after they have grown to a final size of about 50 μm. Calbindin-D28k expression is significantly increased in young neurons generated in response to injury. Immunohistochemical staining against caspase-3 revealed that electromotoneurons in both intact and regenerating spinal cord are significantly less likely to undergo apoptosis than the average spinal cord cell. We hypothesize that expression of calbindin-D28k protects electromotoneurons from cell death; and that the evolutionary development of such a neuroprotective mechanism has been driven by the indispensability of electromotoneurons in the fish's electric behavior, and by the high size-dependent costs associated with their production or removal upon cell death.
Collapse
Affiliation(s)
- Antonia G Vitalo
- Laboratory of Neurobiology, Department of Biology, Northeastern University, 134 Mugar Life Sciences, 360 Huntington Avenue, Boston, MA, 02115, USA
| | - Iulian Ilieş
- Healthcare Systems Engineering Institute, Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA, 02115, USA
| | - Günther K H Zupanc
- Laboratory of Neurobiology, Department of Biology, Northeastern University, 134 Mugar Life Sciences, 360 Huntington Avenue, Boston, MA, 02115, USA.
| |
Collapse
|
8
|
Abreu CC, Fernandes TN, Henrique EP, Pereira PDC, Marques SB, Herdeiro SLS, Oliveira FRR, Magalhães NGM, Anthony DC, Melo MAD, Guerreiro-Diniz C, Diniz DG, Picanço-Diniz CW. Small-scale environmental enrichment and exercise enhance learning and spatial memory of Carassius auratus, and increase cell proliferation in the telencephalon: an exploratory study. ACTA ACUST UNITED AC 2019; 52:e8026. [PMID: 31038577 PMCID: PMC6487742 DOI: 10.1590/1414-431x20198026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 02/25/2019] [Indexed: 12/25/2022]
Abstract
Carassius auratus is a teleost fish that has been largely used in behavioral studies. However, little is known about potential environmental influences on its performance of learning and memory tasks. Here, we investigated this question in C. auratus, and searched for potential correlation between exercise and visuospatial enrichment with the total number of telencephalic glia and neurons. To that end, males and females were housed for 183 days in either an enriched (EE) or impoverished environment (IE) aquarium. EE contained toys, natural plants, and a 12-hour/day water stream for voluntary exercise, whereas the IE had none of the above. A third plus-maze aquarium was used for spatial and object recognition tests. Different visual clues in 2 of its 4 arms were used to guide fish to reach the criteria to complete the task. The test consisted of 30 sessions and was concluded when each animal performed three consecutive correct choices or seven alternated, each ten trials. Learning rates revealed significant differences between EE and IE fish. The optical fractionator was used to estimate the total number of telencephalic cells that were stained with cresyl violet. On average, the total number of cells in the subjects from EE was higher than those from subjects maintained in IE (P=0.0202). We suggest that environmental enrichment significantly influenced goldfish spatial learning and memory abilities, and this may be associated with an increase in the total number of telencephalic cells.
Collapse
Affiliation(s)
- C C Abreu
- Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Laboratório de Neurodegeneração e Infecção, Universidade Federal do Pará, Belém, PA, Brasil
| | - T N Fernandes
- Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Laboratório de Neurodegeneração e Infecção, Universidade Federal do Pará, Belém, PA, Brasil
| | - E P Henrique
- Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação Ciência e Tecnologia do Pará, Bragança, PA, Brasil
| | - P D C Pereira
- Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação Ciência e Tecnologia do Pará, Bragança, PA, Brasil
| | - S B Marques
- Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Laboratório de Neurodegeneração e Infecção, Universidade Federal do Pará, Belém, PA, Brasil
| | - S L S Herdeiro
- Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Laboratório de Neurodegeneração e Infecção, Universidade Federal do Pará, Belém, PA, Brasil
| | - F R R Oliveira
- Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Laboratório de Neurodegeneração e Infecção, Universidade Federal do Pará, Belém, PA, Brasil
| | - N G M Magalhães
- Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação Ciência e Tecnologia do Pará, Bragança, PA, Brasil
| | - D C Anthony
- University of Oxford, Department of Pharmacology, Mansfield Road, Oxford, United Kingdom
| | - M A D Melo
- Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação Ciência e Tecnologia do Pará, Bragança, PA, Brasil
| | - C Guerreiro-Diniz
- Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação Ciência e Tecnologia do Pará, Bragança, PA, Brasil
| | - D G Diniz
- Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Laboratório de Neurodegeneração e Infecção, Universidade Federal do Pará, Belém, PA, Brasil
| | - C W Picanço-Diniz
- Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Laboratório de Neurodegeneração e Infecção, Universidade Federal do Pará, Belém, PA, Brasil
| |
Collapse
|
9
|
Zupanc GK. Stem‐Cell‐Driven Growth and Regrowth of the Adult Spinal Cord in Teleost Fish. Dev Neurobiol 2019; 79:406-423. [DOI: 10.1002/dneu.22672] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 02/12/2019] [Accepted: 02/25/2019] [Indexed: 01/08/2023]
Affiliation(s)
- Günther K.H. Zupanc
- Laboratory of Neurobiology, Department of Biology Northeastern University Boston Massachusetts
| |
Collapse
|
10
|
Ilieş I, Sipahi R, Zupanc GKH. Growth of adult spinal cord in knifefish: Development and parametrization of a distributed model. J Theor Biol 2017; 437:101-114. [PMID: 29031516 DOI: 10.1016/j.jtbi.2017.10.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 10/08/2017] [Accepted: 10/11/2017] [Indexed: 12/12/2022]
Abstract
The study of indeterminate-growing organisms such as teleost fish presents a unique opportunity for improving our understanding of central nervous tissue growth during adulthood. Integrating the existing experimental data associated with this process into a theoretical framework through mathematical or computational modeling provides further research avenues through sensitivity analysis and optimization. While this type of approach has been used extensively in investigations of tumor growth, wound healing, and bone regeneration, the development of nervous tissue has been rarely studied within a modeling framework. To address this gap, the present work introduces a distributed model of spinal cord growth in the knifefish Apteronotus leptorhynchus, an established teleostean model of adult growth in the central nervous system. The proposed model incorporates two mechanisms, cell proliferation by active stem/progenitor cells and cell drift due to population pressure, both of which are subject to global constraints. A coupled reaction-diffusion equation approach was adopted to represent the densities of actively-proliferating and non-proliferating cells along the longitudinal axis of the spinal cord. Computer simulations using this model yielded biologically-feasible growth trajectories. Subsequent comparisons with whole-organism growth curves allowed the estimation of previously-unknown parameters, such as relative growth rates.
Collapse
Affiliation(s)
- Iulian Ilieş
- Laboratory of Neurobiology, Department of Biology, Northeastern University, Boston, MA, USA
| | - Rifat Sipahi
- Complex Dynamic Systems and Control Laboratory, Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA, USA
| | - Günther K H Zupanc
- Laboratory of Neurobiology, Department of Biology, Northeastern University, Boston, MA, USA.
| |
Collapse
|
11
|
Sîrbulescu RF, Ilieş I, Meyer A, Zupanc GKH. Additive neurogenesis supported by multiple stem cell populations mediates adult spinal cord development: A spatiotemporal statistical mapping analysis in a teleost model of indeterminate growth. Dev Neurobiol 2017; 77:1269-1307. [PMID: 28707354 DOI: 10.1002/dneu.22511] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 07/07/2017] [Accepted: 07/09/2017] [Indexed: 01/15/2023]
Abstract
The knifefish Apteronotus leptorhynchus exhibits indeterminate growth throughout adulthood. This phenomenon extends to the spinal cord, presumably through the continuous addition of new neurons and glial cells. However, little is known about the developmental dynamics of cells added during adult growth. The present work characterizes the structural and functional development of the adult spinal cord in this model organism through a comprehensive quantitative analysis of the spatial and temporal dynamics of new cells at various developmental stages. This analysis, based on a novel statistical mapping approach, revealed within the adult spinal cord a wide distribution of both mitotically active and quiescent Sox2-expressing stem/progenitor cells (SPCs). While such cells are particularly concentrated within the ependymal layer near the central canal, the majority of them reside in the parenchyma, resembling the distribution of SPCs observed in the mammalian spinal cord. The active SPCs in the adult knifefish spinal cord give rise to transit amplifying progenitor cells that undergo a few additional mitotic divisions before developing into Hu C/D+ neurons and S100+ glial cells. There is no evidence of long-distance migration of the newborn cells. The persistence of cell proliferation and differentiation, combined with low levels of apoptosis, leads to a continuous addition of cells to the existing tissue. Newly generated neurons have functional and behavioral relevance, as indicated by the integration of axons of new electromotor neurons into the electric organ of these weakly electric fish. This results in a gradual increase in the amplitude of the electric organ discharge during adult development. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 1269-1307, 2017.
Collapse
Affiliation(s)
- Ruxandra F Sîrbulescu
- Laboratory of Neurobiology, Department of Biology, Northeastern University, Boston, Massachusetts
| | - Iulian Ilieş
- Laboratory of Neurobiology, Department of Biology, Northeastern University, Boston, Massachusetts
| | - Annette Meyer
- Laboratory of Neurobiology, Department of Biology, Northeastern University, Boston, Massachusetts
| | - Günther K H Zupanc
- Laboratory of Neurobiology, Department of Biology, Northeastern University, Boston, Massachusetts
| |
Collapse
|
12
|
Evans KM, Waltz B, Tagliacollo V, Chakrabarty P, Albert JS. Why the short face? Developmental disintegration of the neurocranium drives convergent evolution in neotropical electric fishes. Ecol Evol 2017; 7:1783-1801. [PMID: 28331588 PMCID: PMC5355199 DOI: 10.1002/ece3.2704] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 11/13/2016] [Accepted: 11/20/2016] [Indexed: 01/07/2023] Open
Abstract
Convergent evolution is widely viewed as strong evidence for the influence of natural selection on the origin of phenotypic design. However, the emerging evo‐devo synthesis has highlighted other processes that may bias and direct phenotypic evolution in the presence of environmental and genetic variation. Developmental biases on the production of phenotypic variation may channel the evolution of convergent forms by limiting the range of phenotypes produced during ontogeny. Here, we study the evolution and convergence of brachycephalic and dolichocephalic skull shapes among 133 species of Neotropical electric fishes (Gymnotiformes: Teleostei) and identify potential developmental biases on phenotypic evolution. We plot the ontogenetic trajectories of neurocranial phenotypes in 17 species and document developmental modularity between the face and braincase regions of the skull. We recover a significant relationship between developmental covariation and relative skull length and a significant relationship between developmental covariation and ontogenetic disparity. We demonstrate that modularity and integration bias the production of phenotypes along the brachycephalic and dolichocephalic skull axis and contribute to multiple, independent evolutionary transformations to highly brachycephalic and dolichocephalic skull morphologies.
Collapse
Affiliation(s)
- Kory M Evans
- Department of Biology University of Louisiana at Lafayette Lafayette LA USA
| | - Brandon Waltz
- Department of Biology University of Louisiana at Lafayette Lafayette LA USA
| | - Victor Tagliacollo
- Universidade Federal do Tocantins Programa de Pós-graduação Ciências do Ambiente (CIAMB) Palmas Tocantins 77001-090 Brazil
| | | | - James S Albert
- Department of Biology University of Louisiana at Lafayette Lafayette LA USA
| |
Collapse
|
13
|
Dunlap KD. Fish Neurogenesis in Context: Assessing Environmental Influences on Brain Plasticity within a Highly Labile Physiology and Morphology. BRAIN, BEHAVIOR AND EVOLUTION 2016; 87:156-166. [DOI: 10.1159/000446907] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Fish have unusually high rates of brain cell proliferation and neurogenesis during adulthood, and the rates of these processes are greatly influenced by the environment. This high level of cell proliferation and its responsiveness to environmental change indicate that such plasticity might be a particularly important mechanism underlying behavioral plasticity in fish. However, as part of their highly labile physiology and morphology, fish also respond to the environment through processes that affect cell proliferation but that are not specific to behavioral change. For example, the environment has nonspecific influences on cell proliferation all over the body via its effect on body temperature and growth rate. In addition, some fish species also have an unusual capacity for sex change and somatic regeneration, and both of these processes likely involve widespread changes in cell proliferation. Thus, in evaluating the possible behavioral role of adult brain cell proliferation, it is important to distinguish regionally specific responses in behaviorally relevant brain nuclei from global proliferative changes across the whole brain or body. In this review, I first highlight how fish differ from other vertebrates, particularly birds and mammals, in ways that have a bearing on the interpretation of brain plasticity. I then summarize the known effects of the physical and social environment, sex change, and predators on brain cell proliferation and neurogenesis, with a particular emphasis on whether the effects are regionally specific. Finally, I review evidence that environmentally induced changes in brain cell proliferation and neurogenesis in fish are mediated by hormones and play a role in behavioral responses to the environment.
Collapse
|
14
|
Sîrbulescu RF, Ilieş I, Zupanc GKH. Matrix metalloproteinase-2 and -9 in the cerebellum of teleost fish: Functional implications for adult neurogenesis. Mol Cell Neurosci 2015; 68:9-23. [PMID: 25827096 DOI: 10.1016/j.mcn.2015.03.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 03/20/2015] [Accepted: 03/24/2015] [Indexed: 10/23/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are a family of highly conserved zinc-dependent proteases involved in both development and pathogenesis. The present study examines the role of MMP-2 (gelatinase A) and MMP-9 (gelatinase B) in adult neurogenesis, using the corpus cerebelli, a subdivision of the cerebellum, of knifefish (Apteronotus leptorhynchus) as a model system. Transcripts of five isoforms of these gelatinases were identified in the central nervous system of this species. Sequence similarity analysis and homology modeling indicated that functionally and structurally critical elements were highly conserved in knifefish gelatinases. Immunohistochemical staining revealed a differential distribution of MMP-2 and MMP-9 at both the cellular and subcellular level. MMP-2 expression was found mainly in Sox2-immunopositive stem/progenitor cells, both quiescent and mitotically active; and was localized in both the cytoplasmic compartment and the nucleus. By contrast, MMP-9 immunoreactivity was absent in neurogenic niches and displayed a more homogenous distribution, with low to moderate intensity levels, in the molecular and granular layers. MMP-9 expression appeared to be restricted to the extracellular space. In situ zymography indicated that gelatinase activity matched the cellular and subcellular distributions of the two MMPs. The observed patterns of gelatinase activity and expression support the hypothesis that MMP-2 is primarily involved in regulation of the activity of stem/progenitor cells that give rise to new granule neurons, whereas MMP-9 facilitates migration of the progeny of these cells by proteolysis of extracellular matrix proteins.
Collapse
Affiliation(s)
- Ruxandra F Sîrbulescu
- Laboratory of Neurobiology, Department of Biology, Northeastern University, Boston, MA, USA
| | - Iulian Ilieş
- Laboratory of Neurobiology, Department of Biology, Northeastern University, Boston, MA, USA
| | - Günther K H Zupanc
- Laboratory of Neurobiology, Department of Biology, Northeastern University, Boston, MA, USA.
| |
Collapse
|