1
|
Grewal S, Yang CY, Scholefield D, Ashling S, Ghosh S, Swarbreck D, Collins J, Yao E, Sen TZ, Wilson M, Yant L, King IP, King J. Chromosome-scale genome assembly of bread wheat's wild relative Triticum timopheevii. Sci Data 2024; 11:420. [PMID: 38653999 PMCID: PMC11039740 DOI: 10.1038/s41597-024-03260-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/15/2024] [Indexed: 04/25/2024] Open
Abstract
Wheat (Triticum aestivum) is one of the most important food crops with an urgent need for increase in its production to feed the growing world. Triticum timopheevii (2n = 4x = 28) is an allotetraploid wheat wild relative species containing the At and G genomes that has been exploited in many pre-breeding programmes for wheat improvement. In this study, we report the generation of a chromosome-scale reference genome assembly of T. timopheevii accession PI 94760 based on PacBio HiFi reads and chromosome conformation capture (Hi-C). The assembly comprised a total size of 9.35 Gb, featuring a contig N50 of 42.4 Mb and included the mitochondrial and plastid genome sequences. Genome annotation predicted 166,325 gene models including 70,365 genes with high confidence. DNA methylation analysis showed that the G genome had on average more methylated bases than the At genome. In summary, the T. timopheevii genome assembly provides a valuable resource for genome-informed discovery of agronomically important genes for food security.
Collapse
Affiliation(s)
- Surbhi Grewal
- Wheat Research Centre, Department of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Loughborough, LE12 5RD, UK.
| | - Cai-Yun Yang
- Wheat Research Centre, Department of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Loughborough, LE12 5RD, UK
| | - Duncan Scholefield
- Wheat Research Centre, Department of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Loughborough, LE12 5RD, UK
| | - Stephen Ashling
- Wheat Research Centre, Department of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Loughborough, LE12 5RD, UK
| | - Sreya Ghosh
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, UK
| | - David Swarbreck
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, UK
| | - Joanna Collins
- Genome Reference Informatics Team, Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, CB10 1RQ, UK
| | - Eric Yao
- University of California, Department of Bioengineering, Berkeley, CA, 94720, USA
- United States Department of Agriculture-Agricultural Research Service, Western Regional Research Center, Crop Improvement and Genetics Research Unit, 800 Buchanan St., Albany, CA, 94710, USA
| | - Taner Z Sen
- University of California, Department of Bioengineering, Berkeley, CA, 94720, USA
- United States Department of Agriculture-Agricultural Research Service, Western Regional Research Center, Crop Improvement and Genetics Research Unit, 800 Buchanan St., Albany, CA, 94710, USA
| | - Michael Wilson
- University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Levi Yant
- University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Ian P King
- Wheat Research Centre, Department of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Loughborough, LE12 5RD, UK
| | - Julie King
- Wheat Research Centre, Department of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Loughborough, LE12 5RD, UK
| |
Collapse
|
2
|
Hu H, Scheben A, Wang J, Li F, Li C, Edwards D, Zhao J. Unravelling inversions: Technological advances, challenges, and potential impact on crop breeding. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:544-554. [PMID: 37961986 PMCID: PMC10893937 DOI: 10.1111/pbi.14224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/11/2023] [Accepted: 10/22/2023] [Indexed: 11/15/2023]
Abstract
Inversions, a type of chromosomal structural variation, significantly influence plant adaptation and gene functions by impacting gene expression and recombination rates. However, compared with other structural variations, their roles in functional biology and crop improvement remain largely unexplored. In this review, we highlight technological and methodological advancements that have allowed a comprehensive understanding of inversion variants through the pangenome framework and machine learning algorithms. Genome editing is an efficient method for inducing or reversing inversion mutations in plants, providing an effective mechanism to modify local recombination rates. Given the potential of inversions in crop breeding, we anticipate increasing attention on inversions from the scientific community in future research and breeding applications.
Collapse
Affiliation(s)
- Haifei Hu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co‐construction by Ministry and Province), Ministry of Agriculture and Rural Affairs & Guangdong Key Laboratory of New Technology in Rice Breeding & Guangdong Rice Engineering LaboratoryGuangzhouChina
| | - Armin Scheben
- Simons Center for Quantitative Biology, Cold Spring Harbor LaboratoryCold Spring HarborNew YorkUSA
| | - Jian Wang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co‐construction by Ministry and Province), Ministry of Agriculture and Rural Affairs & Guangdong Key Laboratory of New Technology in Rice Breeding & Guangdong Rice Engineering LaboratoryGuangzhouChina
| | - Fangping Li
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhouChina
| | - Chengdao Li
- Western Crop Genetics Alliance, Centre for Crop & Food Innovation, Food Futures Institute, College of Science, Health, Engineering and EducationMurdoch UniversityMurdochWestern AustraliaAustralia
| | - David Edwards
- School of Biological SciencesUniversity of Western AustraliaPerthWestern AustraliaAustralia
- Australia & Centre for Applied BioinformaticsUniversity of Western AustraliaPerthWestern AustraliaAustralia
| | - Junliang Zhao
- Rice Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co‐construction by Ministry and Province), Ministry of Agriculture and Rural Affairs & Guangdong Key Laboratory of New Technology in Rice Breeding & Guangdong Rice Engineering LaboratoryGuangzhouChina
| |
Collapse
|
3
|
Lv R, Gou X, Li N, Zhang Z, Wang C, Wang R, Wang B, Yang C, Gong L, Zhang H, Liu B. Chromosome translocation affects multiple phenotypes, causes genome-wide dysregulation of gene expression, and remodels metabolome in hexaploid wheat. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 115:1564-1582. [PMID: 37265000 DOI: 10.1111/tpj.16338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/17/2023] [Accepted: 05/30/2023] [Indexed: 06/03/2023]
Abstract
Chromosomal rearrangements (CRs) may occur in newly formed polyploids due to compromised meiotic fidelity. Moreover, CRs can be more readily tolerated in polyploids allowing their longer-term retention and hence potential spreading/fixation within a lineage. The direct functional consequences of CRs in plant polyploids remain unexplored. Here, we identified a heterozygous individual from a synthetic allohexaploid wheat in which the terminal parts of the long-arms of chromosomes 2D (approximately 193 Mb) and 4A (approximately 167 Mb) were reciprocally translocated. Five homogeneous translocation lines including both unbalanced and balanced types were developed by selfing fertilization of the founder mutant (RT [2DL; 4AL]-ter/1, reciprocal translocation). We investigated impacts of these translocations on phenotype, genome-wide gene expression and metabolome. We find that, compared with sibling wild-type, CRs in the form of both unbalanced and balanced translocations induced substantial changes of gene expression primarily via trans-regulation in the nascent allopolyploid wheat. The CRs also manifested clear phenotypic and metabolic consequences. In particular, the genetically balanced, stable reciprocal translocations lines showed immediate enhanced reproductive fitness relative to wild type. Our results underscore the profound impact of CRs on gene expression in nascent allopolyploids with wide-ranging phenotypic and metabolic consequences, suggesting CRs are an important source of genetic variation that can be exploited for crop breeding.
Collapse
Affiliation(s)
- Ruili Lv
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Xiaowan Gou
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
- School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, China
| | - Ning Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Zhibin Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Changyi Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Ruisi Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Bin Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Chunwu Yang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Lei Gong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Huakun Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| |
Collapse
|
4
|
King J, Grewal S, Othmeni M, Coombes B, Yang CY, Walter N, Ashling S, Scholefield D, Walker J, Hubbart-Edwards S, Hall A, King IP. Introgression of the Triticum timopheevii Genome Into Wheat Detected by Chromosome-Specific Kompetitive Allele Specific PCR Markers. FRONTIERS IN PLANT SCIENCE 2022; 13:919519. [PMID: 35720607 PMCID: PMC9198554 DOI: 10.3389/fpls.2022.919519] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/12/2022] [Indexed: 05/08/2023]
Abstract
Triticum timopheevii (2n = 28, A t A t GG) is a tetraploid wild relative species with great potential to increase the genetic diversity of hexaploid wheat Triticum aestivum (2n = 42, AABBDD) for various important agronomic traits. A breeding scheme that propagated advanced backcrossed populations of wheat-T. timopheevii introgression lines through further backcrossing and self-fertilisation resulted in the generation of 99 introgression lines (ILs) that carried 309 homozygous segments from the A t and G subgenomes of T. timopheevii. These introgressions contained 89 and 74 unique segments from the A t and G subgenomes, respectively. These overlapping segments covered 98.9% of the T. timopheevii genome that has now been introgressed into bread wheat cv. Paragon including the entirety of all T. timopheevii chromosomes via varying sized segments except for chromosomes 3A t , 4G, and 6G. Homozygous ILs contained between one and eight of these introgressions with an average of three per introgression line. These homozygous introgressions were detected through the development of a set of 480 chromosome-specific Kompetitive allele specific PCR (KASP) markers that are well-distributed across the wheat genome. Of these, 149 were developed in this study based on single nucleotide polymorphisms (SNPs) discovered through whole genome sequencing of T. timopheevii. A majority of these KASP markers were also found to be T. timopheevii subgenome specific with 182 detecting A t subgenome and 275 detecting G subgenome segments. These markers showed that 98% of the A t segments had recombined with the A genome of wheat and 74% of the G genome segments had recombined with the B genome of wheat with the rest recombining with the D genome of wheat. These results were validated through multi-colour in situ hybridisation analysis. Together these homozygous wheat-T. timopheevii ILs and chromosome-specific KASP markers provide an invaluable resource to wheat breeders for trait discovery to combat biotic and abiotic stress factors affecting wheat production due to climate change.
Collapse
Affiliation(s)
- Julie King
- Nottingham BBSRC Wheat Research Centre, School of Biosciences, University of Nottingham, Loughborough, United Kingdom
| | - Surbhi Grewal
- Nottingham BBSRC Wheat Research Centre, School of Biosciences, University of Nottingham, Loughborough, United Kingdom
| | - Manel Othmeni
- Nottingham BBSRC Wheat Research Centre, School of Biosciences, University of Nottingham, Loughborough, United Kingdom
| | | | - Cai-yun Yang
- Nottingham BBSRC Wheat Research Centre, School of Biosciences, University of Nottingham, Loughborough, United Kingdom
| | - Nicola Walter
- Nottingham BBSRC Wheat Research Centre, School of Biosciences, University of Nottingham, Loughborough, United Kingdom
| | - Stephen Ashling
- Nottingham BBSRC Wheat Research Centre, School of Biosciences, University of Nottingham, Loughborough, United Kingdom
| | - Duncan Scholefield
- Nottingham BBSRC Wheat Research Centre, School of Biosciences, University of Nottingham, Loughborough, United Kingdom
| | - Jack Walker
- Nottingham BBSRC Wheat Research Centre, School of Biosciences, University of Nottingham, Loughborough, United Kingdom
| | - Stella Hubbart-Edwards
- Nottingham BBSRC Wheat Research Centre, School of Biosciences, University of Nottingham, Loughborough, United Kingdom
| | | | - Ian Phillip King
- Nottingham BBSRC Wheat Research Centre, School of Biosciences, University of Nottingham, Loughborough, United Kingdom
| |
Collapse
|
5
|
Karyotype Reorganization in Wheat-Rye Hybrids Obtained via Unreduced Gametes: Is There a Limit to the Chromosome Number in Triticale? PLANTS 2021; 10:plants10102052. [PMID: 34685861 PMCID: PMC8538156 DOI: 10.3390/plants10102052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/20/2021] [Accepted: 09/23/2021] [Indexed: 11/25/2022]
Abstract
To date, few data have been accumulated on the contribution of meiotic restitution to the formation of Triticum aestivum hybrid karyotypes. In this study, based on FISH and C-banding, karyotype reorganization was observed in three groups of F5 wheat–rye hybrids 1R(1A) × R. Aberrations, including aneuploidy, telocentrics, and Robertsonian translocations, were detected in all groups. Some of the Group 1 plants and all of the Group 2 plants only had a 4R4R pair (in addition to 1R1R), which was either added or substituted for its homeolog in ABD subgenomes. In about 82% of meiocytes, 4R4R formed bivalents, which indicates its competitiveness. The rest of the Group 1 plants had 2R and 7R chromosomes in addition to 1R1R. Group 3 retained all their rye chromosomes, with a small aneuploidy on the wheat chromosomes. A feature of the meiosis in the Group 3 plants was asynchronous cell division and omission of the second division. Diploid gametes did not form because of the significant disturbances during gametogenesis. As a result, the frequency of occurrence of the formed dyads was negatively correlated (r = −0.73) with the seed sets. Thus, meiotic restitution in the 8n triticale does not contribute to fertility or increased ploidy in subsequent generations.
Collapse
|
6
|
Ruban AS, Badaeva ED. Evolution of the S-Genomes in Triticum-Aegilops Alliance: Evidences From Chromosome Analysis. FRONTIERS IN PLANT SCIENCE 2018; 9:1756. [PMID: 30564254 PMCID: PMC6288319 DOI: 10.3389/fpls.2018.01756] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 11/12/2018] [Indexed: 05/20/2023]
Abstract
Five diploid Aegilops species of the Sitopsis section: Ae. speltoides, Ae. longissima, Ae. sharonensis, Ae. searsii, and Ae. bicornis, two tetraploid species Ae. peregrina (= Ae. variabilis) and Ae. kotschyi (Aegilops section) and hexaploid Ae. vavilovii (Vertebrata section) carry the S-genomes. The B- and G-genomes of polyploid wheat are also the derivatives of the S-genome. Evolution of the S-genome species was studied using Giemsa C-banding and fluorescence in situ hybridization (FISH) with DNA probes representing 5S (pTa794) and 18S-5.8S-26S (pTa71) rDNAs as well as nine tandem repeats: pSc119.2, pAesp_SAT86, Spelt-1, Spelt-52, pAs1, pTa-535, and pTa-s53. To correlate the C-banding and FISH patterns we used the microsatellites (CTT)10 and (GTT)9, which are major components of the C-banding positive heterochromatin in wheat. According to the results obtained, diploid species split into two groups corresponding to Emarginata and Truncata sub-sections, which differ in the C-banding patterns, distribution of rDNA and other repeats. The B- and G-genomes of polyploid wheat are most closely related to the S-genome of Ae. speltoides. The genomes of allopolyploid wheat have been evolved as a result of different species-specific chromosome translocations, sequence amplification, elimination and re-patterning of repetitive DNA sequences. These events occurred independently in different wheat species and in Ae. speltoides . The 5S rDNA locus of chromosome 1S was probably lost in ancient Ae. speltoides prior to formation of Timopheevii wheat, but after the emergence of ancient emmer. Evolution of Emarginata species was associated with an increase of C-banding and (CTT)10-positive heterochromatin, amplification of Spelt-52, re-pattering of the pAesp_SAT86, and a gradual decrease in the amount of the D-genome-specific repeats pAs1, pTa-535, and pTa-s53. The emergence of Ae. peregrina and Ae. kotschyi did not lead to significant changes of the S*-genomes. However, partial elimination of 45S rDNA repeats from 5S* and 6S* chromosomes and alterations of C-banding and FISH-patterns have been detected. Similarity of the Sv-genome of Ae. vavilovii with the Ss genome of diploid Ae. searsii confirmed the origin of this hexaploid. A model of the S-genome evolution is suggested.
Collapse
Affiliation(s)
- Alevtina S. Ruban
- Laboratory of Chromosome Structure and Function, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Ekaterina D. Badaeva
- Laboratory of Genetic Basis of Plant Identification, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
- Laboratory of Molecular Karyology, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- *Correspondence: Ekaterina D. Badaeva
| |
Collapse
|
7
|
Adonina IG, Goncharov NP, Badaeva ED, Sergeeva EM, Petrash NV, Salina EA. (GAA)n microsatellite as an indicator of the A genome reorganization during wheat evolution and domestication. COMPARATIVE CYTOGENETICS 2015; 9:533-47. [PMID: 26753073 PMCID: PMC4698569 DOI: 10.3897/compcytogen.v9i4.5120] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 07/15/2014] [Indexed: 05/02/2023]
Abstract
Although the wheat A genomes have been intensively studied over past decades, many questions concerning the mechanisms of their divergence and evolution still remain unsolved. In the present study we performed comparative analysis of the A genome chromosomes in diploid (Triticum urartu Tumanian ex Gandilyan, 1972, Triticum boeoticum Boissier, 1874 and Triticum monococcum Linnaeus, 1753) and polyploid wheat species representing two evolutionary lineages, Timopheevi (Triticum timopheevii (Zhukovsky) Zhukovsky, 1934 and Triticum zhukovskyi Menabde & Ericzjan, 1960) and Emmer (Triticum dicoccoides (Körnicke ex Ascherson & Graebner) Schweinfurth, 1908, Triticum durum Desfontaines, 1798, and Triticum aestivum Linnaeus, 1753) using a new cytogenetic marker - the pTm30 probe cloned from Triticum monococcum genome and containing (GAA)56 microsatellite sequence. Up to four pTm30 sites located on 1AS, 5AS, 2AS, and 4AL chromosomes have been revealed in the wild diploid species, although most accessions contained one-two (GAA)n sites. The domesticated diploid species Triticum monococcum differs from the wild diploid species by almost complete lack of polymorphism in the distribution of (GAA)n site. Only one (GAA)n site in the 4AL chromosome has been found in Triticum monococcum. Among three wild emmer (Triticum dicoccoides) accessions we detected 4 conserved and 9 polymorphic (GAA)n sites in the A genome. The (GAA)n loci on chromosomes 2AS, 4AL, and 5AL found in of Triticum dicoccoides were retained in Triticum durum and Triticum aestivum. In species of the Timopheevi lineage, the only one, large (GAA)n site has been detected in the short arm of 6A(t) chromosome. (GAA)n site observed in Triticum monococcum are undetectable in the A(b) genome of Triticum zhukovskyi, this site could be eliminated over the course of amphiploidization, while the species was established. We also demonstrated that changes in the distribution of (GAA)n sequence on the A-genome chromosomes of diploid and polyploid wheats are associated with chromosomal rearrangements/ modifications, involving mainly the NOR (nucleolus organizer region)-bearing chromosomes, that took place during the evolution of wild and domesticated species.
Collapse
Affiliation(s)
- Irina G. Adonina
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, pr. Lavrentieva 10, Novosibirsk, 630090 Russia
| | - Nikolay P. Goncharov
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, pr. Lavrentieva 10, Novosibirsk, 630090 Russia
| | - Ekaterina D. Badaeva
- N.I.Vavilov Institute of General Genetics, Russian Academy of Sciences, Gubkina street 3, Moscow 119991, Russia
| | - Ekaterina M. Sergeeva
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, pr. Lavrentieva 10, Novosibirsk, 630090 Russia
| | - Nadezhda V. Petrash
- Siberian Research Institute of Plant Growing and Selection – Branch of ICG SB RAS, Krasnoobsk, Novosibirsk Region, Russia
| | - Elena A. Salina
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, pr. Lavrentieva 10, Novosibirsk, 630090 Russia
| |
Collapse
|
8
|
Hao M, Luo J, Zhang L, Yuan Z, Zheng Y, Zhang H, Liu D. In situ hybridization analysis indicates that 4AL–5AL–7BS translocation preceded subspecies differentiation of Triticum turgidum. Genome 2013; 56:303-5. [DOI: 10.1139/gen-2013-0049] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The important cyclic translocation 4AL–5AL–7BS is an evolutionary signature of polyploidy in wheat. This study aimed to determine its distribution within the subspecies of Triticum turgidum L., using genomic in situ hybridization and fluorescence in situ hybridization. As it exists in all eight subspecies, this translocation appeared before the differentiation of the subspecies of T. turgidum. This translocation probably first appeared in T. turgidum subsp. dicoccoides and was then transmitted into the other subspecies. Its existence in all of the analyzed subspecies suggests that this translocation may confer an adaptive advantage during the course of evolution.
Collapse
Affiliation(s)
- Ming Hao
- Triticeae Research Institute, Sichuan Agricultural University at Chengdu, Wenjiang, Sichuan 611130, P.R. China
| | - Jiangtao Luo
- Triticeae Research Institute, Sichuan Agricultural University at Chengdu, Wenjiang, Sichuan 611130, P.R. China
| | - Lianquan Zhang
- Triticeae Research Institute, Sichuan Agricultural University at Chengdu, Wenjiang, Sichuan 611130, P.R. China
| | - Zhongwei Yuan
- Triticeae Research Institute, Sichuan Agricultural University at Chengdu, Wenjiang, Sichuan 611130, P.R. China
| | - Youliang Zheng
- Triticeae Research Institute, Sichuan Agricultural University at Chengdu, Wenjiang, Sichuan 611130, P.R. China
| | - Huaigang Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, P.R. China
| | - Dengcai Liu
- Triticeae Research Institute, Sichuan Agricultural University at Chengdu, Wenjiang, Sichuan 611130, P.R. China
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, P.R. China
| |
Collapse
|
9
|
Badaeva ED, Budashkina EB, Bilinskaya EN, Pukhalskiy VA. Intergenomic chromosome substitutions in wheat interspecific hybrids and their use in the development of a genetic nomenclature of Triticum timopheevii chromosomes. RUSS J GENET+ 2010. [DOI: 10.1134/s102279541007001x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Gordeeva EI, Leonova IN, Kalinina NP, Salina EA, Budashkina EB. Comparative cytological and molecular analysis of common wheat introgression lines containing genetic material of Triticum timopheevii Zhuk. RUSS J GENET+ 2009. [DOI: 10.1134/s1022795409120047] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Dobrovolskaya OB, Sourdille P, Bernard M, Salina EA. Chromosome synteny of the a genome of two evolutionary wheat lines. RUSS J GENET+ 2009. [DOI: 10.1134/s1022795409110118] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Salina EA, Leonova IN, Efremova TT, Röder MS. Wheat genome structure: translocations during the course of polyploidization. Funct Integr Genomics 2005; 6:71-80. [PMID: 15983785 DOI: 10.1007/s10142-005-0001-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2004] [Revised: 04/20/2005] [Accepted: 04/21/2005] [Indexed: 12/19/2022]
Abstract
The genomic organization of Triticum timopheevii (2n=28, AtAtGG) was compared with hexaploid wheat T. aestivum (2n=42, AABBDD) by comparative mapping using microsatellites derived from bread wheat. Genetic maps for the two crosses T. timopheevii var. timopheevii x T. timopheevii var. typica and T. timopheevii K-38555xT. militinae were constructed. On the first population, 121 loci were mapped, and on the second population 103 loci. The transferability of the wheat markers to T. timopheevii was generally better for the A genome-specific markers (76-78% produced amplification products; 26 and 29% were polymorphic) than for B genome-specific markers (54% produced amplification products; 14 and 16% were polymorphic). Of the D genome-specific markers, one third produced amplification products in T. timopheevii, but only 5 and 2% were polymorphic in the corresponding mapping populations. The maps constructed confirmed the previously described translocation between chromosome arms 6AtS and 1GS and revealed at least two yet unknown rearrangements on chromosomes 4At and 6At09. The presence of other translocations and rearrangements between T. timopheevii and T. aestivum was demonstrated by a variety of markers mapping to nonhomoeologous positions.
Collapse
Affiliation(s)
- Elena A Salina
- Institute of Cytology and Genetics, Lavrentiev ave. 10, Novosibirsk, 630090, Russia.
| | | | | | | |
Collapse
|
13
|
Raskina O, Belyayev A, Nevo E. Repetitive DNas of wild emmer wheat (Triticum dicoccoides) and their relation to S-genome species: molecular cytogenetic analysis. Genome 2002; 45:391-401. [PMID: 11962636 DOI: 10.1139/g01-142] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have analyzed the chromosomal GISH molecular banding patterns of three populations of the wild allopolyploid wheat Triticum dicoccoides in an attempt to unravel the evolutionary relationships between highly repetitive DNA fractions of T. dicoccoides and proposed diploid progenitors of the B genome. Aegilops speltoides showed almost complete affinity of its repetitive DNA to C-heterochromatin of T. dicoccoides, whereas other S-genome species demonstrated relatedness only to distal heterochromatin. This substantiates the priority of Ae. speltoides as the most similar to the wheat B-genome donor in comparison with other Sitopsis species. Using molecular banding technique with DNA of different Aegilops species as a probe permits tracing of the origin of each heterochromatin cluster. Molecular banding analysis reveals polymorphism between three wild emmer wheat populations. Comparison of molecular banding patterns with chromosomal distribution of the Ty1-copia retrotransposons, which constitute a large share of T. dicoccoides genome, makes it possible to propose that the activity of transposable elements may lie in the background of observed intraspecific polymorphism.
Collapse
Affiliation(s)
- Olga Raskina
- Institute of Evolution, Haifa University, Mt. Carmel, Israel
| | | | | |
Collapse
|