1
|
Kowalski S, Haerter CAG, Perin DP, Takagui FH, Viana PF, Feldberg E, Blanco DR, Traldi JB, Giuliano-Caetano L, Lui RL. Karyotypic characterization of Centromochlus schultzi Rössel 1962 (Auchenipteridae, Centromochlinae) from the Xingu River basin: New inferences on chromosomal evolution in Centromochlus. Genet Mol Biol 2024; 47:e20230105. [PMID: 38530404 PMCID: PMC10993310 DOI: 10.1590/1678-4685-gmb-2023-0105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 08/20/2023] [Indexed: 03/28/2024] Open
Abstract
Centromochlinae is a widely diverse subfamily with more than 50 species and several taxonomic conflicts due to morphological similarity between Tatia and Centromochlus species. However, cytogenetic studies on this group have been limited to only four species so far. Therefore, here we present the karyotype of Centromochlus schultzi from the Xingu River in Brazil using classic cytogenetic techniques, physical mapping of the 5S and 18S rDNAs, and telomeric sequences (TTAGGG)n. The species had 58 chromosomes, simple NORs and 18S rDNA sites. Heterochromatic regions were detected on the terminal position of most chromosomes, including pericentromeric and centromeric blocks that correspond to interstitial telomeric sites. The 5S rDNA had multiple sites, including a synteny with the 18S rDNA in the pair 24st, which is an ancestral feature for Doradidae, sister group of Auchenipteridae, but appears to be a homoplastic trait in this species. So far, C. schultzi is only the second species within Centromochlus to be karyotyped, but it has already presented characteristics with great potential to assist in future discussions on taxonomic issues in the subfamily Centromochlinae, including the first synteny between rDNAs in Auchenipteridae and also the presence of heterochromatic ITSs that could represent remnants of ancient chromosomal fusions.
Collapse
Affiliation(s)
- Samantha Kowalski
- Universidade Estadual de Londrina, Centro de Ciências Biológicas,
Londrina, PR, Brazil
- Universidade Estadual do Oeste do Paraná, Centro de Ciências
Biológicas e da Saúde, Cascavel, PR, Brazil
| | - Chrystian Aparecido Grillo Haerter
- Universidade Estadual do Oeste do Paraná, Centro de Ciências
Biológicas e da Saúde, Cascavel, PR, Brazil
- Instituto Nacional de Pesquisas da Amazônia, Coordenação de
Biodiversidade, Manaus, AM, Brazil
| | - Diana Paula Perin
- Universidade Estadual do Oeste do Paraná, Centro de Ciências
Biológicas e da Saúde, Cascavel, PR, Brazil
| | - Fábio Hiroshi Takagui
- Instituto Nacional de Pesquisas da Amazônia, Coordenação de
Biodiversidade, Manaus, AM, Brazil
| | - Patrik Ferreira Viana
- Instituto Nacional de Pesquisas da Amazônia, Coordenação de
Biodiversidade, Manaus, AM, Brazil
| | - Eliana Feldberg
- Instituto Nacional de Pesquisas da Amazônia, Coordenação de
Biodiversidade, Manaus, AM, Brazil
| | | | | | | | - Roberto Laridondo Lui
- Universidade Estadual do Oeste do Paraná, Centro de Ciências
Biológicas e da Saúde, Cascavel, PR, Brazil
| |
Collapse
|
2
|
Cao L, Chen P, Hou X, Ma J, Yang N, Lu Y, Huang H. rDNA and mtDNA analysis for the identification of genetic characters in the hybrid grouper derived from hybridization of Cromileptes altivelis (female) × Epinephelus lanceolatus (male). BMC Genom Data 2024; 25:5. [PMID: 38216865 PMCID: PMC10787421 DOI: 10.1186/s12863-023-01188-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 12/20/2023] [Indexed: 01/14/2024] Open
Abstract
BACKGROUND Hybridization is a useful strategy to produce offspring with more desirable phenotypic characteristics than those of parents. The hybrid grouper derived from the cross of Cromileptes altivelis (♀, 2n = 48) with Epinephelus lanceolatus (♂, 2n = 48) exhibits improved growth compared with its female parent, which makes it valuable to aquaculture. However, the genetic traits of the hybrid grouper are poorly understood. RESULTS The observations showed that the hybrid grouper was diploid (2n = 48) and displayed intermediate morphology with the parent's measurable characteristics. The ribosomal DNA (rDNA) and mitochondria DNA (mtDNA) were characterized at molecular and phylogenetic level. High similarity and low genetic distance of 5S rDNA and mtDNA sequences between the hybrid grouper and C. altivelis showed that the hybrid grouper had a closer genetic relationship with female parents. The reconstructed phylogenetic tree based on COI gene and D-loop region of mtDNA recovered that mtDNA was maternally inherited in the hybrid grouper. Additionally, the DNA methylation level of 5S rDNA intergenic spacers (IGS) sequence was tested in here. The results showed that the DNA methylation status of the hybrid grouper was significantly lower than that of C. altivelis. CONCLUSION Results of this study provide important data on the genetic characteristics of the hybrid derived from the cross of C. altivelis and E. lanceolatus, and contribute the knowledge of both evolution and marine fish breeding.
Collapse
Affiliation(s)
- Liu Cao
- Yazhou Bay Innovation Institute, Sanya, 572022, China
- Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources of Ministry of Education, Sanya, 572022, China
- Hainan Key Laboratory for Conservation and Utilization of Tropical Marine Fishery Resources, Sanya, 572022, China
- Hainan Tropical Ocean University, Sanya, 572022, China
| | - Pan Chen
- Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources of Ministry of Education, Sanya, 572022, China
- Hainan Key Laboratory for Conservation and Utilization of Tropical Marine Fishery Resources, Sanya, 572022, China
- Hainan Tropical Ocean University, Sanya, 572022, China
| | - Xingrong Hou
- Yazhou Bay Innovation Institute, Sanya, 572022, China
- Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources of Ministry of Education, Sanya, 572022, China
- Hainan Key Laboratory for Conservation and Utilization of Tropical Marine Fishery Resources, Sanya, 572022, China
- Hainan Tropical Ocean University, Sanya, 572022, China
| | - Jun Ma
- Yazhou Bay Innovation Institute, Sanya, 572022, China
- Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources of Ministry of Education, Sanya, 572022, China
- Hainan Key Laboratory for Conservation and Utilization of Tropical Marine Fishery Resources, Sanya, 572022, China
- Hainan Tropical Ocean University, Sanya, 572022, China
| | - Ning Yang
- Yazhou Bay Innovation Institute, Sanya, 572022, China
- Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources of Ministry of Education, Sanya, 572022, China
- Hainan Key Laboratory for Conservation and Utilization of Tropical Marine Fishery Resources, Sanya, 572022, China
- Hainan Tropical Ocean University, Sanya, 572022, China
| | - Yan Lu
- Hainan Tropical Ocean University, Sanya, 572022, China
| | - Hai Huang
- Yazhou Bay Innovation Institute, Sanya, 572022, China.
- Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources of Ministry of Education, Sanya, 572022, China.
- Hainan Key Laboratory for Conservation and Utilization of Tropical Marine Fishery Resources, Sanya, 572022, China.
- Hainan Tropical Ocean University, Sanya, 572022, China.
| |
Collapse
|
3
|
dos Santos AG, Souza JFDSE, Soares SC, Nakayama CM, Feldberg E. Chromosomal characterization of three species of Serrasalmini (Serrasalmidae: Characiformes). Genet Mol Biol 2023; 46:e20230088. [PMID: 37992304 PMCID: PMC10664975 DOI: 10.1590/1678-4685-gmb-2023-0088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 10/10/2023] [Indexed: 11/24/2023] Open
Abstract
The tribe Serrasalmini is a diverse group with paraphyletic genera and taxonomic uncertainties. Several studies have been carried out in this group of fish in order to understand this problem, including the cytogenetic approach. In this study, three species of a clade of Serrasalmini were characterized cytogenetically - Pristobrycon striolatus, Catoprion absconditus and Pygopristis denticulatus. The three species presented diploid number (2n) equal to 62 chromosomes, of one and two arms, with karyotypic formulas and species-specific fundamental numbers. Heterochromatin is centromeric and terminal (bi-telomeric) in most chromosomes, with a conspicuous interstitial block at pair 1 (m) in all three species. The nucleolar organizer regions were multiple and C-band positive, and their location was confirmed via 18S ribosomal DNA mapping; however, with additional sites. The 5S rDNA was located in interstitial region of long arm of pair 1 (m), in the three species (homeologous). Moreover, we observed synteny between 18S and 5S in the species C. absconditus and P. denticulatus, which, according to fiber-FISH, are interspersed. Thus, the maintenance of 2n (62) evidences the diversification of chromosomal formulas within the clade by non-Robertsonian rearrangements and reflects the paraphyly of the related species.
Collapse
Affiliation(s)
- Alan Gomes dos Santos
- Instituto Nacional de Pesquisas da Amazônia (INPA), Programa de
Pós-graduação em Genética, Conservação e Biologia Evolutiva, Laboratório de Genética
Animal, Manaus, AM, Brazil
| | - José Francisco de Sousa e Souza
- Instituto Nacional de Pesquisas da Amazônia (INPA), Programa de
Pós-graduação em Genética, Conservação e Biologia Evolutiva, Laboratório de Genética
Animal, Manaus, AM, Brazil
| | - Simone Cardoso Soares
- Instituto Nacional de Pesquisas da Amazônia (INPA), Programa de
Pós-graduação em Genética, Conservação e Biologia Evolutiva, Laboratório de Genética
Animal, Manaus, AM, Brazil
| | - Celeste Mutuko Nakayama
- Instituto Nacional de Pesquisas da Amazônia (INPA), Coordenação de
Biodiversidade, Laboratório de Genética Animal, Manaus, AM, Brazil
| | - Eliana Feldberg
- Instituto Nacional de Pesquisas da Amazônia (INPA), Programa de
Pós-graduação em Genética, Conservação e Biologia Evolutiva, Laboratório de Genética
Animal, Manaus, AM, Brazil
- Instituto Nacional de Pesquisas da Amazônia (INPA), Coordenação de
Biodiversidade, Laboratório de Genética Animal, Manaus, AM, Brazil
| |
Collapse
|
4
|
Haerter CAG, Blanco DR, Traldi JB, Feldberg E, Margarido VP, Lui RL. Are scattered microsatellites weak chromosomal markers? Guided mapping reveals new insights into Trachelyopterus (Siluriformes: Auchenipteridae) diversity. PLoS One 2023; 18:e0285388. [PMID: 37310952 DOI: 10.1371/journal.pone.0285388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 04/22/2023] [Indexed: 06/15/2023] Open
Abstract
The scattered distribution pattern of microsatellites is a challenging problem in fish cytogenetics. This type of array hinders the identification of useful patterns and the comparison between species, often resulting in over-limited interpretations that only label it as "scattered" or "widely distributed". However, several studies have shown that the distribution pattern of microsatellites is non-random. Thus, here we tested whether a scattered microsatellite could have distinct distribution patterns on homeologous chromosomes of closely related species. The clustered sites of 18S and 5S rDNA, U2 snRNA and H3/H4 histone genes were used as a guide to compare the (GATA)n microsatellite distribution pattern on the homeologous chromosomes of six Trachelyopterus species: T. coriaceus and Trachelyopterus aff. galeatus from the Araguaia River basin; T. striatulus, T. galeatus and T. porosus from the Amazonas River basin; and Trachelyopterus aff. coriaceus from the Paraguay River basin. Most species had similar patterns of the (GATA)n microsatellite in the histone genes and 5S rDNA carriers. However, we have found a chromosomal polymorphism of the (GATA)n sequence in the 18S rDNA carriers of Trachelyopterus galeatus, which is in Hard-Weinberg equilibrium and possibly originated through amplification events; and a chromosome polymorphism in Trachelyopterus aff. galeatus, which combined with an inversion polymorphism of the U2 snRNA in the same chromosome pair resulted in six possible cytotypes, which are in Hardy-Weinberg disequilibrium. Therefore, comparing the distribution pattern on homeologous chromosomes across the species, using gene clusters as a guide to identify it, seems to be an effective way to further the analysis of scattered microsatellites in fish cytogenetics.
Collapse
Affiliation(s)
| | | | - Josiane Baccarin Traldi
- Departamento de Genética, Instituto de Ciências Biológicas, Universidade Federal do Amazonas, Manaus, Brasil
| | | | - Vladimir Pavan Margarido
- Universidade Estadual do Oeste do Paraná, Centro de Ciências Biológicas e da Saúde, Cascavel, Paraná, Brasil
| | - Roberto Laridondo Lui
- Universidade Estadual do Oeste do Paraná, Centro de Ciências Biológicas e da Saúde, Cascavel, Paraná, Brasil
| |
Collapse
|
5
|
Dyomin A, Galkina S, Ilina A, Gaginskaya E. Single Copies of the 5S rRNA Inserted into 45S rDNA Intergenic Spacers in the Genomes of Nototheniidae (Perciformes, Actinopterygii). Int J Mol Sci 2023; 24:7376. [PMID: 37108537 PMCID: PMC10138776 DOI: 10.3390/ijms24087376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
In the vast majority of Animalia genomes, the 5S rRNA gene repeats are located on chromosomes outside of the 45S rDNA arrays of the nucleolar organiser (NOR). We analysed the genomic databases available and found that a 5S rDNA sequence is inserted into the intergenic spacer (IGS) between the 45S rDNA repeats in ten species of the family Nototheniidae (Perciformes, Actinopterigii). We call this sequence the NOR-5S rRNA gene. Along with Testudines and Crocodilia, this is the second case of a close association between four rRNA genes within one repetitive unit in deuterostomes. In both cases, NOR-5S is oriented opposite the 45S rDNA. None of the three nucleotide substitutions compared to the canonical 5S rRNA gene influenced the 5S rRNA secondary structure. In transcriptomes of the Patagonian toothfish, we only found NOR-5S rRNA reads in ovaries and early embryos, but not in testis or somatic tissues of adults. Thus, we consider the NOR-5S gene to be a maternal-type 5S rRNA template. The colocalization of the 5S and 45S ribosomal genes appears to be essential for the equimolar production of all four rRNAs in the species that show rDNA amplification during oogenesis. Most likely, the integration of 5S and NOR rRNA genes occurred prior to Nototheniidae lineage diversification.
Collapse
Affiliation(s)
| | | | | | - Elena Gaginskaya
- Biological Faculty, St. Petersburg State University, Universitetskaya Emb. 7/9, St. Petersburg 199034, Russia; (A.D.); (S.G.); (A.I.)
| |
Collapse
|
6
|
Wang J, He W, Wang W, Luo Z, Han L, Xiang C, Chai M, Li T, Li J, Luo K, Zhao R, Liu S. A Novel Allotriploid Hybrid Derived From Female Goldfish × Male Bleeker's Yellow Tail. Front Genet 2022; 13:880591. [PMID: 35518352 PMCID: PMC9061998 DOI: 10.3389/fgene.2022.880591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 03/21/2022] [Indexed: 11/23/2022] Open
Abstract
Hybridization is a traditional and effective strategy to alter the genotypes and phenotypes of the offspring, and distant hybridization is a useful strategy to generate polyploids in fish. In this study, goldfish (Carassius auratus, GF, 2n = 100) and Bleeker’s yellow tail (Xenocypris davidi Bleeker, YT, 2n = 48), which belong to different subfamilies, were crossed with each other. The cross of female GF × male YT successfully obtained hybrid offspring (GFYT hybrids), while the cross of female YT × male GF was lethal, and all the fertilized eggs stopped developing before the neurula stage of embryogenesis. All GFYT hybrids possessed 124 chromosomes (3n = 124) with two sets from GF and one set from YT. The measurable and countable traits of GFYT hybrids were identified, and the genetic characteristics of 5S rDNA between GFYT hybrids and their parents were also revealed. There were, respectively, four and three different 5S rDNA types in GF (assigned as GF-Ⅰ∼Ⅳ) and YT (assigned as YT-Ⅰ∼Ⅲ), and GFYT hybrids specifically inherited YT-Ⅰ and YT-Ⅱ 5S rDNA types from YT and GF-Ⅲ and GF-Ⅳ from GF. In addition, there were only testis-like and fat-like gonads been found in GFYT hybrids. Interestingly, there were pyknotic and heteromorphous chromatin and invaginated cell membrane observed in the spermatids of testis-like gonads, but no mature sperm were found. Furthermore, TUNEL assays indicated that, compared with control, apparent apoptotic signals, which were mainly distributed around spermatid regions, were detected in the testis-like gonads, and the expression of apoptosis pathway-related genes including p53, bcl-2, bax, and caspase9 was significantly upregulated. Moreover, the expression of meiosis-related genes including spo11, dmc1, and rad51 showed an abnormally high expression, but mns1 and meig1, two key genes involved in the maturation of spermatid, were extremely downregulated. In brief, this is the first report of allotriploid via distant hybridization between GF and YT that possessing different chromosome numbers in vertebrates. The obtainment of GFYT hybrids not only harbors potential benefits and application in aquaculture but also further extends the understanding of the influence of hybridization and polyploidization on the genomic constitution of the hybrid offspring. Furthermore, they can be used as a model to test the origin and consequences of polyploidization and served as a proper resource to study the underlying mechanisms of spermatogenesis dysfunctions.
Collapse
Affiliation(s)
- Jing Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Weiguo He
- Clinical Anatomy and Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, China
| | - Wen Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Ziye Luo
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Linmei Han
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Caixia Xiang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Mingli Chai
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Tangluo Li
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy and Pharmacology, University of South China, Hengyang, China
| | - Jihong Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Kaikun Luo
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Rurong Zhao
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Shaojun Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| |
Collapse
|
7
|
Malimpensa GDC, Traldi JB, Martinez JDF, Deon G, Azambuja M, Nogaroto V, Vicari MR, Moreira-Filho O. Chromosomal Diversification in Two Species of Pimelodus (Siluriformes: Pimelodidae): Comparative Cytogenetic Mapping of Multigene Families. Zebrafish 2020; 17:278-286. [DOI: 10.1089/zeb.2020.1892] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
| | | | | | - Geize Deon
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Matheus Azambuja
- Programa de Pós-Graduação em Genética, Universidade Federal do Paraná, Curitiba, Brazil
| | - Viviane Nogaroto
- Departamento de Biologia Estrutural, Molecular e Genética, Universidade Estadual de Ponta Grossa, Ponta Grossa, Brazil
| | - Marcelo Ricardo Vicari
- Programa de Pós-Graduação em Genética, Universidade Federal do Paraná, Curitiba, Brazil
- Departamento de Biologia Estrutural, Molecular e Genética, Universidade Estadual de Ponta Grossa, Ponta Grossa, Brazil
| | - Orlando Moreira-Filho
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
| |
Collapse
|
8
|
Tao B, Lo LJ, Peng J, He J. rDNA subtypes and their transcriptional expression in zebrafish at different developmental stages. Biochem Biophys Res Commun 2020; 529:819-825. [PMID: 32571523 DOI: 10.1016/j.bbrc.2020.05.196] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 05/26/2020] [Indexed: 01/21/2023]
Abstract
Eukaryotic 18S, 5.8S and 28S rRNAs are processed from a single transcript transcribed from the 45S rDNA gene, which is normally tandemly arrayed over hundred copies in a genome. Recently, a maternal (M) subtype and a somatic (S) subtype of rDNA were identified in zebrafish, with M-subtype on chromosome 4 and S-subtype on chromosome 5. It appears that the M-subtype is only expressed in eggs whilst the expression of the S-subtype is coupled with the initiation of zygotic gene expression. In this report, we identified three novel but transcriptionally inactive 18S variants in zebrafish genome with chromosome location different from the M- and S-subtype, suggesting translocation of 18S rDNA fragment during zebrafish evolution. Furthermore, we confirmed that the unfertilized eggs only have the M-subtype transcripts while brain, heart and liver have only the S-subtype transcripts. Both the M- and S-subtype transcripts were detected in female gonad. Our results support that the expression of different subtypes of rDNA is differentially regulated to meet the requirement for 'specialized ribosomes' during different developmental stages.
Collapse
Affiliation(s)
- Boxiang Tao
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Li Jan Lo
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jinrong Peng
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Jin He
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
9
|
Li S, Xie L, Xiao J, Yuan L, Zhou T, Luo K, Zhang C, Zhao R, Tao M, Liu S. Diploid hybrid fish derived from the cross between female Bleeker's yellow tail and male topmouth culter, two cyprinid fishes belonging to different subfamilies. BMC Genet 2019; 20:80. [PMID: 31646976 PMCID: PMC6813094 DOI: 10.1186/s12863-019-0781-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 09/26/2019] [Indexed: 01/09/2023] Open
Abstract
Background Bleeker’s yellow tail (Xenocypris davidi Bleeker, YT) and topmouth culter (Culter alburnus Basilewsky, TC) are both famous and important economic freshwater fish in China. YT, a kind of omnivorous fish, has strong resistance. TC, a kind of carnivorous fish, has high-quality meat but poor resistance. Distant hybridization can integrate the advantages of both parents. There has been no previous report regarding hybrid fish derived from female YT × male TC. It is expected that hybridization of these two kinds of fish will result in F1 hybrids with improved characteristics, such as faster growth rate, stronger resistance, and high-quality meat, which are of great significance in fish genetic breeding. Results In this study, we investigated the main biological characteristics of diploid hybrid fish derived from female YT × male TC. The hybrids had an intermediate number of upper lateral line scales between those for YT and TC. The hybrids were diploids with 48 chromosomes and had the same karyotype formula as their parents. The hybrids generated variations in 5S rDNA (designated class IV: 212 bp) and lost specific 5S rDNA derived from the maternal parent (designated class II: 221 bp), which might be related to hybridization. In terms of reproductive traits, all the tested female hybrids exhibited normal gonadal development, and the two-year-old F1 females produced mature eggs. However, all the tested testes of the male hybrids could not produce mature sperm. It is possible that the hybrid lineage will be established by back-crossing the fertile female hybrids and their parents. Conclusions Obtaining a fertile female hybrid fish made the creation of a new type of fish possible, which was significant in fish genetic breeding.
Collapse
Affiliation(s)
- Shengnan Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Lihua Xie
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Jun Xiao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Liujiao Yuan
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Tian Zhou
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Kaikun Luo
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Chun Zhang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Rurong Zhao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Min Tao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, China. .,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China.
| | - Shaojun Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, China. .,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China.
| |
Collapse
|
10
|
Uncovering the molecular organization of unusual highly scattered 5S rDNA: The case of Chariesterus armatus (Heteroptera). Gene 2018; 646:153-158. [DOI: 10.1016/j.gene.2017.12.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 12/11/2017] [Accepted: 12/15/2017] [Indexed: 10/18/2022]
|
11
|
Cytogenetics characterization of Crenuchus spilurus (Günther, 1863): a remarkable low diploid value within family Crenuchidae (Characiformes). Biologia (Bratisl) 2018. [DOI: 10.2478/s11756-018-0006-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
12
|
Conde-Saldaña CC, Barreto CAV, Villa-Navarro FA, Dergam JA. An Unusual Accumulation of Ribosomal Multigene Families and Microsatellite DNAs in the XX/XY Sex Chromosome System in the Trans-Andean Catfish Pimelodella cf. chagresi (Siluriformes:Heptapteridae). Zebrafish 2017; 15:55-62. [PMID: 29090985 DOI: 10.1089/zeb.2017.1469] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
This work constitutes the first cytogenetic characterization of a trans-Andean species of Heptapteridae. The catfish Pimelodella cf. chagresi from the Upper Rio Magdalena was studied, applying standard cytogenetic techniques (Giemsa, C-banding, and argyrophilic nucleolar organizer region [Ag-NOR]) and fluorescence in situ hybridization techniques using repetitive DNA probes: microsatellites (CA15 and GA15) and ribosomal RNA (rRNA) multigene families (18S and 5S recombinant DNA [rDNA] probes). The species showed a unique diploid chromosome number 2n = 50 (32m [metacentrics] +14sm [submetacentrics] +4st [subtelocentrics]) and a XX/XY sex chromosomal system, where the heteromorphic Y-chromosome revealed a conspicuous accumulation of all the assayed domains of repetitive DNA. P. cf. chagresi karyotype shares common features with other Heptapteridae, such as the predominance of metacentric and submetacentric chromosomes, and one pair of subtelomeric nucleolar organizer regions (NORs). These results reflect an independent karyological identity of a trans-Andean species and the relevance of repetitive DNA sequences in the process of sex chromosome differentiation in fish; it is the first case of syntenic accumulation of rRNA multigene families (18S and 5S rDNA) and microsatellite sequences (CA15 and GA15) in a differentiated sex chromosome in Neotropical fish.
Collapse
Affiliation(s)
- Cristhian Camilo Conde-Saldaña
- 1 Departamento de Biologia Animal, Universidade Federal de Viçosa , Viçosa, Brazil .,2 Grupo de Investigación en Zoología, Facultad de Ciencias, Universidad del Tolima , Ibagué, Colombia
| | | | | | - Jorge Abdala Dergam
- 1 Departamento de Biologia Animal, Universidade Federal de Viçosa , Viçosa, Brazil
| |
Collapse
|
13
|
Supiwong W, Jiwyam W, Sreeputhorn K, Maneechot N, Bertollo LAC, Cioffi MB, Getlekha N, Tanomtong A. First report on classical and molecular cytogenetics of archerfish, Toxotes chatareus (Perciformes: Toxotidae). THE NUCLEUS 2017. [DOI: 10.1007/s13237-017-0216-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
14
|
Wang S, Ye X, Wang Y, Chen Y, Lin B, Yi Z, Mao Z, Hu F, Zhao R, Wang J, Zhou R, Ren L, Yao Z, Tao M, Zhang C, Xiao J, Qin Q, Liu S. A new type of homodiploid fish derived from the interspecific hybridization of female common carp × male blunt snout bream. Sci Rep 2017. [PMID: 28646171 PMCID: PMC5482800 DOI: 10.1038/s41598-017-04582-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
It is commonly believed that hybridization might lead to the formation of new polyploidy species, but it is unclear whether hybridization can produce a new homodiploid species. Here, we report the spontaneous occurrence of a new crucian carp-like homodiploid fish (2n = 100) that originated from the interspecific hybridization of female common carp (Cyprinus carpio, Cyprininae, 2n = 100) × male blunt snout bream (Megalobrama amblycephala, Cultrinae, 2n = 48). The phenotype and reproductive traits of this new crucian carp-like homodiploid fish were found to be very similar to those of the existing diploid species (diploid crucian carp; Carassius auratus). FISH and 5S rDNA analyses revealed that the genotype of the crucian carp-like homodiploid fish differs from those of its parents but is closely related to that of diploid crucian carp. The results provide evidence of the existence of a possible route through which the distant hybridization of this cross can generate crucian carp. The new type of homodiploid fish is of great value in fish genetic breeding and for studying the early evolutionary process.
Collapse
Affiliation(s)
- Shi Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, P.R. China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, P.R. China
| | - Xiaolan Ye
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, P.R. China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, P.R. China
| | - Yude Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, P.R. China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, P.R. China
| | - Yuting Chen
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, P.R. China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, P.R. China
| | - Bowen Lin
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, P.R. China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, P.R. China
| | - Zhenfeng Yi
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, P.R. China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, P.R. China
| | - Zhuangwen Mao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, P.R. China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, P.R. China
| | - Fangzhou Hu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, P.R. China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, P.R. China
| | - Rurong Zhao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, P.R. China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, P.R. China
| | - Juan Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, P.R. China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, P.R. China
| | - Rong Zhou
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, P.R. China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, P.R. China
| | - Li Ren
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, P.R. China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, P.R. China
| | - Zhanzhou Yao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, P.R. China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, P.R. China
| | - Min Tao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, P.R. China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, P.R. China
| | - Chun Zhang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, P.R. China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, P.R. China
| | - Jun Xiao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, P.R. China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, P.R. China
| | - Qinbo Qin
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, P.R. China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, P.R. China
| | - Shaojun Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, P.R. China. .,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, P.R. China.
| |
Collapse
|
15
|
de Freitas Mourão AA, Natal Daniel S, Teruo Hashimoto D, Cristina Ferreira D, Porto-Foresti F. Organization and Distribution of Repetitive DNA Classes in the Cichla kelberi and Cichla piquiti Genome. CYTOLOGIA 2017. [DOI: 10.1508/cytologia.82.193] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
| | - Sandro Natal Daniel
- Departamento de Ciências Biológicas, Faculdade de Ciências, Universidade Estadual Paulista (UNESP)
| | - Diogo Teruo Hashimoto
- Centro de Aquicultura de Jaboticabal (CAUNESP), Universidade Estadual Paulista (UNESP)
| | | | - Fábio Porto-Foresti
- Departamento de Ciências Biológicas, Faculdade de Ciências, Universidade Estadual Paulista (UNESP)
| |
Collapse
|
16
|
Gouveia JG, Wolf IR, de Moraes-Manécolo VPO, Bardella VB, Ferracin LM, Giuliano-Caetano L, da Rosa R, Dias AL. Isolation and characterization of 5S rDNA sequences in catfishes genome (Heptapteridae and Pseudopimelodidae): perspectives for rDNA studies in fish by C 0t method. Cytotechnology 2016; 68:2711-2720. [PMID: 27344147 PMCID: PMC5101342 DOI: 10.1007/s10616-016-9996-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Accepted: 06/10/2016] [Indexed: 10/21/2022] Open
Abstract
Sequences of 5S ribosomal RNA (rRNA) are extensively used in fish cytogenomic studies, once they have a flexible organization at the chromosomal level, showing inter- and intra-specific variation in number and position in karyotypes. Sequences from the genome of Imparfinis schubarti (Heptapteridae) were isolated, aiming to understand the organization of 5S rDNA families in the fish genome. The isolation of 5S rDNA from the genome of I. schubarti was carried out by reassociation kinetics (C0t) and PCR amplification. The obtained sequences were cloned for the construction of a micro-library. The obtained clones were sequenced and hybridized in I. schubarti and Microglanis cottoides (Pseudopimelodidae) for chromosome mapping. An analysis of the sequence alignments with other fish groups was accomplished. Both methods were effective when using 5S rDNA for hybridization in I. schubarti genome. However, the C0t method enabled the use of a complete 5S rRNA gene, which was also successful in the hybridization of M. cottoides. Nevertheless, this gene was obtained only partially by PCR. The hybridization results and sequence analyses showed that intact 5S regions are more appropriate for the probe operation, due to conserved structure and motifs. This study contributes to a better understanding of the organization of multigene families in catfish's genomes.
Collapse
Affiliation(s)
- Juceli Gonzalez Gouveia
- Departamento de Biologia Geral, Centro de Ciências Biológicas, CCB, Universidade Estadual de Londrina, P.O Box 6001, Londrina, Paraná, CEP 86051-970, Brazil
| | - Ivan Rodrigo Wolf
- Departamento de Biologia Geral, Centro de Ciências Biológicas, CCB, Universidade Estadual de Londrina, P.O Box 6001, Londrina, Paraná, CEP 86051-970, Brazil
| | | | - Vanessa Belline Bardella
- Departamento de Biologia Geral, Centro de Ciências Biológicas, CCB, Universidade Estadual de Londrina, P.O Box 6001, Londrina, Paraná, CEP 86051-970, Brazil
| | - Lara Munique Ferracin
- Departamento de Biologia Geral, Centro de Ciências Biológicas, CCB, Universidade Estadual de Londrina, P.O Box 6001, Londrina, Paraná, CEP 86051-970, Brazil
| | - Lucia Giuliano-Caetano
- Departamento de Biologia Geral, Centro de Ciências Biológicas, CCB, Universidade Estadual de Londrina, P.O Box 6001, Londrina, Paraná, CEP 86051-970, Brazil
| | - Renata da Rosa
- Departamento de Biologia Geral, Centro de Ciências Biológicas, CCB, Universidade Estadual de Londrina, P.O Box 6001, Londrina, Paraná, CEP 86051-970, Brazil
| | - Ana Lúcia Dias
- Departamento de Biologia Geral, Centro de Ciências Biológicas, CCB, Universidade Estadual de Londrina, P.O Box 6001, Londrina, Paraná, CEP 86051-970, Brazil.
| |
Collapse
|
17
|
Martinez JF, Lui RL, Traldi JB, Blanco DR, Moreira-Filho O. Comparative Cytogenetics of Hoplerythrinus unitaeniatus (Agassiz, 1829) (Characiformes, Erythrinidae) Species Complex from Different Brazilian Hydrographic Basins. Cytogenet Genome Res 2016; 149:191-200. [PMID: 27522524 DOI: 10.1159/000448153] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2016] [Indexed: 11/19/2022] Open
Abstract
Chromosomal characteristics of Hoplerythrinus unitaeniatus populations from 5 Brazilian river basins, namely Arinos (Amazonas basin), Araguaia, Paraguai, Alto Paraná, and São Francisco were analyzed by conventional Giemsa staining, C-banding, silver nitrate impregnation, and fluorescence in situ hybridization (FISH) with 18S and 5S rDNA and telomeric sequence (TTAGGG)n probes. The diploid chromosome number was 2n = 48 in representatives of the populations from Paraguai and Alto Paraná River basins and 2n = 52 for those from the Arinos and Araguaia River basins. The São Francisco population had individuals with 2n = 50 and 52 occurring in sympatry. C-banding showed heterochromatic blocks mainly located at interstitial and pericentromeric positions in most of the chromosomes. Silver nitrate impregnation demonstrated simple NORs for representatives from Arinos and Araguaia River populations and multiple NORs for specimens from Paraguai, Alto Paraná, and São Francisco River populations. FISH with 18S and 5S rDNA probes revealed many chromosomes carrying these cistrons, with up to 21 chromosomes bearing 18S rDNA sites (Alto Rio Paraná basin) and up to 12 chromosomes with 5S rDNA sites (Paraguai basin), besides the occurrence of colocalization in all populations. FISH with telomeric sequence (TTAGGG)n detected sites in the terminal portion of the chromosomes in all populations. These data reinforce the idea that H. unitaeniatus is a species complex. Evolutionary and biogeographical aspects of the group in the Neotropical region are discussed.
Collapse
Affiliation(s)
- Juliana F Martinez
- Departamento de Biologia, Universidade Federal de São Carlos, Sorocaba, Brazil
| | | | | | | | | |
Collapse
|
18
|
Silva FAD, Carvalho NDM, Schneider CH, Terencio ML, Feldberg E, Gross MC. Comparative Cytotaxonomy of Two Species of Fish from the Genus Satanoperca Reveals the Presence of a B Chromosome. Zebrafish 2016; 13:354-9. [PMID: 27158927 DOI: 10.1089/zeb.2016.1276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The taxonomy of Satanoperca spp. is still unresolved, especially because coloring, one of the main diagnostic characters, is variable among species of this genus. Thus, the aim of this study was to elucidate the relationship between the genome and the organization of the chromosome in two Satanoperca species. Our main goal was to develop a method to better differentiate taxa and understand the evolution of Satanoperca jurupari and Satanoperca lilith karyotypes, which we analyzed with classical and molecular cytogenetics. Both species have the same diploid number (2n) of 48 and location of 5S rDNA sites on pair 5. Nonetheless, the distribution of heterochromatin and 18S rDNA sites followed a species-specific pattern. The interstitial telomeric sites were not highlighted in either species. Regardless, a single B chromosome was identified in some metaphases of S. lilith. These data show that Satanoperca species harbor chromosomal features that can be used to identify the two species of Satanoperca studied here, allowing for the use of cytogenetic markers to make taxonomic inferences within the genus.
Collapse
Affiliation(s)
- Francijara Araújo da Silva
- 1 Laboratório de Citogenômica Animal, Departamento de Genética, Instituto de Ciências Biológicas , Universidade Federal do Amazonas, Manaus, Brazil
| | - Natália Dayane Moura Carvalho
- 1 Laboratório de Citogenômica Animal, Departamento de Genética, Instituto de Ciências Biológicas , Universidade Federal do Amazonas, Manaus, Brazil
| | - Carlos Henrique Schneider
- 1 Laboratório de Citogenômica Animal, Departamento de Genética, Instituto de Ciências Biológicas , Universidade Federal do Amazonas, Manaus, Brazil
| | - Maria Leandra Terencio
- 2 Instituto de Ciências da Vida e da Natureza, Departamento de Medicina, Universidade Federal de Integração Latino Americana , Foz do Iguaçu, Brazil
| | - Eliana Feldberg
- 3 Laboratório de Genética Animal, Instituto Nacional de Pesquisas da Amazônia , Manaus, Brazil
| | - Maria Claudia Gross
- 2 Instituto de Ciências da Vida e da Natureza, Departamento de Medicina, Universidade Federal de Integração Latino Americana , Foz do Iguaçu, Brazil
| |
Collapse
|
19
|
The 5S rDNA in two Abracris grasshoppers (Ommatolampidinae: Acrididae): molecular and chromosomal organization. Mol Genet Genomics 2016; 291:1607-13. [PMID: 27106499 DOI: 10.1007/s00438-016-1204-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 03/30/2016] [Indexed: 10/21/2022]
Abstract
The 5S ribosomal DNA (rDNA) sequences are subject of dynamic evolution at chromosomal and molecular levels, evolving through concerted and/or birth-and-death fashion. Among grasshoppers, the chromosomal location for this sequence was established for some species, but little molecular information was obtained to infer evolutionary patterns. Here, we integrated data from chromosomal and nucleotide sequence analysis for 5S rDNA in two Abracris species aiming to identify evolutionary dynamics. For both species, two arrays were identified, a larger sequence (named type-I) that consisted of the entire 5S rDNA gene plus NTS (non-transcribed spacer) and a smaller (named type-II) with truncated 5S rDNA gene plus short NTS that was considered a pseudogene. For type-I sequences, the gene corresponding region contained the internal control region and poly-T motif and the NTS presented partial transposable elements. Between the species, nucleotide differences for type-I were noticed, while type-II was identical, suggesting pseudogenization in a common ancestor. At chromosomal point to view, the type-II was placed in one bivalent, while type-I occurred in multiple copies in distinct chromosomes. In Abracris, the evolution of 5S rDNA was apparently influenced by the chromosomal distribution of clusters (single or multiple location), resulting in a mixed mechanism integrating concerted and birth-and-death evolution depending on the unit.
Collapse
|
20
|
Autotriploid origin of Carassius auratus as revealed by chromosomal locus analysis. SCIENCE CHINA-LIFE SCIENCES 2016; 59:622-6. [DOI: 10.1007/s11427-016-5040-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 11/06/2015] [Indexed: 10/21/2022]
|
21
|
Castro SI, Hleap JS, Cárdenas H, Blouin C. Molecular organization of the 5S rDNA gene type II in elasmobranchs. RNA Biol 2015; 13:391-9. [PMID: 26488198 PMCID: PMC4841605 DOI: 10.1080/15476286.2015.1100796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 09/21/2015] [Indexed: 10/22/2022] Open
Abstract
The 5S rDNA gene is a non-coding RNA that can be found in 2 copies (type I and type II) in bony and cartilaginous fish. Previous studies have pointed out that type II gene is a paralog derived from type I. We analyzed the molecular organization of 5S rDNA type II in elasmobranchs. Although the structure of the 5S rDNA is supposed to be highly conserved, our results show that the secondary structure in this group possesses some variability and is different than the consensus secondary structure. One of these differences in Selachii is an internal loop at nucleotides 7 and 112. These mutations observed in the transcribed region suggest an independent origin of the gene among Batoids and Selachii. All promoters were highly conserved with the exception of BoxA, possibly due to its affinity to polymerase III. This latter enzyme recognizes a dT4 sequence as stop signal, however in Rajiformes this signal was doubled in length to dT8. This could be an adaptation toward a higher efficiency in the termination process. Our results suggest that there is no TATA box in elasmobranchs in the NTS region. We also provide some evidence suggesting that the complexity of the microsatellites present in the NTS region play an important role in the 5S rRNA gene since it is significantly correlated with the length of the NTS.
Collapse
Affiliation(s)
- Sergio I. Castro
- Grupo de Estudios en Genética Ecología Molecular y Fisiología Animal, Universidad del Valle, Cali, Colombia
- Fundación Colombiana para la Investigación y Conservación de Tiburones y Rayas, SQUALUS. Cali, Colombia
| | - Jose S. Hleap
- Grupo de Estudios en Genética Ecología Molecular y Fisiología Animal, Universidad del Valle, Cali, Colombia
- Fundación Colombiana para la Investigación y Conservación de Tiburones y Rayas, SQUALUS. Cali, Colombia
- Canadian Institute for Advanced Research, Program in Evolutionary Biology, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada
| | - Heiber Cárdenas
- Grupo de Estudios en Genética Ecología Molecular y Fisiología Animal, Universidad del Valle, Cali, Colombia
| | - Christian Blouin
- Canadian Institute for Advanced Research, Program in Evolutionary Biology, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada
- Department of Computer Science, Dalhousie University, Halifax, Canada
| |
Collapse
|
22
|
Martinez JDF, Lui RL, Traldi JB, Blanco DR, Moreira-Filho O. Occurrence of Natural Hybrids Among Sympatric Karyomorphs in Hoplerythrinus unitaeniatus (Characiformes, Erythrinidae). Zebrafish 2015; 12:281-7. [PMID: 26102558 DOI: 10.1089/zeb.2015.1083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In this study, 43 specimens of Hoplerythrinus unitaeniatus from the São Francisco River basin were chromosomally analyzed by conventional Giemsa staining, C-banding, silver nitrate impregnation, and fluorescence in situ hybridization (FISH) with probes of 5S and 18S rDNA. The diploid numbers found were 50 and 52 chromosomes, showing the existence of two well-defined biological entities in sympatry. Specimens with 51 chromosomes, which showed three distinct karyotypic forms, were also found and are characterized as natural hybrids due to the correspondence with the chromosomes of the specimens with 50 and 52 chromosomes. By FISH using 5S and 18S rDNA probes, it was possible to detect specific chromosomal markers for the specimens with 50 and 52 chromosomes, as well as the occurrence of common sites in both. The specimens with 51 chromosomes showed intermediate patterns for these markers, reinforcing the hypothesis that these are actual natural hybrids. A review and new classification for the karyomorphs of H. unitaeniatus have also been proposed.
Collapse
Affiliation(s)
| | - Roberto Laridondo Lui
- 2 Centro de Ciências Biológicas e da Saúde, Universidade Estadual do Oeste do Paraná , Cascavel, Paraná, Brazil
| | - Josiane Baccarin Traldi
- 3 Departamento de Genética e Evolução, Universidade Federal de São Carlos , São Carlos, São Paulo, Brazil
| | | | - Orlando Moreira-Filho
- 3 Departamento de Genética e Evolução, Universidade Federal de São Carlos , São Carlos, São Paulo, Brazil
| |
Collapse
|
23
|
Cruz VP, Oliveira C, Foresti F. An intriguing model for 5S rDNA sequences dispersion in the genome of freshwater stingray Potamotrygon motoro (Chondrichthyes: Potamotrygonidae). Mol Biol 2015. [DOI: 10.1134/s0026893315030036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
de Barros LC, Santos U, Cioffi MDB, Dergam JA. Evolutionary divergence among Oligosarcus spp. (Ostariophysi, Characidae) from the São Francisco and Doce River basins: Oligosarcus solitarius Menezes, 1987 shows the highest rates of chromosomal evolution in the Neotropical Region. Zebrafish 2015; 12:102-10. [PMID: 25602472 DOI: 10.1089/zeb.2014.1030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The Doce River, in southeastern Brazil, is a coastal drainage, configured since the Late Cretaceous, when South America separated from Africa. Of the 77 native fish species of the Doce River Basin, 37 are potentially endangered-Oligosarcus solitarius, Menezes 1987, is the only endemic species of the quaternary lakes in the middle portion of this drainage and Oligosarcus argenteus, Günther 1864, is distributed in the Doce River channel and headwaters. This study characterizes the morphological, cytogenetic, and mitochondrial DNA variation in the Oligosarcus spp. populations from the Doce and São Francisco River Basins. The principal component analysis indicates three morphological groups. Cytogenetic data corroborate existence of the O. solitarius and O. argenteus fish species in the Doce River Basin, with high levels of population cytogenetic polymorphism. Taking into consideration the Pleistocene-Holocene formation of the lacustrine system in the middle Doce River, with low molecular differentiation and high levels of chromosomal variation among the O. solitarius populations, we concluded that O. solitarius has the highest rate of chromosomal evolution observed in Neotropical freshwater fishes. The morphological and cytogenetic patterns of the Oligosarcus sp. population collected at the Das Velhas River headwaters suggest that it may represent an undescribed species.
Collapse
Affiliation(s)
- Lucas Caetano de Barros
- 1 Departamento de Genética, Conservação e Biologia Evolutiva, Instituto Nacional de Pesquisas na Amazônia , Manaus, Brazil
| | | | | | | |
Collapse
|
25
|
Paim FG, Brandão JHSG, Sampaio I, de Mello Affonso PRA, Diniz D. Genetic identification of bucktooth parrotfish Sparisoma radians (Valenciennes, 1840) (Labridae, Scarinae) by chromosomal and molecular markers. Genet Mol Biol 2014; 37:646-51. [PMID: 25505839 PMCID: PMC4261964 DOI: 10.1590/s1415-47572014005000024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 07/28/2014] [Indexed: 11/22/2022] Open
Abstract
Parrotfishes (Labridae, Scarinae) comprise a large marine fish group of difficult identification, particularly during juvenile phase when the typical morphology and coloration of adults are absent. Therefore, the goal of this study was to test cytogenetic markers and DNA barcoding in the identification of bucktooth parrtotfish Sparisoma radians from the northeastern coast of Brazil. Sequencing of cytochrome c oxidase subunit I (COI) confirmed all studied samples as S. radians, and all showed high similarity (99-100%) with Caribbean populations. The karyotype of this species was divergent from most marine Perciformes, being composed of 2n = 46 chromosomes. These consisted of a large number of metacentric and submetacentric pairs with small amounts of heterochromatin and GC-rich single nucleolar organizer regions (NORs) not syntenic to 5S rDNA clusters. These are the first data about DNA barcoding in parrotfish from the Brazilian province and the first refined chromosomal analysis in Scarinae, providing useful data to a reliable genetic identification of S. radians.
Collapse
Affiliation(s)
- Fabilene Gomes Paim
- Departamento de Ciências Biológicas , Universidade Estadual do Sudoeste da Bahia , Jequié, BA , Brazil
| | | | - Iracilda Sampaio
- Instituto de Estudos Costeiros , Universidade Federal do Pará , Bragança, PA , Brazil
| | | | - Débora Diniz
- Departamento de Ciências Biológicas , Universidade Estadual do Sudoeste da Bahia , Jequié, BA , Brazil
| |
Collapse
|
26
|
Veneza I, Felipe B, Oliveira J, Silva R, Sampaio I, Schneider H, Gomes G. A barcode for the authentication of the snappers (Lutjanidae) of the western Atlantic: rDNA 5S or mitochondrial COI? Food Control 2014. [DOI: 10.1016/j.foodcont.2013.10.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
27
|
He W, Xie L, Li T, Liu S, Xiao J, Hu J, Wang J, Qin Q, Liu Y. The formation of diploid and triploid hybrids of female grass carp × male blunt snout bream and their 5S rDNA analysis. BMC Genet 2013; 14:110. [PMID: 24267392 PMCID: PMC4222567 DOI: 10.1186/1471-2156-14-110] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 11/19/2013] [Indexed: 11/16/2022] Open
Abstract
Background Hybridization is a useful strategy to alter the genotypes and phenotypes of the offspring. It could transfer the genome of one species to another through combing the different genome of parents in the hybrid offspring. And the offspring may exhibit advantages in growth rate, disease resistance, survival rate and appearance, which resulting from the combination of the beneficial traits from both parents. Results Diploid and triploid hybrids of female grass carp (Ctenopharyngodon idellus, GC, Cyprininae, 2n = 48) × male blunt snout bream (Megalobrama amblycephala, BSB, Cultrinae, 2n = 48) were successfully obtained by distant hybridization. Diploid hybrids had 48 chromosomes, with one set from GC and one set from BSB. Triploid hybrids possessed 72 chromosomes, with two sets from GC and one set from BSB. The morphological traits, growth rates, and feeding ecology of the parents and hybrid offspring were compared and analyzed. The two kinds of hybrid offspring exhibited significantly phenotypic divergence from GC and BSB. 2nGB hybrids showed similar growth rate compared to that of GC, and 3nGB hybrids significantly higher results. Furthermore, the feeding ecology of hybrid progeny was omnivorous. The 5S rDNA of GC, BSB and their hybrid offspring were also cloned and sequenced. There was only one type of 5S rDNA (designated type I: 180 bp) in GC and one type of 5S rDNA (designated type II: 188 bp) in BSB. However, in the hybrid progeny, diploid and triploid hybrids both inherited type I and type II from their parents, respectively. In addition, a chimera of type I and type II was observed in the genome of diploid and triploid hybrids, excepting a 10 bp of polyA insertion in type II sequence of the chimera of the diploid hybrids. Conclusions This is the first report of diploid and triploid hybrids being produced by crossing GC and BSB, which have the same chromosome number. The obtainment of two new hybrid offspring has significance in fish genetic breeding. The results illustrate the effect of hybridization and polyploidization on the organization and variation of 5S rDNA in hybrid offspring.
Collapse
Affiliation(s)
- Weiguo He
- Key Laboratory of Protein Chemistry and Fish Developmental Biology of Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha 410081, P R, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Pereira CSA, Ráb P, Collares-Pereira MJ. Chromosomes of European cyprinid fishes: comparative cytogenetics and chromosomal characteristics of ribosomal DNAs in nine Iberian chondrostomine species (Leuciscinae). Genetica 2013; 140:485-95. [PMID: 23329299 DOI: 10.1007/s10709-013-9697-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 01/04/2013] [Indexed: 12/01/2022]
Abstract
Karyotypes and chromosomal features of both minor and major ribosomal RNA genes (rDNA) were investigated in nine Iberian chondrostomine species by fluorescent in situ hybridization (FISH) with 5S and 45S rDNA probes. All species presented invariably diploid values of 2n = 50 and the characteristic leuciscin karyotype pattern with 6-7 metacentric (m), 15-16 submetacentric (sm) and 3-4 subtelo- to acrocentric (st/a) chromosome pairs. The largest chromosome pair of the set was st/a as typical of Leuciscinae and no heteromorphic chromosomes could be unequivocally associated to sex determination. Achondrostoma occidentale and Pseudochondrostoma willkommii were cytogenetically characterized for the first time while Achondrostoma arcasii and Iberochondrostoma lemmingii were revisited regarding previous karyotype descriptions. Remarkable variability in number and location was observed for both molecular chromosome markers, especially within Achondrostoma and Iberochondrostoma genera. Clusters of 5S rDNA were mostly terminally associated to st/a chromosomes varying from four to eight positive signals, whilst NOR sites directly detected by the 45S rDNA probe were identified in sm chromosomes varying from three to six independent clusters. Frequent population bottlenecks in Mediterranean-type semiarid habitats were hypothesized to explain not only such extensive polymorphism which seems unique among leuciscin cyprinids but also the increased probability of fixation of rDNA translocation events.
Collapse
Affiliation(s)
- Carla Sofia A Pereira
- Faculty of Sciences, Department of Animal Biology, Centre of Environmental Biology, University of Lisbon, Campo Grande, 1749-016, Lisbon, Portugal.
| | | | | |
Collapse
|
29
|
Dimarco E, Cascone E, Bellavia D, Caradonna F. Functional variants of 5S rRNA in the ribosomes of common sea urchin Paracentrotus lividus. Gene 2012; 508:21-5. [PMID: 22967708 DOI: 10.1016/j.gene.2012.07.067] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 07/30/2012] [Indexed: 11/28/2022]
Abstract
We have previously reported a molecular and cytogenetic characterization of three different 5S rDNA clusters in the sea urchin Paracentrotus lividus; this study, performed at DNA level only, lends itself as starting point to verify that these clusters could contain transcribed genes, then, to demonstrate the presence of heterogeneity at functional RNA level, also. In the present work we report in P. lividus ribosomes the existence of several transcribed variants of the 5S rRNA and we associate all transcribed variants to the cluster to which belong. Our finding is the first demonstration of the presence of high heterogeneity in functional 5S rRNA molecules in animal ribosomes, a feature that had been considered a peculiarity of some plants.
Collapse
Affiliation(s)
- Eufrosina Dimarco
- Dipartimento di Scienze e Tecnologie Molecolari e Biomolecolari (STEMBIO), Sezione di Biologia Cellulare, Università degli Studi di Palermo, V.le delle Scienze—90128 Palermo, Italy
| | | | | | | |
Collapse
|
30
|
Evolutionary dynamics of rRNA gene clusters in cichlid fish. BMC Evol Biol 2012; 12:198. [PMID: 23035959 PMCID: PMC3503869 DOI: 10.1186/1471-2148-12-198] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 09/25/2012] [Indexed: 11/30/2022] Open
Abstract
Background Among multigene families, ribosomal RNA (rRNA) genes are the most frequently studied and have been explored as cytogenetic markers to study the evolutionary history of karyotypes among animals and plants. In this report, we applied cytogenetic and genomic methods to investigate the organization of rRNA genes among cichlid fishes. Cichlids are a group of fishes that are of increasing scientific interest due to their rapid and convergent adaptive radiation, which has led to extensive ecological diversity. Results The present paper reports the cytogenetic mapping of the 5S rRNA genes from 18 South American, 22 African and one Asian species and the 18S rRNA genes from 3 African species. The data obtained were comparatively analyzed with previously published information related to the mapping of rRNA genes in cichlids. The number of 5S rRNA clusters per diploid genome ranged from 2 to 15, with the most common pattern being the presence of 2 chromosomes bearing a 5S rDNA cluster. Regarding 18S rDNA mapping, the number of sites ranged from 2 to 6, with the most common pattern being the presence of 2 sites per diploid genome. Furthermore, searching the Oreochromis niloticus genome database led to the identification of a total of 59 copies of 5S rRNA and 38 copies of 18S rRNA genes that were distributed in several genomic scaffolds. The rRNA genes were frequently flanked by transposable elements (TEs) and spread throughout the genome, complementing the FISH analysis that detect only clustered copies of rRNA genes. Conclusions The organization of rRNA gene clusters seems to reflect their intense and particular evolutionary pathway and not the evolutionary history of the associated taxa. The possible role of TEs as one source of rRNA gene movement, that could generates the spreading of ribosomal clusters/copies, is discussed. The present paper reinforces the notion that the integration of cytogenetic data and genomic analysis provides a more complete picture for understanding the organization of repeated sequences in the genome.
Collapse
|
31
|
He W, Qin Q, Liu S, Li T, Wang J, Xiao J, Xie L, Zhang C, Liu Y. Organization and variation analysis of 5S rDNA in different ploidy-level hybrids of red crucian carp × topmouth culter. PLoS One 2012; 7:e38976. [PMID: 22720007 PMCID: PMC3377697 DOI: 10.1371/journal.pone.0038976] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 05/14/2012] [Indexed: 11/18/2022] Open
Abstract
Through distant crossing, diploid, triploid and tetraploid hybrids of red crucian carp (Carassius auratus red var., RCC♀, Cyprininae, 2n = 100) × topmouth culter (Erythroculter ilishaeformis Bleeker, TC♂, Cultrinae, 2n = 48) were successfully produced. Diploid hybrids possessed 74 chromosomes with one set from RCC and one set from TC; triploid hybrids harbored 124 chromosomes with two sets from RCC and one set from TC; tetraploid hybrids had 148 chromosomes with two sets from RCC and two sets from TC. The 5S rDNA of the three different ploidy-level hybrids and their parents were sequenced and analyzed. There were three monomeric 5S rDNA classes (designated class I: 203 bp; class II: 340 bp; and class III: 477 bp) in RCC and two monomeric 5S rDNA classes (designated class IV: 188 bp, and class V: 286 bp) in TC. In the hybrid offspring, diploid hybrids inherited three 5S rDNA classes from their female parent (RCC) and only class IV from their male parent (TC). Triploid hybrids inherited class II and class III from their female parent (RCC) and class IV from their male parent (TC). Tetraploid hybrids gained class II and class III from their female parent (RCC), and generated a new 5S rDNA sequence (designated class I-N). The specific paternal 5S rDNA sequence of class V was not found in the hybrid offspring. Sequence analysis of 5S rDNA revealed the influence of hybridization and polyploidization on the organization and variation of 5S rDNA in fish. This is the first report on the coexistence in vertebrates of viable diploid, triploid and tetraploid hybrids produced by crossing parents with different chromosome numbers, and these new hybrids are novel specimens for studying the genomic variation in the first generation of interspecific hybrids, which has significance for evolution and fish genetics.
Collapse
Affiliation(s)
- Weiguo He
- Key Laboratory of Protein Chemistry and Fish Developmental Biology of Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, People’s Republic of China
| | - Qinbo Qin
- Key Laboratory of Protein Chemistry and Fish Developmental Biology of Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, People’s Republic of China
| | - Shaojun Liu
- Key Laboratory of Protein Chemistry and Fish Developmental Biology of Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, People’s Republic of China
- * E-mail:
| | - Tangluo Li
- Key Laboratory of Protein Chemistry and Fish Developmental Biology of Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, People’s Republic of China
| | - Jing Wang
- Key Laboratory of Protein Chemistry and Fish Developmental Biology of Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, People’s Republic of China
| | - Jun Xiao
- Key Laboratory of Protein Chemistry and Fish Developmental Biology of Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, People’s Republic of China
| | - Lihua Xie
- Key Laboratory of Protein Chemistry and Fish Developmental Biology of Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, People’s Republic of China
| | - Chun Zhang
- Key Laboratory of Protein Chemistry and Fish Developmental Biology of Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, People’s Republic of China
| | - Yun Liu
- Key Laboratory of Protein Chemistry and Fish Developmental Biology of Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, People’s Republic of China
| |
Collapse
|
32
|
Merlo MA, Pacchiarini T, Portela-Bens S, Cross I, Manchado M, Rebordinos L. Genetic characterization of Plectorhinchus mediterraneus yields important clues about genome organization and evolution of multigene families. BMC Genet 2012; 13:33. [PMID: 22545758 PMCID: PMC3464664 DOI: 10.1186/1471-2156-13-33] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 04/30/2012] [Indexed: 12/17/2022] Open
Abstract
Background Molecular and cytogenetic markers are of great use for to fish characterization, identification, phylogenetics and evolution. Multigene families have proven to be good markers for a better understanding of the variability, organization and evolution of fish species. Three different tandemly-repeated gene families (45S rDNA, 5S rDNA and U2 snDNA) have been studied in Plectorhinchus mediterraneus (Teleostei: Haemulidae), at both molecular and cytogenetic level, to elucidate the taxonomy and evolution of these multigene families, as well as for comparative purposes with other species of the family. Results Four different types of 5S rDNA were obtained; two of them showed a high homology with that of Raja asterias, and the putative implication of a horizontal transfer event and its consequences for the organization and evolution of the 5S rDNA have been discussed. The other two types do not resemble any other species, but in one of them a putative tRNA-derived SINE was observed for the first time, which could have implications in the evolution of the 5S rDNA. The ITS-1 sequence was more related to a species of another different genus than to that of the same genus, therefore a revision of the Hamulidae family systematic has been proposed. In the analysis of the U2 snDNA, we were able to corroborate that U2 snDNA and U5 snDNA were linked in the same tandem array, and this has interest for tracing evolutionary lines. The karyotype of the species was composed of 2n = 48 acrocentric chromosomes, and each of the three multigene families were located in different chromosome pairs, thus providing three different chromosomal markers. Conclusions Novel data can be extracted from the results: a putative event of horizontal transfer, a possible tRNA-derived SINE linked to one of the four 5S rDNA types characterized, and a linkage between U2 and U5 snDNA. In addition, a revision of the taxonomy of the Haemulidae family has been suggested, and three cytogenetic markers have been obtained. Some of these results have not been described before in any other fish species. New clues about the genome organization and evolution of the multigene families are offered in this study.
Collapse
Affiliation(s)
- Manuel A Merlo
- Laboratorio de Genética, Universidad de Cádiz, Polígono Río San Pedro 11510, Puerto Real, Cádiz, Spain
| | | | | | | | | | | |
Collapse
|
33
|
Schemberger MO, Bellafronte E, Nogaroto V, Almeida MC, Schühli GS, Artoni RF, Moreira-Filho O, Vicari MR. Differentiation of repetitive DNA sites and sex chromosome systems reveal closely related group in Parodontidae (Actinopterygii: Characiformes). Genetica 2012; 139:1499-508. [DOI: 10.1007/s10709-012-9649-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2011] [Accepted: 04/09/2012] [Indexed: 11/24/2022]
|
34
|
Rodrigues DS, Rivera M, Lourenço LB. Molecular organization and chromosomal localization of 5S rDNA in Amazonian Engystomops (Anura, Leiuperidae). BMC Genet 2012; 13:17. [PMID: 22433220 PMCID: PMC3342222 DOI: 10.1186/1471-2156-13-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 03/20/2012] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND For anurans, knowledge of 5S rDNA is scarce. For Engystomops species, chromosomal homeologies are difficult to recognize due to the high level of inter- and intraspecific cytogenetic variation. In an attempt to better compare the karyotypes of the Amazonian species Engystomops freibergi and Engystomops petersi, and to extend the knowledge of 5S rDNA organization in anurans, the 5S rDNA sequences of Amazonian Engystomops species were isolated, characterized, and mapped. RESULTS Two types of 5S rDNA, which were readily differentiated by their NTS (non-transcribed spacer) sizes and compositions, were isolated from specimens of E. freibergi from Brazil and E. petersi from two Ecuadorian localities (Puyo and Yasuní). In the E. freibergi karyotypes, the entire type I 5S rDNA repeating unit hybridized to the pericentromeric region of 3p, whereas the entire type II 5S rDNA repeating unit mapped to the distal region of 6q, suggesting a differential localization of these sequences. The type I NTS probe clearly detected the 3p pericentromeric region in the karyotypes of E. freibergi and E. petersi from Puyo and the 5p pericentromeric region in the karyotype of E. petersi from Yasuní, but no distal or interstitial signals were observed. Interestingly, this probe also detected many centromeric regions in the three karyotypes, suggesting the presence of a satellite DNA family derived from 5S rDNA. The type II NTS probe detected only distal 6q regions in the three karyotypes, corroborating the differential distribution of the two types of 5S rDNA. CONCLUSIONS Because the 5S rDNA types found in Engystomops are related to those of Physalaemus with respect to their nucleotide sequences and chromosomal locations, their origin likely preceded the evolutionary divergence of these genera. In addition, our data indicated homeology between Chromosome 5 in E. petersi from Yasuní and Chromosomes 3 in E. freibergi and E. petersi from Puyo. In addition, the chromosomal location of the type II 5S rDNA corroborates the hypothesis that the Chromosomes 6 of E. petersi and E. freibergi are homeologous despite the great differences observed between the karyotypes of the Yasuní specimens and the others.
Collapse
Affiliation(s)
- Débora Silva Rodrigues
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP 13083-863, Brazil
| | - Miryan Rivera
- Escuela de Ciencias Biológicas, Pontifícia Universidad Católica Del Ecuador, Quito, Ecuador
| | - Luciana Bolsoni Lourenço
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP 13083-863, Brazil
| |
Collapse
|
35
|
Van Wormhoudt A, Gaume B, Le Bras Y, Roussel V, Huchette S. Two different and functional nuclear rDNA genes in the abalone Haliotis tuberculata: tissue differential expression. Genetica 2011; 139:1217-27. [PMID: 22210151 DOI: 10.1007/s10709-011-9623-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Accepted: 12/20/2011] [Indexed: 12/22/2022]
Abstract
Analysis of the 18S rDNA sequences of Haliotis tuberculata tuberculata and H. t. coccinea subtaxa identified two different types of 18S rDNA genes and ITS1 regions. These two different genes were also detected in H. marmorata, H. rugosa and H. diversicolor that are separated from H. tuberculata by 5-65 mya. The mean divergence value between type I and type II sequences ranged from 7.25% for 18S to 80% for ITS1. ITS1 type II is homologous with the ITS1 consensus sequences published for many abalone species, whereas ITS1 type I presented only minor homology with a unique database entry for H. iris ITS1. A phylogenetic analysis makes a clear separation between type I and type II ITS1 sequences and supports grouping H. t. tuberculata, H. t. coccinea and H. marmorata together. The two subtaxa do not show any significant differences between the homologous 18S rDNA sequences. A general structure of the ITS1 transcript was proposed, with four major helices for the two types. The two genes were expressed and, for the first time, a putative differential expression of ITS1 type I was detected in the gills, digestive gland and gonads whereas ITS1 type II was expressed in all tissues.
Collapse
Affiliation(s)
- Alain Van Wormhoudt
- CNRS UMR 7208, Station de Biologie Marine du Muséum National d'Histoire Naturelle, 29900 Concarneau, France.
| | | | | | | | | |
Collapse
|
36
|
|
37
|
Perina A, Seoane D, González-Tizón AM, Rodríguez-Fariña F, Martínez-Lage A. Molecular organization and phylogenetic analysis of 5S rDNA in crustaceans of the genus Pollicipes reveal birth-and-death evolution and strong purifying selection. BMC Evol Biol 2011; 11:304. [PMID: 22004418 PMCID: PMC3215682 DOI: 10.1186/1471-2148-11-304] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 10/17/2011] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND The 5S ribosomal DNA (5S rDNA) is organized in tandem arrays with repeat units that consist of a transcribing region (5S) and a variable nontranscribed spacer (NTS), in higher eukaryotes. Until recently the 5S rDNA was thought to be subject to concerted evolution, however, in several taxa, sequence divergence levels between the 5S and the NTS were found higher than expected under this model. So, many studies have shown that birth-and-death processes and selection can drive the evolution of 5S rDNA. In analyses of 5S rDNA evolution is found several 5S rDNA types in the genome, with low levels of nucleotide variation in the 5S and a spacer region highly divergent. Molecular organization and nucleotide sequence of the 5S ribosomal DNA multigene family (5S rDNA) were investigated in three Pollicipes species in an evolutionary context. RESULTS The nucleotide sequence variation revealed that several 5S rDNA variants occur in Pollicipes genomes. They are clustered in up to seven different types based on differences in their nontranscribed spacers (NTS). Five different units of 5S rDNA were characterized in P. pollicipes and two different units in P. elegans and P. polymerus. Analysis of these sequences showed that identical types were shared among species and that two pseudogenes were present. We predicted the secondary structure and characterized the upstream and downstream conserved elements. Phylogenetic analysis showed an among-species clustering pattern of 5S rDNA types. CONCLUSIONS These results suggest that the evolution of Pollicipes 5S rDNA is driven by birth-and-death processes with strong purifying selection.
Collapse
Affiliation(s)
- Alejandra Perina
- Department of Cell and Molecular Biology, Evolutionary Biology Group, Universidade da Coruña, A Fraga 10, E-15008 A Coruña, Spain
| | | | | | | | | |
Collapse
|
38
|
Fernández-Tajes J, Méndez J. Two different size classes of 5S rDNA units coexisting in the same tandem array in the razor clam Ensis macha: is this region suitable for phylogeographic studies? Biochem Genet 2011; 47:775-88. [PMID: 19633947 DOI: 10.1007/s10528-009-9276-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2008] [Accepted: 01/05/2009] [Indexed: 11/29/2022]
Abstract
For a study of 5S ribosomal genes (rDNA) in the razor clam Ensis macha, the 5S rDNA region was amplified and sequenced. Two variants, so-called type I or short repeat (approximately 430 bp) and type II or long repeat (approximately 735 bp), appeared to be the main components of the 5S rDNA of this species. Their spacers differed markedly, both in length and nucleotide composition. The organization of the two variants was investigated by amplifying the genomic DNA with primers based on the sequence of the type I and type II spacers. PCR amplification products with primers EMLbF and EMSbR showed that the long and short repeats are associated within the same tandem array, suggesting an intermixed arrangement of both spacers. Nevertheless, amplifications carried out with inverse primers EMSinvF/R and EMLinvF/R revealed that some short and long repeats are contiguous in the same tandem array. This is the first report of the coexistence of two variable spacers in the same tandem array in bivalve mollusks.
Collapse
Affiliation(s)
- Juan Fernández-Tajes
- Department of Cell and Molecular Biology, Faculty of Sciences, University of A Coruña, Spain.
| | | |
Collapse
|
39
|
da Silva M, Matoso DA, Vicari MR, de Almeida MC, Margarido VP, Artoni RF. Physical mapping of 5S rDNA in two species of Knifefishes: Gymnotus pantanal and Gymnotus paraguensis (Gymnotiformes). Cytogenet Genome Res 2011; 134:303-7. [PMID: 21654160 DOI: 10.1159/000328998] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2011] [Indexed: 11/19/2022] Open
Abstract
Physical mapping of 5S rDNA in 2 species of knifefishes, Gymnotuspantanal and G. paraguensis (Gymnotiformes), was performed using fluorescence in situ hybridization with a 5S rDNA probe. The 5S rDNA PCR product from the genomes of both species was also sequenced and aligned to determine non-transcribed spacer sequences (NTS). Both species under study had different patterns of 5S rDNA gene cluster distribution. While in the karyotype of G. pantanal two 5S rDNA-bearing pairs were observed, the karyotype of G. paraguensis possessed as many as 19 such pairs. Such multiplication of 5S rDNA gene clusters might be caused by the involvement of transposable elements because the NTS of G. paraguensis was 400 bp long with high identity (90%) with a mobile transposable element called Tc1-like transposon, described from the cyprinid fish Labeo rohita.
Collapse
Affiliation(s)
- M da Silva
- Departamento de Biologia Estrutural, Molecular e Genética, Universidade Estadual de Ponta Grossa, Brasil
| | | | | | | | | | | |
Collapse
|
40
|
The 5S rDNA family evolves through concerted and birth-and-death evolution in fish genomes: an example from freshwater stingrays. BMC Evol Biol 2011; 11:151. [PMID: 21627815 PMCID: PMC3123226 DOI: 10.1186/1471-2148-11-151] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Accepted: 05/31/2011] [Indexed: 11/10/2022] Open
Abstract
Background Ribosomal 5S genes are well known for the critical role they play in ribosome folding and functionality. These genes are thought to evolve in a concerted fashion, with high rates of homogenization of gene copies. However, the majority of previous analyses regarding the evolutionary process of rDNA repeats were conducted in invertebrates and plants. Studies have also been conducted on vertebrates, but these analyses were usually restricted to the 18S, 5.8S and 28S rRNA genes. The recent identification of divergent 5S rRNA gene paralogs in the genomes of elasmobranches and teleost fishes indicate that the eukaryotic 5S rRNA gene family has a more complex genomic organization than previously thought. The availability of new sequence data from lower vertebrates such as teleosts and elasmobranches enables an enhanced evolutionary characterization of 5S rDNA among vertebrates. Results We identified two variant classes of 5S rDNA sequences in the genomes of Potamotrygonidae stingrays, similar to the genomes of other vertebrates. One class of 5S rRNA genes was shared only by elasmobranches. A broad comparative survey among 100 vertebrate species suggests that the 5S rRNA gene variants in fishes originated from rounds of genome duplication. These variants were then maintained or eliminated by birth-and-death mechanisms, under intense purifying selection. Clustered multiple copies of 5S rDNA variants could have arisen due to unequal crossing over mechanisms. Simultaneously, the distinct genome clusters were independently homogenized, resulting in the maintenance of clusters of highly similar repeats through concerted evolution. Conclusions We believe that 5S rDNA molecular evolution in fish genomes is driven by a mixed mechanism that integrates birth-and-death and concerted evolution.
Collapse
|
41
|
Vittorazzi SE, Lourenço LB, Del-Grande ML, Recco-Pimentel SM. Satellite DNA derived from 5S rDNA in Physalaemus cuvieri (Anura, Leiuperidae). Cytogenet Genome Res 2011; 134:101-7. [PMID: 21464559 DOI: 10.1159/000325540] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2010] [Indexed: 01/04/2023] Open
Abstract
In the present study, we describe for the first time a family of 190-bp satellite DNA related to 5S rDNA in anurans and the existence of 2 forms of 5S rDNA, type I (201 bp) and type II (690 bp). The sequences were obtained from genomic DNA of Physalaemus cuvieri from Palmeiras, State of Bahia, Brazil. Analysis of the nucleotide sequence revealed that the satellite DNA obtained by digestion with EcoRI, called PcP190EcoRI, is 70% similar to the coding region of type I 5S rDNA and 66% similar to the coding region of type II 5S rDNA. Membrane hybridization and PCR amplification of the sequence showed that PcP190EcoRI is tandemly repeated. The satellite DNA as well as type I and type II 5S rDNA were localized in P. cuvieri chromosomes by fluorescent in situ hybridization. The PcP190EcoRI sequence was found in the centromeres of chromosomes 1-5 and in the pericentromeric region of chromosome 3. Type I 5S rDNA was detected in chromosome 3, coincident with the site of PcP190EcoRI. Type II 5S rDNA was located interstitially in the long arm of chromosome 5. None of these sequences co-localized with nucleolar organizer regions. Our data suggests that this satellite DNA originates from the 5S ribosomal multigene family, probably by gene duplication, nucleotide divergence and sequence dispersion in the genome.
Collapse
Affiliation(s)
- S E Vittorazzi
- Departamento de Anatomia, Biologia Celular, Fisiologia e Biofísica, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, Brasil
| | | | | | | |
Collapse
|
42
|
Moraes Neto A, Silva MD, Matoso DA, Vicari MR, Almeida MCD, Collares-Pereira MJ, Artoni RF. Karyotype variability in neotropical catfishes of the family Pimelodidae (Teleostei: Siluriformes). NEOTROPICAL ICHTHYOLOGY 2011. [DOI: 10.1590/s1679-62252011005000002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Karyotypic data are presented for four species of fish belonging to the Pimelodidae family. These species show a conserved diploid number, 2n = 56 chromosomes, with different karyotypic formulae. The analyzed species showed little amount of heterochromatin located preferentially in the centromeric and telomeric regions of some chromosomes. The nucleolus organizer regions activity (Ag-NORs) and the chromosomal location of ribosomal genes by fluorescent in situ hybridization (FISH), with 18S and 5S probes, showing only one chromosome pair marked bearer of ribosomal genes, the only exception was Pimelodus britskii that presented multiple NORs and syntenic location of the 18S and 5S probes. Non-Robertsonian events, as pericentric inversion and NORs duplication are requested to explain the karyotype diversification in Pseudoplatystoma from the rio Paraguay (MS), Pimelodus from the rio Iguaçu (PR), Sorubim from the rio Paraguay (MS) and Steindachneridion from the rio Paraíba do Sul (SP). The obtained data for the karyotype macrostructure of these species corroborates a conserved pattern observed in Pimelodidae. On the other hand, interspecific variations detected by molecular cytogenetics markers made possible cytotaxonomic inferences and differentiation of the species here analyzed.
Collapse
|
43
|
Morescalchi MA, Stingo V, Capriglione T. Cytogenetic analysis in Polypterus ornatipinnis (Actinopterygii, Cladistia, Polypteridae) and 5S rDNA. Mar Genomics 2011; 4:25-31. [PMID: 21429462 DOI: 10.1016/j.margen.2010.12.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Revised: 12/05/2010] [Accepted: 12/09/2010] [Indexed: 11/17/2022]
Abstract
Polypteridae is a family of archaic freshwater African fish that constitute an interesting subject for the study of the karyological evolution in vertebrates, on account of their primitive morphological characters and peculiar relationships with lower Osteichthyans. In this paper, a cytogenetic analysis on twenty specimens of both sexes of Polypterus ornatipinnis the ornate "bichir", coming from the Congo River basin, was performed by using both classical and molecular techniques. The karyotypic formula (2n=36; FN=72) was composed of 26 M+10 SM. The Alu I banding, performed to characterize heterochromatin in this species, was mainly centromeric. Both the chromosome location of the ribosomal 5S and 18S rRNA genes were examined by using Ag-NOR, classical C-banding, CMA(3) staining and FISH. CMA(3) marked all centromerical regions and showed the presence of two GC rich regions on the p arm of the chromosome pair n°1 and on the q arm of the pair n°14. Staining with Ag-NOR marked the only telomeric region of the chromosome n°1 p arm. After PCR, the 5S rDNA in this species was cloned, sequenced and analyzed. In the 665bp 5S rDNA sequence of P.ornatipinnis, a conserved 120bp gene region for the 5S rDNA was identified, followed by a non-transcribed variable spacer (NTS) which included simple repeats, microsatellites and a fragment of a non-LTR retrotransposon R-TEX. FISH with 5S rDNA marked the subtelomeric region of the q arm of the chromosome pair n°14, previously marked by CMA(3). FISH with 18S rDNA marked the telomeric region of the p arm of the pair n°1, previously marked both by Ag-NOR and CMA(3). The (GATA)(7) repeats marked the telomeric regions of all chromosome pairs, with the exclusion of the n°1, n°3 and n°14; hybridization with telomeric probes (TTAGGG)(n) showed signals at the end of all chromosomes. Karyotype evolution in Polypterus genus was finally discussed, including the new data obtained.
Collapse
Affiliation(s)
- Maria Alessandra Morescalchi
- Dipartimento di Scienze della Vita, Seconda Università degli Studi di Napoli, via Vivaldi 43, 81100 Caserta, Italy.
| | | | | |
Collapse
|
44
|
Molecular differentiation of the species of two squid families (Loliginidae and Ommastrephidae) based on a PCR study of the 5S rDNA gene. Food Control 2011. [DOI: 10.1016/j.foodcont.2010.06.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
45
|
Ardura A, Pola IG, Linde AR, Garcia-Vazquez E. DNA-based methods for species authentication of Amazonian commercial fish. Food Res Int 2010. [DOI: 10.1016/j.foodres.2010.08.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
46
|
Nascimento J, Quinderé YRSD, Recco-Pimentel SM, Lima JRF, Lourenço LB. Heteromorphic Z and W sex chromosomes in Physalaemus ephippifer (Steindachner, 1864) (Anura, Leiuperidae). Genetica 2010; 138:1127-32. [DOI: 10.1007/s10709-010-9501-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Accepted: 09/13/2010] [Indexed: 11/30/2022]
|
47
|
Chromosomal localization of rDNA genes and genomic organization of 5S rDNA in Oreochromis mossambicus, O. urolepis hornorum and their hybrid. J Genet 2010; 89:163-71. [PMID: 20861567 DOI: 10.1007/s12041-010-0022-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In this study, classical and molecular cytogenetic analyses were performed in tilapia fishes, Oreochromis mossambicus (XX/XY sex determination system), O. urolepis hornorum (WZ/ZZ sex determination system) and their hybrid by crossing O. mossambicus female x O. u. hornorum male. An identical karyotype ((2n = 44, NF (total number of chromosomal arms) = 50) was obtained from three examined tilapia samples. Genomic organization analysis of 5S rDNA revealed two different types of 5S rDNA sequences, 5S type I and 5S type II. Moreover, fluorescence in situ hybridization (FISH) with 5S rDNA probes showed six positive fluorescence signals on six chromosomes of all the analysed metaphases from the three tilapia samples. Subsequently, 45S rDNA probes were also prepared, and six positive fluorescence signals were observed on three chromosome pairs in all analysed metaphases of the three tilapia samples. The correlation between 45 rDNA localization and nucleolar organizer regions (NORs) was confirmed by silver nitrate staining in tilapia fishes. Further, different chromosomal localizations of 5S rDNA and 45S rDNA were verified by two different colour FISH probes. Briefly, the current data provide an insights for hybridization projects and breeding improvement of tilapias.
Collapse
|
48
|
Qin Q, He W, Liu S, Wang J, Xiao J, Liu Y. Analysis of 5S rDNA organization and variation in polyploid hybrids from crosses of different fish subfamilies. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2010; 314:403-11. [PMID: 20535772 DOI: 10.1002/jez.b.21346] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In this article, sequence analysis of the coding region (5S) and adjacent nontranscribed spacer (NTS) were conducted in red crucian carp (RCC), blunt snout bream (BSB), and their polyploid offspring. Three monomeric 5S rDNA classes (designated class I: 203 bp; class II: 340 bp; and class III: 477 bp) of RCC were characterized by distinct NTS types (designated NTS-I, II, and III for the 83, 220, and 357 bp monomers, respectively). In BSB, only one monomeric 5S rDNA was observed (designated class IV: 188 bp), which was characterized by one NTS type (designated NTS-IV: 68 bp). In the polyploid offspring, the tetraploid (4nRB) hybrids partially inherited 5S rDNA classes from their female parent (RCC); however, they also possessed a unique 5S rDNA sequence (designated class I-L: 203 bp) with a novel NTS sequence (designated NTS-I-L: 83 bp). The characteristic paternal 5S rDNA sequences (class IV) were not observed. The 5S rDNA of triploid (3nRB) hybrids was completely inherited from the parental species, and generally preserved the parental 5S rDNA structural organization. These results first revealed the influence of polyploidy on the organization and evolution of the multigene family of 5S rDNA of fish, and are also useful in clarifying aspects of vertebrate genome evolution.
Collapse
Affiliation(s)
- Qinbo Qin
- Key Laboratory of Protein Chemistry and Fish Developmental Biology of Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, People's Republic of China
| | | | | | | | | | | |
Collapse
|
49
|
Characterisation of the chromosome fusions in Oreochromis karongae. Chromosome Res 2010; 18:575-86. [PMID: 20574823 DOI: 10.1007/s10577-010-9141-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Revised: 06/03/2010] [Accepted: 06/04/2010] [Indexed: 10/19/2022]
Abstract
Oreochromis karongae, one of the "chambo" tilapia species from Lake Malawi, has a karyotype of 2n = 38, making it one of the few species investigated to differ from the typical tilapia karyotype (2n = 44). The O. karongae karyotype consists of one large subtelocentric pair of chromosomes, four medium-sized pairs (three subtelocentric and one submetacentric) and 14 small pairs. The five largest pairs could be distinguished from each other on the basis of size, morphology and a series of fluorescence in situ hybridisation (FISH) probes. The largest pair is easily distinguished on the basis of size and a chromosome 1 (linkage group 3) bacterial artificial chromosome (BAC) FISH probe from Oreochromis niloticus. BAC clones from O. niloticus chromosome 2 (linkage group 7) hybridised to one of the medium-sized subtelocentric chromosome pairs (no. 5) of O. karongae, distinguishing the ancestral medium-sized pair from the three other medium-sized chromosome pairs (nos. 2, 3 and 4) that appear to have resulted from fusions. SATA repetitive DNA hybridised to the centromeres of all 19 chromosome pairs and also revealed the locations of the relic centromeres in the three fused pairs. Telomeric (TTAGGG)(n) repeats were identified in the telomeres of all chromosomes, and an interstitial telomeric site (ITS) was identified in three chromosomal pairs (no. 2, 3 and 4). Additionally, two ITS sites were identified in the largest chromosome pair (pair 1), confirming the origin of this chromosome from three ancestral chromosomes. SATA and ITS sites allowed the orientation of the fusions in pairs 2, 3 and 4, which all appear to have been in different orientations (q-q, p-q and p-p, respectively). One of these fusions (O. karongae chromosome pair no. 2) involves a small chromosome (equivalent to linkage group 1), which in O. niloticus carries the main sex-determining gene. 4',6-Diamidino-2-phenyloindole staining of the synaptonemal complex in male O. karongae revealed the presumptive positions of the kinetochores, which correspond well to the centromeric positions observed in the mitotic karyotype.
Collapse
|
50
|
Singh M, Kumar R, Nagpure NS, Kushwaha B, Mani I, Chauhan UK, Lakra WS. Population distribution of 45S and 5S rDNA in golden mahseer, Tor putitora: population-specific FISH marker. J Genet 2010; 88:315-20. [PMID: 20086297 DOI: 10.1007/s12041-009-0045-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Chromosomal locations of major 45S and minor 5S ribosomal DNAs (rDNAs) and organization of 5S rRNA genes were analysed in five different populations of golden mahseers (Tor putitora) using fluorescence in situ hybridization (FISH) and Southern blot hybridization. All five populations of T. putitora (2n = 100) showed a similar type of macro-karyotype composed of 12 metacentric, 22 submetacentric, 14 subtelocentric and 52 telocentric chromosomes. Analysis of active nucleolar organizer regions (NORs) by silver staining did not show any differences in number and chromosomal position in different populations. But FISH data showed significant difference between the populations, four of the five populations showed six 18S (three pairs) and two 5S (one pair) signals with positional polymorphism, while one population showed eight 18S and four 5S signals, respectively. Southern blot data confirms that 5S rDNA clusters present on two different chromosome pairs in Kosi river population contain non-transcribed spacers (NTS) of same length. In the present study, simultaneous localization of 45S and 5S rDNA by in situ hybridization helped us to develop the discrete population-specific markers in different geographically isolated populations of T. putitora.
Collapse
Affiliation(s)
- Mamta Singh
- National Bureau of Fish Genetic Resources, Canal Ring Road, P.O. Dilkusha, Lucknow 226 002, India
| | | | | | | | | | | | | |
Collapse
|