1
|
Mun BG, Shahid M, Lee GS, Hussain A, Yun BW. A Novel RHS1 Locus in Rice Attributes Seed-Pod Shattering by the Regulation of Endogenous S-Nitrosothiols. Int J Mol Sci 2022; 23:13225. [PMID: 36362013 PMCID: PMC9655508 DOI: 10.3390/ijms232113225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 01/12/2024] Open
Abstract
Seed or pod shattering in rice (Oryza sativa) is considered to be one of the major factors involved in the domestication of rice as a crop. High seed shattering results in significant yield losses. In this study, we characterize the RICEHIGHSHATTERING 1 (RHS1) that corresponds to the locus LOC_Os04g41250 from a greenhouse screen, involving 145 Ac/Ds transposon mutant rice lines. The knockout mutant line rhs1 exhibited a significantly high shattering of grains in comparison to the wild-type plants. The exogenous application of nitric oxide (NO) resulted in a significant reduction in the expression of RHS1 in wild-type rice plants. The absence of RHS1, which encodes a putative armadillo/beta-catenin repeat family protein, resulted in high sensitivity of the rhs1 plants to nitrosative stress. Interestingly, the basal expression levels of QSH1 and SHAT1 genes (transcription factors that regulate seed-pod shattering in rice) were significantly lower in these plants than in wild-type plants; however, nitrosative stress negatively regulated the expression of QSH1 and SHAT1 in both WT and rhs1 plants, but positively regulated QSH4 expression in rhs1 plants alone. The expression levels of genes responsible for NO production (OsNIA1, OsNIA2, and OsNOA1) were lower in rhs1 plants than in WT plants under normal conditions. However, under nitrosative stress, the expression of OsNIA2 significantly increased in rhs1 plants. The expression of CPL1 (a negative regulator of seed shattering in rice) was significantly lower in rhs1 plants, and we found that CPL1 expression was correlated with S-nitrosothiol (SNO) alteration in rhs1. Interestingly noe1, a rice mutant with high SNO levels, exhibited low seed shattering, whereas rhs1 resulted in low SNO levels with high seed shattering. Therefore, RHS1 is a novel gene that negatively regulates the shattering trait in rice via regulation of endogenous SNO levels. However, the molecular mechanisms involved in the control of RHS1-mediated regulation of seed shattering and its interaction with nitric oxide and involvement in plant defense need to be investigated further.
Collapse
Affiliation(s)
- Bong-Gyu Mun
- School of Applied Bioscience, College of Agriculture and Life Science, Kyungpook National University, Daegu 41566, Korea
| | - Muhammad Shahid
- School of Applied Bioscience, College of Agriculture and Life Science, Kyungpook National University, Daegu 41566, Korea
- Agriculture Research Institute, Khyber Pakhtunkhwa, Mingora 19130, Pakistan
| | - Gang Sub Lee
- Biosafety Division, National Institute of Agricultural Science, Jeonju, 54875, Korea
| | - Adil Hussain
- Department of Agriculture, Abdul Wali Khan University, Mardan 23200, Pakistan
| | - Byung-Wook Yun
- School of Applied Bioscience, College of Agriculture and Life Science, Kyungpook National University, Daegu 41566, Korea
| |
Collapse
|
2
|
Luthar Z, Fabjan P, Mlinarič K. Biotechnological Methods for Buckwheat Breeding. PLANTS (BASEL, SWITZERLAND) 2021; 10:1547. [PMID: 34451594 PMCID: PMC8399956 DOI: 10.3390/plants10081547] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/03/2021] [Accepted: 07/25/2021] [Indexed: 02/03/2023]
Abstract
The Fagopyrum genus includes two cultivated species, namely common buckwheat (F. esculentum Moench) and Tartary buckwheat (F. tataricum Gaertn.), and more than 25 wild buckwheat species. The goal of breeders is to improve the properties of cultivated buckwheat with methods of classical breeding, with the support of biotechnological methods or a combination of both. In this paper, we reviewed the possibility to use transcriptomics, genomics, interspecific hybridization, tissue cultures and plant regeneration, molecular markers, genetic transformation, and genome editing to aid in both the breeding of buckwheat and in the identification and production of metabolites important for preserving human health. The key problems in buckwheat breeding are the unknown mode of inheritance of most traits, associated with crop yield and the synthesis of medicinal compounds, low seed yield, shedding of seeds, differential flowering and seed set on branches, and unknown action of genes responsible for the synthesis of buckwheat metabolites of pharmaceutical and medicinal interest.
Collapse
Affiliation(s)
- Zlata Luthar
- Biotechnical Faculty, University of Ljubljana, SI-1000 Ljubljana, Slovenia;
| | - Primož Fabjan
- Biotechnical Faculty, University of Ljubljana, SI-1000 Ljubljana, Slovenia;
| | | |
Collapse
|
3
|
Matsui K, Yasui Y. Genetic and genomic research for the development of an efficient breeding system in heterostylous self-incompatible common buckwheat (Fagopyrum esculentum). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:1641-1653. [PMID: 32152716 DOI: 10.1007/s00122-020-03572-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 02/22/2020] [Indexed: 06/10/2023]
Abstract
Common buckwheat (Fagopyrum esculentum Moench; 2n = 2x = 16) is an annual crop that is cultivated widely around the world and contains an abundance of nutrients and bioactive compounds. However, the yield of buckwheat is low compared to that of other major crops, and it contains proteins that cause allergic reactions in some people. Much research has aimed to improve or eliminate these undesirable traits, and some major advances have recently been made. Here, we review recent advances in buckwheat breeding materials, tools, and methods, including the development of self-compatible lines, genetic maps, a buckwheat genome database, and an efficient breeding strategy. We also describe emerging breeding methods for high-value lines.
Collapse
Affiliation(s)
- Katsuhiro Matsui
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), Kannondai 3-1-3, Tsukuba, Ibaraki, 305-8518, Japan.
- Graduate School of Life and Environmental Science, University of Tsukuba, Kannondai 3-1-3, Tsukuba, Ibaraki, 305-8518, Japan.
| | - Yasuo Yasui
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| |
Collapse
|
4
|
Matsui K, Mizuno N, Ueno M, Takeshima R, Yasui Y. Development of co-dominant markers linked to a hemizygous region that is related to the self-compatibility locus ( S) in buckwheat ( Fagopyrum esculentum). BREEDING SCIENCE 2020; 70:112-117. [PMID: 32351310 PMCID: PMC7180148 DOI: 10.1270/jsbbs.19129] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 11/14/2019] [Indexed: 06/10/2023]
Abstract
Common buckwheat (Fagopyrum esculentum) is a heterostylous self-incompatible (SI) species with two different flower morphologies, pin and thrum. The SI trait is controlled by a single gene complex locus, S. Self-compatible (SC) lines were developed by crossing F. esculentum and F. homotropicum; these lines have an SC gene, Sh , which is dominant over the s allele and recessive to the S allele. S-ELF3 has been identified as a candidate gene in the S locus and is present in the S and Sh but not s alleles. A single-nucleotide deletion in the S-ELF3 gene of the Sh allele results in a frame shift. To develop co-dominant markers to distinguish between ShSh and Shs plants, we performed a next-generation sequencing analysis in combination with bulked-segregant analysis. We developed four co-dominant markers linked to the S locus. We investigated the polymorphism frequency between a self-compatible line and leading Japanese buckwheat cultivars. Linkage between a developed sequence-tagged-site marker and flower morphology was confirmed using more than 1000 segregating plants and showed no recombination. The developed markers would be useful for buckwheat breeding and also to produce lines for genetic analysis such as recombinant inbred lines.
Collapse
Affiliation(s)
- Katsuhiro Matsui
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), Kannondai 2-1-2, Tsukuba, Ibaraki 305-8518, Japan
- Graduate School of Life and Environmental Science, University of Tsukuba, Kannondai 2-1-2, Tsukuba, Ibaraki 305-8518, Japan
| | - Nobuyuki Mizuno
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Mariko Ueno
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Ryoma Takeshima
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), Kannondai 2-1-2, Tsukuba, Ibaraki 305-8518, Japan
| | - Yasuo Yasui
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
5
|
Yasui Y. History of the progressive development of genetic marker systems for common buckwheat. BREEDING SCIENCE 2020; 70:13-18. [PMID: 32351300 PMCID: PMC7180146 DOI: 10.1270/jsbbs.19075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 10/14/2019] [Indexed: 06/10/2023]
Abstract
Genotyping is an essential procedure for identifying agronomically useful genes and analyzing population structure. Various types of genetic marker systems have been developed in common buckwheat (Fagopyrum esculentum Moench). In the 1980s, morphological and allozyme markers were used to construct linkage maps. Until the early 2000s, allozyme markers were widely used in population genetics studies. Such studies demonstrated that cultivated common buckwheat likely originated in the Sanjiang area of China. In the late 1990s and early 2000s, advances in PCR technology led to the development of various DNA marker systems for use in linkage mapping. However, PCR-based markers did not completely cover the genome, making genetic analysis of buckwheat challenging. The subsequent development of next generation sequencing, a game-changing technology, has allowed genome-wide analysis to be performed for many species. Indeed, 8,884 markers spanning 756 loci were recently mapped onto eight linkage groups of common buckwheat; these markers were successfully used for genomic selection to increase yield. Furthermore, draft genome sequences are now available in the Buckwheat Genome DataBase (BGDB). In this review, I summarize advances in the breeding and genetic analysis of common buckwheat based on contemporary genetic marker systems.
Collapse
Affiliation(s)
- Yasuo Yasui
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
6
|
Rodríguez JP, Rahman H, Thushar S, Singh RK. Healthy and Resilient Cereals and Pseudo-Cereals for Marginal Agriculture: Molecular Advances for Improving Nutrient Bioavailability. Front Genet 2020; 11:49. [PMID: 32174958 PMCID: PMC7056906 DOI: 10.3389/fgene.2020.00049] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 01/16/2020] [Indexed: 11/13/2022] Open
Abstract
With the ever-increasing world population, an extra 1.5 billion mouths need to be fed by 2050 with continuously dwindling arable land. Hence, it is imperative that extra food come from the marginal lands that are expected to be unsuitable for growing major staple crops under the adverse climate change scenario. Crop diversity provides right alternatives for marginal environments to improve food, feed, and nutritional security. Well-adapted and climate-resilient crops will be the best fit for such a scenario to produce seed and biomass. The minor millets are known for their high nutritional profile and better resilience for several abiotic stresses that make them the suitable crops for arid and salt-affected soils and poor-quality waters. Finger millet (Eleucine coracana) and foxtail millet (Setaria italica), also considered as orphan crops, are highly tolerant grass crop species that grow well in marginal and degraded lands of Africa and Asia with better nutritional profile. Another category of grains, called pseudo-cereals, is considered as rich foods because of their protein quality and content, high mineral content, and healthy and balance food quality. Quinoa (Chenopodium quinoa), amaranth (Amaranthus sp.), and buckwheat (Fagopyrum esculentum) fall under this category. Nevertheless, both minor millets and pseudo-cereals are morphologically different, although similar for micronutrient bioavailability, and their grains are gluten-free. The cultivation of these millets can make dry lands productive and ensure future food as well as nutritional security. Although the natural nutrient profile of these crop plant species is remarkably good, little development has occurred in advances in molecular genetics and breeding efforts to improve the bioavailability of nutrients. Recent advances in NGS have enabled the genome and transcriptome sequencing of these millets and pseudo-cereals for the faster development of molecular markers and application in molecular breeding. Genomic information on finger millet (1,196 Mb with 85,243 genes); S. italica, a model small millet (well-annotated draft genome of 420 Mb with 38,801 protein-coding genes); amaranth (466 Mb genome and 23,059 protein-coding genes); buckwheat (genome size of 1.12 Gb with 35,816 annotated genes); and quinoa (genome size of 1.5 Gb containing 54,438 protein-coding genes) could pave the way for the genetic improvement of these grains. These genomic resources are an important first step toward genetic improvement of these crops. This review highlights the current advances and available resources on genomics to improve nutrient bioavailability in these five suitable crops for the sustained healthy livelihood.
Collapse
Affiliation(s)
| | | | | | - Rakesh K. Singh
- Crop Diversification and Genetics Program, International Center for Biosaline Agriculture, Dubai, United Arab Emirates
| |
Collapse
|
7
|
Joshi DC, Chaudhari GV, Sood S, Kant L, Pattanayak A, Zhang K, Fan Y, Janovská D, Meglič V, Zhou M. Revisiting the versatile buckwheat: reinvigorating genetic gains through integrated breeding and genomics approach. PLANTA 2019; 250:783-801. [PMID: 30623242 DOI: 10.1007/s00425-018-03080-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 12/20/2018] [Indexed: 05/09/2023]
Abstract
Emerging insights in buckwheat molecular genetics allow the integration of genomics driven breeding to revive this ancient crop of immense nutraceutical potential from Asia. Out of several thousand known edible plant species, only four crops-rice, wheat, maize and potato provide the largest proportion of daily nutrition to billions of people. While these crops are the primary supplier of carbohydrates, they lack essential amino acids and minerals for a balanced nutrition. The overdependence on only few crops makes the future cropping systems vulnerable to the predicted climate change. Diversifying food resources through incorporation of orphan or minor crops in modern cropping systems is one potential strategy to improve the nutritional security and mitigate the hostile weather patterns. One such crop is buckwheat, which can contribute to the agricultural sustainability as it grows in a wide range of environments, requires relatively low inputs and possess balanced amino acid and micronutrient profiles. Additionally, gluten-free nature of protein and nutraceutical properties of secondary metabolites make the crop a healthy alternative of wheat-based diet in developed countries. Despite enormous potential, efforts for the genetic improvement of buckwheat are considerably lagged behind the conventional cereal crops. With the draft genome sequences in hand, there is a great scope to speed up the progress of genetic improvement of buckwheat. This article outlines the state of the art in buckwheat research and provides concrete perspectives how modern breeding approaches can be implemented to accelerate the genetic gain. Our suggestions are transferable to many minor and underutilized crops to address the issue of limited genetic gain and low productivity.
Collapse
Affiliation(s)
- D C Joshi
- Indian Council of Agricultural Research-Vivekananda Institute of Hill Agriculture, Almora, Uttarakhand, India.
| | - Ganesh V Chaudhari
- Indian Council of Agricultural Research-Vivekananda Institute of Hill Agriculture, Almora, Uttarakhand, India
| | - Salej Sood
- Indian Council of Agricultural Research-Central Potato Research Institute, Shimla, Himachal Pradesh, India
| | - Lakshmi Kant
- Indian Council of Agricultural Research-Vivekananda Institute of Hill Agriculture, Almora, Uttarakhand, India
| | - A Pattanayak
- Indian Council of Agricultural Research-Vivekananda Institute of Hill Agriculture, Almora, Uttarakhand, India
| | - Kaixuan Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yu Fan
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dagmar Janovská
- Department of Gene Bank, Crop Research Institute, Drnovská, Prague, Czech Republic
| | - Vladimir Meglič
- Agricultural Institute of Slovenia, Hacquetova ulica, Ljubljana, Slovenia
| | - Meiliang Zhou
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
8
|
Li LF, Olsen KM. To Have and to Hold: Selection for Seed and Fruit Retention During Crop Domestication. Curr Top Dev Biol 2016; 119:63-109. [PMID: 27282024 DOI: 10.1016/bs.ctdb.2016.02.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Crop domestication provides a useful model system to characterize the molecular and developmental bases of morphological variation in plants. Among the most universal changes resulting from selection during crop domestication is the loss of seed and fruit dispersal mechanisms, which greatly facilitates harvesting efficiency. In this review, we consider the molecular genetic and developmental bases of the loss of seed shattering and fruit dispersal in six major crop plant families, three of which are primarily associated with seed crops (Poaceae, Brassicaceae, Fabaceae) and three of which are associated with fleshy-fruited crops (Solanaceae, Rosaceae, Rutaceae). We find that the developmental basis of the loss of seed/fruit dispersal is conserved in a number of independently domesticated crops, indicating the widespread occurrence of developmentally convergent evolution in response to human selection. With regard to the molecular genetic approaches used to characterize the basis of this trait, traditional biparental quantitative trait loci mapping remains the most commonly used strategy; however, recent advances in next-generation sequencing technologies are now providing new avenues to map and characterize loss of shattering/dispersal alleles. We anticipate that continued application of these approaches, together with candidate gene analyses informed by known shattering candidate genes from other crops, will lead to a rapid expansion of our understanding of this critical domestication trait.
Collapse
Affiliation(s)
- L-F Li
- Washington University in St. Louis, St. Louis, MO, United States; Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, PR China.
| | - K M Olsen
- Washington University in St. Louis, St. Louis, MO, United States.
| |
Collapse
|
9
|
Doust AN, Mauro-Herrera M, Francis AD, Shand LC. Morphological diversity and genetic regulation of inflorescence abscission zones in grasses. AMERICAN JOURNAL OF BOTANY 2014; 101:1759-69. [PMID: 25326618 DOI: 10.3732/ajb.1400186] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
UNLABELLED • PREMISE OF THE STUDY Variation in how seeds are dispersed in grasses is ecologically important, and selection for dispersal mechanisms has produced a great variety of dispersal structures (diaspores). Abscission ("shattering") is necessary in wild grasses, but its elimination by selection on nonshattering mutants was a key component of the domestication syndrome in cereal grasses. A key question is whether a common genetic pathway controls abscission in wild grasses, and, if so, what genes in that pathway may have been selected upon during domestication. We summarize morphological and genetic information on abscission zones and disarticulation patterns in grasses and identify hypotheses to test the likelihood of a common genetic pathway.• METHODS Morphological data on abscission zones for over 10000 species of grasses were tabulated and analyzed using a tribal phylogeny of the grasses. The genomic location of quantitative trait loci (QTLs) and orthologs of genes controlling shattering were compared across species to ascertain whether the same loci might control shattering in different grass lineages.• RESULTS AND CONCLUSIONS The simple trait of nonshattering is derived from a great diversity of shattering phenotypes. Several sets of QTLs from multiple species are syntenic yet many are not. Genes known to be involved in shattering in several species were found to have orthologs that sometimes colocalized with QTLs in different species, adding support to the hypothesis of retention of a common genetic pathway. These results are used to suggest a research plan that could test the common genetic pathway model more thoroughly.
Collapse
Affiliation(s)
- Andrew N Doust
- Botany Department, Oklahoma State University, Stillwater, Oklahoma 74078 USA
| | | | - Amie D Francis
- Botany Department, Oklahoma State University, Stillwater, Oklahoma 74078 USA
| | - Laura C Shand
- Botany Department, Oklahoma State University, Stillwater, Oklahoma 74078 USA
| |
Collapse
|
10
|
Mendler-Drienyovszki N, Cal AJ, Dobránszki J. Progress and prospects for interspecific hybridization in buckwheat and the genus Fagopyrum. Biotechnol Adv 2013; 31:1768-75. [PMID: 24055817 DOI: 10.1016/j.biotechadv.2013.09.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 09/09/2013] [Accepted: 09/11/2013] [Indexed: 11/28/2022]
Abstract
Cultivated buckwheat, such as common (Fagopyrum esculentum Moench.) and tartary (Fagopyrum tataricum (L.) Gaertn.) buckwheat, is one of the most versatile crops for forage and food and has several benefits for human health. Interspecific hybridization between Fagopyrum species is of great importance to improvement of buckwheat. Hybridization would allow the transfer of agronomical beneficial characteristics from wild Fagopyrum species, including self-pollination and increased fertility, frost tolerance, and higher content of beneficial compounds. However, conventional breeding methods are only partially applicable because of the self-incompatibility and incompatibility barriers between different species. Present review summarizes the morphology of self-incompatibility, the genetic and cellular basis of incompatibility between different Fagopyrum species. In many interspecific crosses hybrid embryos are aborted after successful pollination due to post-zygotic incompatibility. The use of in vitro embryo rescue after interspecific hybridization has been successful in circumventing breeding barriers between Fagopyrum species. Methods applied successfully for the construction of interspecific hybrids are discussed in detail.
Collapse
Affiliation(s)
- Nóra Mendler-Drienyovszki
- Research Institute of Nyíregyháza, Research Institutes and Study Farm, Centre for Agricultural and Applied Economic Sciences, University of Debrecen, Nyíregyháza, P.O. Box 12, H-4400, Hungary.
| | | | | |
Collapse
|
11
|
Parallel domestication of the Shattering1 genes in cereals. Nat Genet 2012; 44:720-4. [PMID: 22581231 DOI: 10.1038/ng.2281] [Citation(s) in RCA: 306] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 04/19/2012] [Indexed: 11/08/2022]
Abstract
A key step during crop domestication is the loss of seed shattering. Here, we show that seed shattering in sorghum is controlled by a single gene, Shattering1 (Sh1), which encodes a YABBY transcription factor. Domesticated sorghums harbor three different mutations at the Sh1 locus. Variants at regulatory sites in the promoter and intronic regions lead to a low level of expression, a 2.2-kb deletion causes a truncated transcript that lacks exons 2 and 3, and a GT-to-GG splice-site variant in the intron 4 results in removal of the exon 4. The distributions of these non-shattering haplotypes among sorghum landraces suggest three independent origins. The function of the rice ortholog (OsSh1) was subsequently validated with a shattering-resistant mutant, and two maize orthologs (ZmSh1-1 and ZmSh1-5.1+ZmSh1-5.2) were verified with a large mapping population. Our results indicate that Sh1 genes for seed shattering were under parallel selection during sorghum, rice and maize domestication.
Collapse
|
12
|
Lewis MW, Leslie ME, Liljegren SJ. Plant separation: 50 ways to leave your mother. CURRENT OPINION IN PLANT BIOLOGY 2006; 9:59-65. [PMID: 16337172 DOI: 10.1016/j.pbi.2005.11.009] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2005] [Accepted: 11/22/2005] [Indexed: 05/05/2023]
Abstract
One of the remarkable features of plants is their ability to shed organs, such as leaves, seeds, flowers, and fruit. Genetic analysis of fruit dehiscence and floral organ shedding in Arabidopsis is revealing the pathways that underlie these distinct separation events. The transcriptional network that patterns the fruit links factors that regulate organ polarity and growth with those that control differentiation of the three cell types that are required for dehiscence. Transcriptional regulators that pattern the proximal-distal axis in developing leaves are required for floral organ shedding, and chromatin-modifying complexes might globally regulate genes that affect flower senescence and abscission. Ground-breaking studies have also recently identified a hydrolytic enzyme that is required for microspore separation during pollen development, and the first transcription factor controlling seed abscission.
Collapse
Affiliation(s)
- Michael W Lewis
- University of North Carolina, Department of Biology, Chapel Hill, North Carolina 27599, USA
| | | | | |
Collapse
|