1
|
Hitchcock M, Xu J. Analyses of the Global Multilocus Genotypes of the Human Pathogenic Yeast Cryptococcus neoformans Species Complex. Genes (Basel) 2022; 13:2045. [PMID: 36360282 PMCID: PMC9691084 DOI: 10.3390/genes13112045] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 12/18/2023] Open
Abstract
Cryptococcus neoformans species complex (CNSC) is a globally distributed human opportunistic yeast pathogen consisting of five major molecular types (VNI, VNII, VNB, VNIII and VNIV) belonging to two species, C. neoformans (VNI, VNII and VNB, collectively called serotype A) and C. deneoformans (VNIV, commonly called serotype D), and their hybrids (VNIII, serotype AD). Over the years, many studies have analyzed the geographical distribution and genetic diversity of CNSC. However, the global population structure and mode of reproduction remain incompletely described. In this study, we analyze the published multilocus sequence data at seven loci for CNSC. The combined sequences at the seven loci identified a total of 657 multilocus sequence types (STs), including 296 STs with known geographic information, representing 4200 non-redundant isolates from 31 countries and four continents. Among the 296 STs, 78 and 52 were shared among countries and continents, respectively, representing 3643 of the 4200 isolates. Except for the clone-corrected serotype D sample among countries, our analysis of the molecular variance of the 4200 isolates revealed significant genetic differentiations among countries and continents in populations of CNSC, serotype A, and serotype D. Phylogenetic analyses of the concatenated sequences of all 657 STs revealed several large clusters corresponding to the major molecular types. However, several rare but distinct STs were also found, representing potentially novel molecular types and/or hybrids of existing molecular types. Phylogenetic incompatibility analyses revealed evidence for recombination within all four major molecular types-VNI, VNII, VNIV and VNB-as well as within two VNB subclades, VNBI and VNBII, and two ST clusters around the most common STs, ST5 and ST93. However, linkage disequilibrium analyses rejected the hypothesis of random recombination across most samples. Together, our results suggest evidence for historical differentiation, frequent recent gene flow, clonal expansion and recombination within and between lineages of the global CNSC population.
Collapse
Affiliation(s)
| | - Jianping Xu
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
2
|
Tibayrenc M, Ayala FJ. Is Predominant Clonal Evolution a Common Evolutionary Adaptation to Parasitism in Pathogenic Parasitic Protozoa, Fungi, Bacteria, and Viruses? ADVANCES IN PARASITOLOGY 2016; 97:243-325. [PMID: 28325372 DOI: 10.1016/bs.apar.2016.08.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We propose that predominant clonal evolution (PCE) in microbial pathogens be defined as restrained recombination on an evolutionary scale, with genetic exchange scarce enough to not break the prevalent pattern of clonal population structure. The main features of PCE are (1) strong linkage disequilibrium, (2) the widespread occurrence of stable genetic clusters blurred by occasional bouts of genetic exchange ('near-clades'), (3) the existence of a "clonality threshold", beyond which recombination is efficiently countered by PCE, and near-clades irreversibly diverge. We hypothesize that the PCE features are not mainly due to natural selection but also chiefly originate from in-built genetic properties of pathogens. We show that the PCE model obtains even in microbes that have been considered as 'highly recombining', such as Neisseria meningitidis, and that some clonality features are observed even in Plasmodium, which has been long described as panmictic. Lastly, we provide evidence that PCE features are also observed in viruses, taking into account their extremely fast genetic turnover. The PCE model provides a convenient population genetic framework for any kind of micropathogen. It makes it possible to describe convenient units of analysis (clones and near-clades) for all applied studies. Due to PCE features, these units of analysis are stable in space and time, and clearly delimited. The PCE model opens up the possibility of revisiting the problem of species definition in these organisms. We hypothesize that PCE constitutes a major evolutionary strategy for protozoa, fungi, bacteria, and viruses to adapt to parasitism.
Collapse
Affiliation(s)
- M Tibayrenc
- Institut de Recherche pour le Développement, Montpellier, France
| | - F J Ayala
- University of California at Irvine, United States
| |
Collapse
|
3
|
Du XH, Zhao Q, Xu J, Yang ZL. High inbreeding, limited recombination and divergent evolutionary patterns between two sympatric morel species in China. Sci Rep 2016; 6:22434. [PMID: 26928176 PMCID: PMC4772476 DOI: 10.1038/srep22434] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 02/08/2016] [Indexed: 12/20/2022] Open
Abstract
As highly prized, popular mushrooms, morels are widely distributed in the northern hemisphere, with China as a modern centre of speciation and diversity. Overharvesting of morels has caused concern over how to effectively preserve their biological and genetic diversity. However, little is known about their population biology and life cycle. In this study, we selected two sympatric phylogenetic species, Mel-13 (124 collections from 11 geographical locations) and Morchella eohespera (156 collections from 14 geographical locations), using fragments of 4 DNA sequences, to analyse their genetic structure. Our results indicated significant differentiation among geographic locations in both species, whereas no obvious correlation between genetic and geographic distance was identified in either species. M. eohespera exhibited a predominantly clonal population structure with limited recombination detected in only 1 of the 14 geographic locations. In contrast, relatively frequent recombination was identified in 6 of the 11 geographic locations of Mel-13. Our analysis indicated that the sympatric species Mel-13 and M. eohespera might have divergent evolutionary patterns, with the former showing signatures of recent population expansion and the latter being relatively stable. Interestingly, we found no heterozygosity but strong evidence for genealogical incongruence, indicating a high level of inbreeding and hybridisation among morel species.
Collapse
Affiliation(s)
- Xi-Hui Du
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Qi Zhao
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Jianping Xu
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Zhu L Yang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| |
Collapse
|
4
|
|
5
|
Ashu EE, Xu J. The roles of sexual and asexual reproduction in the origin and dissemination of strains causing fungal infectious disease outbreaks. INFECTION GENETICS AND EVOLUTION 2015; 36:199-209. [PMID: 26394109 DOI: 10.1016/j.meegid.2015.09.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 09/16/2015] [Accepted: 09/18/2015] [Indexed: 12/15/2022]
Abstract
Sexual reproduction commonly refers to the reproductive process in which genomes from two sources are combined into a single cell through mating and then the zygote genomes are partitioned to progeny cells through meiosis. Reproduction in the absence of mating and meiosis is referred to as asexual or clonal reproduction. One major advantage of sexual reproduction is that it generates genetic variation among progeny which may allow for faster adaptation of the population to novel and/or stressful environments. However, adaptation to stressful or new environments can still occur through mutation, in the absence of sex. In this review, we analyzed the relative contributions of sexual and asexual reproduction in the origin and spread of strains causing fungal infectious diseases outbreaks. The necessity of sex and the ability of asexual fungi to initiate outbreaks are discussed. We propose a framework that relates the modes of reproduction to the origin and propagation of fungal disease outbreaks. Our analyses suggest that both sexual and asexual reproduction can play critical roles in the origin of outbreak strains and that the rapid spread of outbreak strains is often accomplished through asexual expansion.
Collapse
Affiliation(s)
- Eta Ebasi Ashu
- Department of Biology, McMaster University, 1280 Main St. W, Hamilton, ON L8S 4K1, Canada
| | - Jianping Xu
- Department of Biology, McMaster University, 1280 Main St. W, Hamilton, ON L8S 4K1, Canada.
| |
Collapse
|
6
|
Wang Z, Wilson A, Xu J. Mitochondrial DNA inheritance in the human fungal pathogen Cryptococcus gattii. Fungal Genet Biol 2015; 75:1-10. [DOI: 10.1016/j.fgb.2015.01.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 12/18/2014] [Accepted: 01/02/2015] [Indexed: 01/19/2023]
|
7
|
Tekle YI, Anderson OR, Lecky AF. Evidence of Parasexual Activity in “Asexual Amoebae” Cochliopodium spp. (Amoebozoa): Extensive Cellular and Nuclear Fusion. Protist 2014; 165:676-87. [DOI: 10.1016/j.protis.2014.07.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 07/15/2014] [Accepted: 07/17/2014] [Indexed: 11/30/2022]
|
8
|
Li J, Li H, Bi X, Zhang KQ. Multiple gene genealogical analyses of a nematophagous fungus Paecilomyces lilacinus from China. J Microbiol 2013; 51:423-9. [DOI: 10.1007/s12275-013-2599-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 03/13/2013] [Indexed: 11/29/2022]
|
9
|
Tibayrenc M, Ayala FJ. Reproductive clonality of pathogens: a perspective on pathogenic viruses, bacteria, fungi, and parasitic protozoa. Proc Natl Acad Sci U S A 2012; 109:E3305-13. [PMID: 22949662 PMCID: PMC3511763 DOI: 10.1073/pnas.1212452109] [Citation(s) in RCA: 146] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
We propose that clonal evolution in micropathogens be defined as restrained recombination on an evolutionary scale, with genetic exchange scarce enough to not break the prevalent pattern of clonal population structure, a definition already widely used for all kinds of pathogens, although not clearly formulated by many scientists and rejected by others. The two main manifestations of clonal evolution are strong linkage disequilibrium (LD) and widespread genetic clustering ("near-clading"). We hypothesize that this pattern is not mainly due to natural selection, but originates chiefly from in-built genetic properties of pathogens, which could be ancestral and could function as alternative allelic systems to recombination genes ("clonality/sexuality machinery") to escape recombinational load. The clonal framework of species of pathogens should be ascertained before any analysis of biomedical phenotypes (phylogenetic character mapping). In our opinion, this model provides a conceptual framework for the population genetics of any micropathogen.
Collapse
Affiliation(s)
- Michel Tibayrenc
- Maladies Infectieuses et Vecteurs Ecologie, Génétique, Evolution et Contrôle, Institut de Rercherche pour le Développement 224, Centre National de la Recherche Scientifique 5290, Universités Montpellier 1 and 2, 34394 Montpellier Cedex 5, France; and
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697
| | - Francisco J. Ayala
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697
| |
Collapse
|
10
|
Meirmans S, Meirmans PG, Kirkendall LR. The costs of sex: facing real-world complexities. QUARTERLY REVIEW OF BIOLOGY 2012; 87:19-40. [PMID: 22518931 DOI: 10.1086/663945] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Understanding the maintenance of sexual reproduction constitutes a difficult problem for evolutionary biologists because of the immediate costs that sex seems to incur. Typically, general benefits to sex and recombination are investigated that might outweigh these costs. However, several factors can strongly influence the complex balance between costs and benefits of sex; these include constraints on the evolution of asexuality, ecological differentiation, and certain lif-history traits. We review these factors and their empirical support for the first time in a unified framework and find that they can reduce the costs of sex, circumvent them, or make them inapplicable. These factors can even tip the scales to a net benefit for sex. The reviewed factors affect species and species groups differently, and we conclude consequently that understanding the maintenance of sex could turn out to be more species-specific than commonly assumed. Interestingly, our study suggests that, in some species, no general benefits to sex and recombination might be needed to understand the maintenance of sex, as in our case study of dandelions.
Collapse
Affiliation(s)
- Stephanie Meirmans
- Centre for the Study of the Sciences and the Humanities and Department of Biology, University of Bergen 5020 Bergen, Norway.
| | | | | |
Collapse
|
11
|
Asexual reproduction induces a rapid and permanent loss of sexual reproduction capacity in the rice fungal pathogen Magnaporthe oryzae: results of in vitro experimental evolution assays. BMC Evol Biol 2012; 12:42. [PMID: 22458778 PMCID: PMC3379926 DOI: 10.1186/1471-2148-12-42] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 03/29/2012] [Indexed: 12/15/2022] Open
Abstract
Background Sexual reproduction is common in eukaryotic microorganisms, with few species reproducing exclusively asexually. However, in some organisms, such as fungi, asexual reproduction alternates with episodic sexual reproduction events. Fungi are thus appropriate organisms for studies of the reasons for the selection of sexuality or clonality and of the mechanisms underlying this selection. Magnaporthe oryzae, an Ascomycete causing blast disease on rice, reproduces mostly asexually in natura. Sexual reproduction is possible in vitro and requires (i) two strains of opposite mating types including (ii) at least one female-fertile strain (i.e. a strain able to produce perithecia, the female organs in which meiosis occurs). Female-fertile strains are found only in limited areas of Asia, in which evidence for contemporary recombination has recently been obtained. We induced the forced evolution of four Chinese female-fertile strains in vitro by the weekly transfer of asexual spores (conidia) between Petri dishes. We aimed to determine whether female fertility was rapidly lost in the absence of sexual reproduction and whether this loss was controlled genetically or epigenetically. Results All the strains became female-sterile after 10 to 19 rounds of selection under asexual conditions. As no single-spore isolation was carried out, the observed decrease in the production of perithecia reflected the emergence and the invasion of female-sterile mutants. The female-sterile phenotype segregated in the offspring of crosses between female-sterile evolved strains and female-fertile wild-type strains. This segregation was maintained in the second generation in backcrosses. Female-sterile evolved strains were subjected to several stresses, but none induced the restoration of female fertility. This loss of fertility was therefore probably due to genetic rather than epigenetic mechanisms. In competition experiments, female-sterile mutants produced similar numbers of viable conidia to wild-type strains, but released them more efficiently. This advantage may account for the invasion of our populations by female-sterile mutants. Conclusions We show for the first time that, in the absence of sexual reproduction, female-sterile mutants of M. oryzae rice strains can arise and increase in abundance in asexual generations. This change in phenotype was frequent and probably caused by mutation. These results suggest that female fertility may have been lost rapidly during the dispersion of the fungus from Asia to the rest of the world.
Collapse
|
12
|
Wernegreen JJ. Reduced selective constraint in endosymbionts: elevation in radical amino acid replacements occurs genome-wide. PLoS One 2011; 6:e28905. [PMID: 22194947 PMCID: PMC3237559 DOI: 10.1371/journal.pone.0028905] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Accepted: 11/16/2011] [Indexed: 11/18/2022] Open
Abstract
As predicted by the nearly neutral model of evolution, numerous studies have shown that reduced N(e) accelerates the accumulation of slightly deleterious changes under genetic drift. While such studies have mostly focused on eukaryotes, bacteria also offer excellent models to explore the effects of N(e). Most notably, the genomes of host-dependent bacteria with small N(e) show signatures of genetic drift, including elevated K(a)/K(s). Here, I explore the utility of an alternative measure of selective constraint: the per-site rate of radical and conservative amino acid substitutions (D(r)/D(c)). I test the hypothesis that purifying selection against radical amino acid changes is less effective in two insect endosymbiont groups (Blochmannia of ants and Buchnera of aphids), compared to related gamma-Proteobacteria. Genome comparisons demonstrate a significant elevation in D(r)/D(c) in endosymbionts that affects the majority (66-79%) of shared orthologs examined. The elevation of D(r)/D(c) in endosymbionts affects all functional categories examined. Simulations indicate that D(r)/D(c) estimates are sensitive to codon frequencies and mutational parameters; however, estimation biases occur in the opposite direction as the patterns observed in genome comparisons, thereby making the inference of elevated D(r)/D(c) more conservative. Increased D(r)/D(c) and other signatures of genome degradation in endosymbionts are consistent with strong effects of genetic drift in their small populations, as well as linkage to selected sites in these asexual bacteria. While relaxed selection against radical substitutions may contribute, genome-wide processes such as genetic drift and linkage best explain the pervasive elevation in D(r)/D(c) across diverse functional categories that include basic cellular processes. Although the current study focuses on a few bacterial lineages, it suggests D(r)/D(c) is a useful gauge of selective constraint and may provide a valuable alternative to K(a)/K(s) when high sequence divergences preclude estimates of K(s). Broader application of D(r)/D(c) will benefit from approaches less prone to estimation biases.
Collapse
Affiliation(s)
- Jennifer J Wernegreen
- Nicholas School of the Environment, Duke University, Durham, North Carolina, United States of America.
| |
Collapse
|
13
|
Zhang Y, Yu ZF, Xu J, Zhang KQ. Divergence and dispersal of the nematode-trapping fungus Arthrobotrys oligospora from China. ENVIRONMENTAL MICROBIOLOGY REPORTS 2011; 3:763-773. [PMID: 23761368 DOI: 10.1111/j.1758-2229.2011.00297.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Nematode-trapping fungi are of significant agricultural, forestry and ecological importance. However, relatively little is known about the patterns of genetic variation for any nematode-trapping fungus through its broad geographic and ecological contexts. Here, we analysed DNA sequence variation among strains of the nematode-trapping fungus Arthrobotrys oligospora from China. Our analyses revealed that the Chinese A. oligospora is a species complex with at least three divergent lineages (cryptic species). In addition, there was significant geographic structuring with unambiguous evidence for localized recombination within two of the three lineages in nature. However, evidence for clonal reproduction was also found. We discuss the implications of our results to the conservation and biocontrol application of A. oligospora in agriculture and forestry.
Collapse
Affiliation(s)
- Ying Zhang
- Laboratory for Conservation and Utilization of Bio-resources, and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, Yunnan 650091, China. Department of Biology, McMaster University, 1280 Main St. West, Hamilton, Ontario L8S 4K1, Canada
| | | | | | | |
Collapse
|
14
|
Nygren K, Strandberg R, Wallberg A, Nabholz B, Gustafsson T, García D, Cano J, Guarro J, Johannesson H. A comprehensive phylogeny of Neurospora reveals a link between reproductive mode and molecular evolution in fungi. Mol Phylogenet Evol 2011; 59:649-63. [DOI: 10.1016/j.ympev.2011.03.023] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Revised: 02/11/2011] [Accepted: 03/17/2011] [Indexed: 11/27/2022]
|
15
|
Zhang Q. Why does biparental plastid inheritance revive in angiosperms? JOURNAL OF PLANT RESEARCH 2010; 123:201-6. [PMID: 20052516 DOI: 10.1007/s10265-009-0291-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Accepted: 11/10/2009] [Indexed: 05/07/2023]
Abstract
It is widely believed that plastid and mitochondrial genomes are inherited through the maternal parent. In plants, however, paternal transmission of these genomes is frequently observed, especially for the plastid genome. A male gametic trait, called potential biparental plastid inheritance (PBPI), occurs in up to 20% of angiosperm genera, implying a strong tendency for plastid transmission from the male lineage. Why do plants receive organelles from the male parents? Are there clues in plastids that will help to elucidate the evolution of plants? Reconstruction of the ancestral state of plastid inheritance patterns in a phylogenetic context provides insights into these questions. In particular, a recent report demonstrated the unilateral occurrence of PBPI in angiosperms. This result implies that nuclear cytoplasmic conflicts, a basic driving force for altering the mode of organelle inheritance, might have arisen specifically in angiosperms. Based on existing evidence, it is likely that biparental inheritance may have occurred to rescue angiosperm species with defective plastids.
Collapse
Affiliation(s)
- Quan Zhang
- Key Laboratory of Cell Proliferation and Differentiation (Ministry of Education), College of Life Science, Peking University, 100871 Beijing, China
| |
Collapse
|
16
|
Alvarez-Pérez S, Blanco JL, Alba P, García ME. [Sexuality and pathogenicity in Aspergillus fumigatus: is there any relationship?]. Rev Iberoam Micol 2010; 27:1-5. [PMID: 20167523 DOI: 10.1016/j.riam.2009.11.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Revised: 11/18/2009] [Accepted: 11/30/2009] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Aspergillus fumigatus, like many other fungal species of clinical relevance, has been traditionally regarded as an asexual organism. However, in last few years several pieces of evidence question this such assumption, suggesting that the sexual state of A. fumigatus may still be undiscovered. These investigations have finally led to the recent discovery of a teleomorph stage of A. fumigatus, which has been named Neosartorya fumigata. AIMS To review the most important findings on A. fumigatus sexuality and discuss the possible implications of such findings on its pathogenicity. METHODS A bibliographic search was performed to find the main works that study the sexuality of fungal pathogens and, especially, of A. fumigatus. Moreover, data from our recent investigations in this field were also introduced to the discussion. RESULTS The existence of a teleomorph for A. fumigatus could have significant clinical repercussions, as sexual reproduction might produce offspring with increased virulence and/or resistance to antifungal agents. In this sense, the results of our investigations suggest the existence of an association between the MAT1-1 mating type and the invasiveness of A. fumigatus isolates. CONCLUSIONS The study of the sexual reproduction of the fungal pathogens and its possible relationship with virulence will continue to be a topic of interest during the next years, not only because of its basic interest, but also for the possible clinical repercussions.
Collapse
Affiliation(s)
- Sergio Alvarez-Pérez
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, España.
| | | | | | | |
Collapse
|
17
|
Population structure of two beetle-associated yeasts: comparison of a New World asexual and an endemic Nearctic sexual species in the Metschnikowia clade. Antonie van Leeuwenhoek 2009; 96:1-15. [DOI: 10.1007/s10482-009-9330-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Accepted: 03/12/2009] [Indexed: 10/21/2022]
|
18
|
Mandegar MA, Otto SP. Mitotic recombination counteracts the benefits of genetic segregation. Proc Biol Sci 2007; 274:1301-7. [PMID: 17360283 PMCID: PMC2176173 DOI: 10.1098/rspb.2007.0056] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The ubiquity of sexual reproduction despite its cost has lead to an extensive body of research on the evolution and maintenance of sexual reproduction. Previous work has suggested that sexual reproduction can substantially speed up the rate of adaptation in diploid populations, because sexual populations are able to produce the fittest homozygous genotype by segregation and mating of heterozygous individuals. In contrast, asexual populations must wait for two rare mutational events, one producing a heterozygous carrier and the second converting a heterozygous to a homozygous carrier, before a beneficial mutation can become fixed. By avoiding this additional waiting time, it was shown that the benefits of segregation could overcome a twofold cost of sex. This previous result ignores mitotic recombination (MR), however. Here, we show that MR significantly hastens the spread of beneficial mutations in asexual populations. Indeed, given empirical data on MR, we find that adaptation in asexual populations proceeds as fast as that in sexual populations, especially when beneficial alleles are partially recessive. We conclude that asexual populations can gain most of the benefit of segregation through MR while avoiding the costs associated with sexual reproduction.
Collapse
|
19
|
Ironside JE. Multiple losses of sex within a single genus of Microsporidia. BMC Evol Biol 2007; 7:48. [PMID: 17394631 PMCID: PMC1853083 DOI: 10.1186/1471-2148-7-48] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2006] [Accepted: 03/29/2007] [Indexed: 11/22/2022] Open
Abstract
Background Most asexual eukaryotic lineages have arisen recently from sexual ancestors and contain few ecologically distinct species, providing evidence for long-term advantages of sex. Ancient asexual lineages provide rare exceptions to this rule and so can yield valuable information relating to the evolutionary forces underlying the maintenance of sex. Microsporidia are parasitic, unicellular fungi. They include many asexual species which have traditionally been grouped together into large, presumably ancient taxonomic groups. However, these putative ancient asexual lineages have been identified on the basis of morphology, life cycles and small subunit ribosomal RNA (16S rRNA) gene sequences, all of which hold questionable value in accurately inferring phylogenetic relationships among microsporidia. Results The hypothesis of a single, ancient loss of sex within the Nosema/Vairimorpha group of microsporidia was tested using phylogenetic analyses based on alignments of rRNA and RPB1 gene sequences from sexual and asexual species. Neither set of gene trees supported ancient asexuality, instead indicating at least two, recent losses of sex. Conclusion Sex has been lost on multiple, independent occasions within the Nosema/Vairimorpha group of microsporidia and there is no evidence for ancient asexual lineages. It appears therefore that sex confers important long-term advantages even upon highly simplified eukaryotes such as microsporidia. The rapid evolution of microsporidian life cycles indicated by this study also suggests that even closely related microsporidia cannot be assumed to have similar life cycles and the life cycle of each newly discovered species must therefore be completely described. These findings are relevant to the use of microsporidia as biological control agents, since several species under consideration as potential agents have life cycles that have been incompletely described.
Collapse
MESH Headings
- Bayes Theorem
- Consensus Sequence
- Genes, Fungal
- Genes, rRNA
- Microsporidia/genetics
- Microsporidia/growth & development
- Models, Genetic
- Phylogeny
- RNA, Fungal/genetics
- RNA, Ribosomal
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 18S/genetics
- Reproduction, Asexual
Collapse
Affiliation(s)
- Joseph E Ironside
- Institute of Biological Sciences, University of Wales, Aberystwyth, Ceredigion, UK.
| |
Collapse
|
20
|
Abstract
Unlike nuclear genes and genomes, the inheritance of organelle genes and genomes does not follow Mendel's laws. In this mini-review, I summarize recent research progress on the patterns and mechanisms of the inheritance of organelle genes and genomes. While most sexual eukaryotes show uniparental inheritance of organelle genes and genomes in some progeny at least part of the time, increasing evidence indicates that strictly uniparental inheritance is rare and that organelle inheritance patterns are very diverse and complex. In contrast with the predominance of uniparental inheritance in multicellular organisms, organelle genes in eukaryotic microorganisms, such as protists, algae, and fungi, typically show a greater diversity of inheritance patterns, with sex-determining loci playing significant roles. The diverse patterns of inheritance are matched by the rich variety of potential mechanisms. Indeed, many factors, both deterministic and stochastic, can influence observed patterns of organelle inheritance. Interestingly, in multicellular organisms, progeny from interspecific crosses seem to exhibit more frequent paternal leakage and biparental organelle genome inheritance than those from intraspecific crosses. The recent observation of a sex-determining gene in the basidiomycete yeast Cryptococcus neoformans, which controls mitochondrial DNA inheritance, has opened up potentially exciting research opportunities for identifying specific molecular genetic pathways that control organelle inheritance, as well as for testing evolutionary hypotheses regarding the prevalence of uniparental inheritance of organelle genes and genomes.
Collapse
Affiliation(s)
- Jianping Xu
- Department of Biology, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
21
|
Sun S, Guo H, Xu J. Multiple gene genealogical analyses reveal both common and distinct population genetic patterns among replicons in the nitrogen-fixing bacterium Sinorhizobium meliloti. MICROBIOLOGY-SGM 2007; 152:3245-3259. [PMID: 17074896 DOI: 10.1099/mic.0.29170-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Sinorhizobium meliloti is a Gram-negative alpha-proteobacterium that can form symbiotic relationships with alfalfa and fix atmospheric nitrogen. The complete genome of a laboratory strain, Rm1021, was published in 2001, and the genome of this strain is arranged in three replicons: a chromosome of 3.65 million base pairs (Mb), and two megaplasmids, pSymA (1.35 Mb) and pSymB (1.68 Mb). However, the potential difference in genetic variation among the three replicons in natural strains remains poorly understood. In this study, a total of 16 gene fragments were sequenced, four from pSymA and six each from the chromosome and pSymB, for 49 natural S. meliloti strains. The analyses identified significant differences in divergence among genes, with the mean Hasegawa-Kishino-Yano-1985 (HKY85) distance ranging from 0.00157 to 0.04109 between pairs of strains. Overall, genes on pSymA showed the highest mean HKY85 distance, followed by those on pSymB and the chromosome. Although evidence for recombination was found, the authors' population genetic analyses revealed overall significant linkage disequilibria among genes within both pSymA and the chromosome. However, genes on pSymB were in overall linkage equilibrium, consistent with frequent recombination among genes on this replicon. Furthermore, the genealogical comparisons among the three replicons identified significant incongruence, indicating reassortment among the three replicons in natural populations. The results suggest both shared and distinct patterns of molecular evolution among the three replicons in the genomes of natural strains of S. meliloti.
Collapse
Affiliation(s)
- Sheng Sun
- Center for Environmental Genomics, Department of Biology, McMaster University, 1280 Main St West, Hamilton, ON L8S 4K1, Canada
| | - Hong Guo
- Center for Environmental Genomics, Department of Biology, McMaster University, 1280 Main St West, Hamilton, ON L8S 4K1, Canada
| | - Jianping Xu
- Center for Environmental Genomics, Department of Biology, McMaster University, 1280 Main St West, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
22
|
Yan Z, Sun S, Shahid M, Xu J. Environment factors can influence mitochondrial inheritance in the fungus Cryptococcus neoformans. Fungal Genet Biol 2006; 44:315-22. [PMID: 17092744 DOI: 10.1016/j.fgb.2006.10.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2006] [Revised: 10/04/2006] [Accepted: 10/04/2006] [Indexed: 12/13/2022]
Abstract
Cryptococcus neoformans is a model basidiomycete yeast. Strains of this species belong to one of two mating types: mating type a (MATa) or mating type alpha (MATalpha). In typical crosses between MATa and MATalpha strains, the progeny inherit mitochondria from the MATa parent. However, the underlying mechanisms remain largely unknown. To help elucidate the molecular mechanisms, we examined the effects of four environmental factors on the patterns of mtDNA inheritance. These factors are temperature, UV irradiation, and the addition of either the methylation inhibitor 5-aza-2'-deoxycytidine (5-adc) or the ubiquitination inhibitor ammonium chloride. Except temperature, the other three factors have been shown to influence organelle inheritance during sexual mating in other eukaryotes. Our results indicate that while the application of 5-adc or ammonium chloride did not influence mtDNA inheritance in C. neoformans, both UV irradiation and high temperature treatments did. Progeny from a cross involving a high temperature-sensitive mutant with the calcineurin subunit A gene deleted showed biparental mtDNA inheritance in all examined temperatures, consistent with a role of calcineurin and temperature in mtDNA inheritance. Furthermore, the zygote progeny population from a cross performed at a high-temperature environment had a greater variability in their vegetative fitness than that from the same cross conducted at a low temperature. Our results indicate a potentially adaptive role of biparental mtDNA inheritance and mtDNA recombination in certain environments in C. neoformans.
Collapse
Affiliation(s)
- Zhun Yan
- Department of Biology, McMaster University, 1280 Main St. W., Hamilton, Ont., Canada L8S 4K1
| | | | | | | |
Collapse
|
23
|
Lan L, Xu J. Multiple gene genealogical analyses suggest divergence and recent clonal dispersal in the opportunistic human pathogen Candida guilliermondii. MICROBIOLOGY-SGM 2006; 152:1539-1549. [PMID: 16622071 DOI: 10.1099/mic.0.28626-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Candida guilliermondii is a haploid opportunistic pathogen accounting for about 2 % of human blood yeast infections. Recent analyses using multilocus enzyme electrophoresis and karyotyping suggest that strains from human sources traditionally designated C. guilliermondii in fact include at least two species, C. guilliermondii and Candida fermentati. However, the patterns of molecular variation within and between these two species remain largely unknown. In this study, DNA fragments were sequenced from five genes for each of 37 strains collected from Canada, China, the Philippines and Tanzania. The analyses identified significant sequence differences between C. guilliermondii and C. fermentati. The five gene genealogies showed no apparent incongruence, suggesting a predominantly clonal reproductive structure for both species in nature. Indeed, two large clones of C. guilliermondii were identified, with one from Ontario, Canada, and the other from China. Interestingly, the results indicate that strains currently designated C. guilliermondii may contain additional divergent lineages. On the practical side, the results revealed several diagnostic molecular markers that can be used in clinical microbiology laboratories to distinguish C. guilliermondii and C. fermentati. The multiple gene genealogical analyses conducted here revealed significant divergence and clonal dispersal in this important pathogenic yeast complex.
Collapse
Affiliation(s)
- Lisa Lan
- Department of Biology, McMaster University, 1280 Main St West, Hamilton, ON L8S 4K1, Canada
| | - Jianping Xu
- Department of Biology, McMaster University, 1280 Main St West, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
24
|
Campbell LT, Carter DA. Looking for sex in the fungal pathogens Cryptococcus neoformans and Cryptococcus gattii. FEMS Yeast Res 2006; 6:588-98. [PMID: 16696654 DOI: 10.1111/j.1567-1364.2006.00087.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Why are we interested in understanding the mode of reproduction being used by the fungal pathogens Cryptococcus neoformans and Cryptococcus gattii? Empirical evidence has finally supported the long-held assumption that, by increasing the rate of adaptive evolution, sex increases the chances of long-term survival. Understanding the ability of pathogenic organisms to adapt to diagnostic and treatment regimes is also important in the fight against the diseases caused by these organisms. This review looks at the different approaches used to identify population structure in C. neoformans and C. gattii. These are sexual species; however, recombination in natural populations has only recently been found. We highlight the importance of population selection and the value of both indirect molecular analysis and direct biological evidence for sexual recombination, when looking for the mode of reproduction in these fungal pathogens.
Collapse
Affiliation(s)
- Leona T Campbell
- School of Molecular and Microbial Biosciences, The University of Sydney, Sydney, NSW, Australia
| | | |
Collapse
|
25
|
Abstract
Microbial ecology examines the diversity and activity of micro-organisms in Earth's biosphere. In the last 20 years, the application of genomics tools have revolutionized microbial ecological studies and drastically expanded our view on the previously underappreciated microbial world. This review first introduces the basic concepts in microbial ecology and the main genomics methods that have been used to examine natural microbial populations and communities. In the ensuing three specific sections, the applications of the genomics in microbial ecological research are highlighted. The first describes the widespread application of multilocus sequence typing and representational difference analysis in studying genetic variation within microbial species. Such investigations have identified that migration, horizontal gene transfer and recombination are common in natural microbial populations and that microbial strains can be highly variable in genome size and gene content. The second section highlights and summarizes the use of four specific genomics methods (phylogenetic analysis of ribosomal RNA, DNA-DNA re-association kinetics, metagenomics, and micro-arrays) in analysing the diversity and potential activity of microbial populations and communities from a variety of terrestrial and aquatic environments. Such analyses have identified many unexpected phylogenetic lineages in viruses, bacteria, archaea, and microbial eukaryotes. Functional analyses of environmental DNA also revealed highly prevalent, but previously unknown, metabolic processes in natural microbial communities. In the third section, the ecological implications of sequenced microbial genomes are briefly discussed. Comparative analyses of prokaryotic genomic sequences suggest the importance of ecology in determining microbial genome size and gene content. The significant variability in genome size and gene content among strains and species of prokaryotes indicate the highly fluid nature of prokaryotic genomes, a result consistent with those from multilocus sequence typing and representational difference analyses. The integration of various levels of ecological analyses coupled to the application and further development of high throughput technologies are accelerating the pace of discovery in microbial ecology.
Collapse
Affiliation(s)
- Jianping Xu
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada.
| |
Collapse
|
26
|
Xu J. Cost of interacting with sexual partners in a facultative sexual microbe. Genetics 2005; 171:1597-604. [PMID: 15998718 PMCID: PMC1456087 DOI: 10.1534/genetics.105.045302] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2005] [Accepted: 06/21/2005] [Indexed: 11/18/2022] Open
Abstract
The widespread occurrence of sexual organisms despite the high costs of sex has long intrigued biologists. The best-known costs are the twofold cost of producing males and the cost associated with producing traits to attract mates and to interact with mating partners, such as exaggerated sexual behaviors and morphological modifications. These costs have been inferred from studies of plants and animals but are thought to be absent in facultative sexual microbes. Here, using the facultative sexual fungus Cryptococcus neoformans, I provide experimental evidence showing that: (i) interactions with active sexual partners can be costly for vegetative fitness in a facultative sexual microbe; (ii) this cost is positively correlated to mating ability; (iii) this cost is composed of at least two distinct components, the cost of producing mating signals that exert effects on mating partners and that associated with responding to active mating partners; and (iv) extended asexual reproduction can reduce both components of the cost. This cost must have been compensated for by the production of zygotes and sexual spores to allow the initial evolution and spread of sexual reproduction in eukaryotes.
Collapse
Affiliation(s)
- Jianping Xu
- Department of Biology, McMaster University, Hamilton, Ontario L8S 4K1, Canada.
| |
Collapse
|