1
|
Ryan FP. An alternative approach to medical genetics based on modern evolutionary biology. Part 4: HERVs in cancer. J R Soc Med 2010; 102:474-80. [PMID: 19875536 DOI: 10.1258/jrsm.2009.090289] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Affiliation(s)
- Frank P Ryan
- Sheffield Primary Care Trust and Department of Animal and Plant Sciences, Sheffield University, UK.
| |
Collapse
|
2
|
Abstract
Advocates of chimpanzee research claim the genetic similarity of humans and chimpanzees make them an indispensable research tool to combat human diseases. Given that cancer is a leading cause of human death worldwide, one might expect that if chimpanzees were needed for, or were productive in, cancer research, then they would have been widely used. This comprehensive literature analysis reveals that chimpanzees have scarcely been used in any form of cancer research, and that chimpanzee tumours are extremely rare and biologically different from human cancers. Often, chimpanzee citations described peripheral use of chimpanzee cells and genetic material in predominantly human genomic studies. Papers describing potential new cancer therapies noted significant concerns regarding the chimpanzee model. Other studies described interventions that have not been pursued clinically. Finally, available evidence indicates that chimpanzees are not essential in the development of therapeutic monoclonal antibodies. It would therefore be unscientific to claim that chimpanzees are vital to cancer research. On the contrary, it is reasonable to conclude that cancer research would not suffer, if the use of chimpanzees for this purpose were prohibited in the US. Genetic differences between humans and chimpanzees, make them an unsuitable model for cancer, as well as other human diseases.
Collapse
Affiliation(s)
- Jarrod Bailey
- New England Anti-Vivisection Society, Boston, MA 02108-5100, USA.
| |
Collapse
|
3
|
Umylny B, Presting G, Efird JT, Klimovitsky BI, Ward WS. Most human Alu and murine B1 repeats are unique. J Cell Biochem 2007; 102:110-21. [PMID: 17407136 DOI: 10.1002/jcb.21278] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Alus and B1s are short interspersed repeat elements (SINEs) indirectly derived from the 7SL RNA gene. While most researchers recognize that there exists extensive variability between individual elements, the extent of this variability has never been systematically tested. We examined all Alu elements over 200 nucleotides and all B1 elements over 100 nucleotides in the human and mouse genomes, and analyzed the number of copies of each element at various stringencies from 22 nucleotides to full length. Over 98% of 923,277 Alus and 365,377 B1s examined were unique when queried at full length. When the criterion was reduced to half the length of the repeat, 97% of the Alus and 73% of the B1s were still found to be a single copy. All single and multi-copy sequences have been mapped and documented. Access to the data is possible using the AluPlus website http://www.ibr.hawaii.edu.
Collapse
Affiliation(s)
- Boris Umylny
- Institute of Biogenesis Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii 96822, USA
| | | | | | | | | |
Collapse
|
4
|
Mola G, Vela E, Fernández-Figueras MT, Isamat M, Muñoz-Mármol AM. Exonization of Alu-generated splice variants in the survivin gene of human and non-human primates. J Mol Biol 2006; 366:1055-63. [PMID: 17204284 DOI: 10.1016/j.jmb.2006.11.089] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2006] [Revised: 11/28/2006] [Accepted: 11/28/2006] [Indexed: 11/23/2022]
Abstract
Survivin is a member of the inhibitor apoptosis family that is overexpressed in many malignancies. It has five known alternative splice forms, some of which differ in their antiapoptotic properties and expression levels in human cancers. Here we describe a novel donor splice site (DSS), 2B+32 DSS, which is used in conjunction with survivin alternative exon 2B, resulting in the inclusion of 32 additional nucleotides from intron 2 at the 3' end of this exon. Sequence analysis showed that both the classical exon 2B DSS and 2B+32 are provided by an Alu sequence, which is inserted in intron 2 downstream of a functional acceptor splice site, leading to the exonization of part of the repetitive element. Minor transcripts including the 2B+32 alternative exon, or retaining the whole intronic region comprised between exons 2B and 3, were detected in several human cell lines and in some human tissues. Survivin 2B+32 containing variants acquire a premature stop codon (PTC) and may therefore be degraded by the nonsense mediated decay pathway. The implication of these novel isoforms, as well as other PTC+ survivin variants, in the overall regulation of survivin expression is discussed. Sequence analysis of intron 2 which contains the Alu Y element was performed on different primate species in order to trace its insertion and exonization during primate evolution.
Collapse
Affiliation(s)
- Gemma Mola
- Department of Pathology, Hospital Universitari Germans Trias i Pujol, Autonomous University of Barcelona, Spain
| | | | | | | | | |
Collapse
|
5
|
Sui Y, Yang Z, Xiong S, Zhang L, Blanchard KL, Peiper SC, Dynan WS, Tuan D, Ko L. Gene amplification and associated loss of 5' regulatory sequences of CoAA in human cancers. Oncogene 2006; 26:822-35. [PMID: 16878147 PMCID: PMC9245580 DOI: 10.1038/sj.onc.1209847] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
CoAA is an RRM-containing transcriptional coactivator that stimulates transcriptional activation and regulates alternative splicing. We show that the CoAA gene is amplified at the chromosome 11q13 locus in a subset of primary human cancers including non-small cell lung carcinoma, squamous cell skin carcinoma and lymphoma. Analysis of 42 primary tumors suggests that CoAA amplifies independently from the CCND1 locus. Detailed mapping of three CoAA amplicons reveals that the amplified CoAA gene is consistently located at the 5' boundaries of the amplicons. The CoAA coding and basal promoter sequences are retained within the amplicons but upstream silencing sequences are lost. CoAA protein is overexpressed in tumors containing the amplified CoAA gene. RNA dot blot analysis of 100 cases of primary tumors suggests elevated CoAA mRNA expression. CoAA positively regulates its own basal promoter in transfection assays. Thus, gene amplification, loss of silencing sequence and positive feedback regulation may lead to drastic upregulation of CoAA protein. CoAA has transforming activities when tested in soft agar assays, and CoAA is homologous to oncoproteins EWS and TLS, which regulate alternative splicing. These data imply that CoAA may share a similar oncogenic mechanism with oncogene EWS and that CoAA deregulation may alter the alternative splicing of target genes.
Collapse
Affiliation(s)
- Y Sui
- Department of Pathology, Medical College of Georgia, Augusta, GA, USA
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA, USA
| | - Z Yang
- Department of Pathology, Medical College of Georgia, Augusta, GA, USA
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA, USA
| | - S Xiong
- Department of Pathology, Medical College of Georgia, Augusta, GA, USA
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA, USA
| | - L Zhang
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA, USA
| | - KL Blanchard
- Lilly Research Laboratories, Indianapolis, IN, USA
| | - SC Peiper
- Department of Pathology, Medical College of Georgia, Augusta, GA, USA
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA, USA
| | - WS Dynan
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA, USA
| | - D Tuan
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA, USA
| | - L Ko
- Department of Pathology, Medical College of Georgia, Augusta, GA, USA
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA, USA
| |
Collapse
|