1
|
Mahalle RM, Bosamia TC, Chakravarty S, Srivastava K, Meena RS, Kadam US, Srivastava CP. De Novo Mining and Validating Novel Microsatellite Markers to Assess Genetic Diversity in Maruca vitrata (F.), a Legume Pod Borer. Genes (Basel) 2023; 14:1433. [PMID: 37510337 PMCID: PMC10379186 DOI: 10.3390/genes14071433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/09/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
Maruca vitrata (Fabricius) is an invasive insect pest capable of causing enormous economic losses to a broad spectrum of leguminous crops. Microsatellites are valuable molecular markers for population genetic studies; however, an inadequate number of M. vitrata microsatellite loci are available to carry out population association studies. Thus, we utilized this insect's public domain databases for mining expressed sequence tags (EST)-derived microsatellite markers. In total, 234 microsatellite markers were identified from 10053 unigenes. We discovered that trinucleotide repeats were the most predominant microsatellite motifs (61.53%), followed by dinucleotide repeats (23.50%) and tetranucleotide repeats (14.95%). Based on the analysis, twenty-five markers were selected for validation in M. vitrata populations collected from various regions of India. The number of alleles (Na), observed heterozygosity (Ho), and expected heterozygosity (He) ranged from 2 to 5; 0.00 to 0.80; and 0.10 to 0.69, respectively. The polymorphic loci showed polymorphism information content (PIC), ranging from 0.09 to 0.72. Based on the genetic distance matrix, the unrooted neighbor-joining dendrogram differentiated the selected populations into two discrete groups. The SSR markers developed and validated in this study will be helpful in population-level investigations of M. vitrata to understand the gene flow, demography, dispersal patterns, biotype differentiation, and host dynamics.
Collapse
Affiliation(s)
- Rashmi Manohar Mahalle
- Department of Entomology and Agricultural Zoology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India
- Department of Applied Biology, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Tejas C Bosamia
- Plant Omics Division, Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, India
| | - Snehel Chakravarty
- Department of Entomology and Agricultural Zoology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Kartikeya Srivastava
- Department of Genetics and Plant Breeding, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Radhe S Meena
- Department of Entomology and Agricultural Zoology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Ulhas Sopanrao Kadam
- Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Division of Life Science and Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Chandra P Srivastava
- Department of Entomology and Agricultural Zoology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
2
|
Gong Z, Hu H, Xu L, Zhao Y, Zheng C. Screening of Differentially Expressed Genes and Localization Analysis of Female Gametophyte at the Free Nuclear Mitosis Stage in Pinus tabuliformis Carr. Int J Mol Sci 2022; 23:ijms23031915. [PMID: 35163836 PMCID: PMC8837038 DOI: 10.3390/ijms23031915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/27/2022] [Accepted: 02/03/2022] [Indexed: 02/04/2023] Open
Abstract
Female sterility is a common phenomenon in the plant world, and systematic research has not been carried out in gymnosperms. In this study, the ovules of No. 28 sterile line and No. 15 fertile line Pinus tabuliformis were used as materials, and a total of 18 cDNA libraries were sequenced by the HiSeqTM 4000 platform to analyze the differentially expressed genes (DEGs) and simple sequence repeats (SSRs) between the two lines. In addition, this study further analyzed the DEGs involved in the signal transduction of plant hormones, revealing that the signal pathways related to auxin, cytokinin, and gibberellin were blocked in the sterile ovule. Additionally, real-time fluorescent quantitative PCR verified that the expression trend of DEGs related to plant hormones was consistent with the results of high-throughput sequencing. Frozen sections and fluorescence in situ hybridization (FISH) were used to study the temporal and spatial expression patterns of PtRab in the ovules of P. tabuliformis. It was found that PtRab was significantly expressed in female gametophytes and rarely expressed in the surrounding diploid tissues. This study further explained the molecular regulation mechanism of female sterility in P. tabuliformis, preliminarily mining the key factors of ovule abortion in gymnosperms at the transcriptional level.
Collapse
Affiliation(s)
- Zaixin Gong
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (Z.G.); (H.H.); (L.X.)
- College of Horticulture, Jilin Agriculture University, Changchun 130118, China
| | - Hailin Hu
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (Z.G.); (H.H.); (L.X.)
| | - Li Xu
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (Z.G.); (H.H.); (L.X.)
| | - Yuanyuan Zhao
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (Z.G.); (H.H.); (L.X.)
- Correspondence: (Y.Z.); (C.Z.); Tel.: +86-10-6233-7717 (Y.Z.)
| | - Caixia Zheng
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (Z.G.); (H.H.); (L.X.)
- Correspondence: (Y.Z.); (C.Z.); Tel.: +86-10-6233-7717 (Y.Z.)
| |
Collapse
|
3
|
Development of 21 polymorphic microsatellite markers for the black-banded sea krait, Laticauda semifasciata (Elapidae: Laticaudinae), and cross-species amplification for two other congeneric species. Genes Genomics 2017; 40:447-454. [DOI: 10.1007/s13258-017-0626-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 10/24/2017] [Indexed: 12/21/2022]
|
4
|
Bishnoi R, Singla D. APMicroDB: A microsatellite database of Acyrthosiphon pisum. GENOMICS DATA 2017; 12:111-115. [PMID: 28413782 PMCID: PMC5384296 DOI: 10.1016/j.gdata.2017.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 03/23/2017] [Accepted: 03/26/2017] [Indexed: 11/28/2022]
Abstract
Pea aphids represent a complex genetic system that could be used for QTL analysis, genetic diversity and population genetics studies. Here, we described the development of first microsatellite repeat database of the pea aphid (APMicroDB), accessible at “http://deepaklab.com/aphidmicrodb”. We identified 3,40,233 SSRs using MIcroSAtellite (MISA) tool that was distributed in 14,067 (out of 23,924) scaffold of the pea aphid. We observed 89.53% simple repeats of which 73.41% were mono-nucleotide, followed by di-nucleotide repeats. This database stored information about the repeats kind, GC content, motif type (mono - hexa), genomic location etc. We have also incorporated the primer information derived from Primer3 software of the 250bp flanking region of the identified marker. Blast tool is also provided for searching the user query sequence for identified marker and their primers. This work has an immense use for scientific community working in the field of agricultural pest management, QTL mapping, and host-pathogen interaction analysis.
Collapse
Affiliation(s)
- Ritika Bishnoi
- Institute of Microbial Technology, Sector 39-A, Chandigarh 160036, India
| | - Deepak Singla
- Centre for Agricultural Bioinformatics, Indian Agricultural Statistics Research Institute, Library Avenue, Pusa, New Delhi, India
| |
Collapse
|
5
|
Ali L, Deokar A, Caballo C, Tar'an B, Gil J, Chen W, Millan T, Rubio J. Fine mapping for double podding gene in chickpea. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2016; 129:77-86. [PMID: 26433827 DOI: 10.1007/s00122-015-2610-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 09/19/2015] [Indexed: 06/05/2023]
Abstract
For the first time, fine mapping for sfl locus was carried out using a battery of new STMS and SNP markers. The target region was delimited to 92.6 Kb where seven annotated genes were found that could be candidate genes for the simple/double podding trait in chickpea. Four recombinant inbred populations (RIP-1, RIP-7, RIP-11, and CPR-01) were used to map the double podding gene (sfl) in chickpea. In RIP-1, the gene was initially mapped on linkage group (LG) 6 between the two sequence-tagged microsatellite site (STMS) markers TA120 and TR1. Eight new STMS markers were added onto LG6 in the target region and sfl locus was finally located between CAGM27819 and CAGM27777 markers within an interval of 2 cM. Seven out of the eight markers were mapped in RIP-7 and its reciprocal RIP-11 confirming the location of the sfl locus to a 4.8 cM interval flanked by TR44 and CAGM27705. Furthermore, using a high-density single nucleotide polymorphism (SNP) map of CPR-01, sfl was mapped to the same genomic region in a 5.1 cM interval between TR44 and the SNP scaffold1646p97220. Five pairs of near isogenic lines (NILs) and eight recombinant inbred lines (RILs) were used to refine this region in the chickpea physical map. Combining data from linkage analysis in four RIPs, marker physical positions and recombination events obtained in both pairs of NILs and selected RILs, sfl could be placed within a genomic window of 92.6 Kb. Seven annotated genes were extracted from this region. The regulator of axillary meristem-predicted gene could be a candidate gene for the simple/double podding gene. This study provides additional set of markers flanking and tightly linked to sfl locus that are useful for marker-assisted selection.
Collapse
Affiliation(s)
- L Ali
- Department of Genetics, University of Córdoba, Campus Rabanales Ed. C-5, 14071, Córdoba, Spain
| | - A Deokar
- Crop Development Center, University of Saskatchewan, Saskatoon, SK, S7N 5A8, Canada
| | - C Caballo
- Área de Mejora y Biotecnología, IFAPA, Apdo 3092, 14080, Córdoba, Spain
| | - B Tar'an
- Crop Development Center, University of Saskatchewan, Saskatoon, SK, S7N 5A8, Canada
| | - J Gil
- Department of Genetics, University of Córdoba, Campus Rabanales Ed. C-5, 14071, Córdoba, Spain
| | - W Chen
- Grain Legume Genetics and Physiology Research Unit, USDA-ARS, Washington State University, Pullman, WA, 99164, USA
| | - T Millan
- Department of Genetics, University of Córdoba, Campus Rabanales Ed. C-5, 14071, Córdoba, Spain.
| | - J Rubio
- Área de Mejora y Biotecnología, IFAPA, Apdo 3092, 14080, Córdoba, Spain
| |
Collapse
|
6
|
Transcriptome characterization and SSR discovery in large-scale loach Paramisgurnus dabryanus (Cobitidae, Cypriniformes). Gene 2015; 557:201-8. [DOI: 10.1016/j.gene.2014.12.034] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 12/02/2014] [Accepted: 12/15/2014] [Indexed: 12/26/2022]
|
7
|
Gray S, Cilia M, Ghanim M. Circulative, "nonpropagative" virus transmission: an orchestra of virus-, insect-, and plant-derived instruments. Adv Virus Res 2014; 89:141-99. [PMID: 24751196 DOI: 10.1016/b978-0-12-800172-1.00004-5] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Species of plant viruses within the Luteoviridae, Geminiviridae, and Nanoviridae are transmitted by phloem-feeding insects in a circulative, nonpropagative manner. The precise route of virus movement through the vector can differ across and within virus families, but these viruses all share many biological, biochemical, and ecological features. All share temporal and spatial constraints with respect to transmission efficiency. The viruses also induce physiological changes in their plant hosts resulting in behavioral changes in the insects that optimize the transmission of virus to new hosts. Virus proteins interact with insect, endosymbiont, and plant proteins to orchestrate, directly and indirectly, virus movement in insects and plants to facilitate transmission. Knowledge of these complex interactions allows for the development of new tools to reduce or prevent transmission, to quickly identify important vector populations, and to improve the management of these economically important viruses affecting agricultural and natural plant populations.
Collapse
Affiliation(s)
- Stewart Gray
- Biological Integrated Pest Management Research Unit, USDA, ARS, Ithaca, New York, USA; Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, USA.
| | - Michelle Cilia
- Biological Integrated Pest Management Research Unit, USDA, ARS, Ithaca, New York, USA; Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, USA; Boyce Thompson Institute for Plant Research, Ithaca, New York, USA
| | - Murad Ghanim
- Department of Entomology, Volcani Center, Bet Dagan, Israel
| |
Collapse
|
8
|
Ahn YK, Tripathi S, Cho YI, Kim JH, Lee HE, Kim DS, Woo JG, Cho MC. De novo transcriptome assembly and novel microsatellite marker information in Capsicum annuum varieties Saengryeg 211 and Saengryeg 213. BOTANICAL STUDIES 2013; 54:58. [PMID: 28510893 PMCID: PMC5430321 DOI: 10.1186/1999-3110-54-58] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 11/02/2013] [Indexed: 05/31/2023]
Abstract
BACKGROUND Pepper, Capsicum annuum L., Solanaceae, is a major staple economically important vegetable crop worldwide. Limited functional genomics resources and whole genome association studies could be substantially improved through the application of molecular approach for the characterization of gene content and identification of molecular markers. The massive parallel pyrosequencing of two pepper varieties, the highly pungent, Saengryeg 211, and the non-pungent, Saengryeg 213, including de novo transcriptome assembly, functional annotation, and in silico discovery of potential molecular markers is described. We performed 454 GS-FLX Titanium sequencing of polyA-selected and normalized cDNA libraries generated from a single pool of transcripts obtained from mature fruits of two pepper varieties. RESULTS A single 454 pyrosequencing run generated 361,671 and 274,269 reads totaling 164.49 and 124.60 Mb of sequence data (average read length of 454 nucleotides), which assembled into 23,821 and 17,813 isotigs and 18,147 and 15,129 singletons for both varieties, respectively. These reads were organized into 20,352 and 15,781 'isogroups' for both varieties. Assembled sequences were functionally annotated based on homology to genes in multiple public databases and assigned with Gene Ontology (GO) terms. Sequence variants analyses identified a total of 3,766 and 2,431 potential (Simple Sequence Repeat) SSR motifs for microsatellite analysis for both varieties, where trinucleotide was the most common repeat unit (84%), followed by di (9.9%), hexa (4.1%) and pentanucleotide repeats (2.1%). GAA repeat (8.6%) was the most frequent repeat motif, followed by TGG (7.2%), TTC (6.5%), and CAG (6.2%). CONCLUSIONS High-throughput transcriptome assembly, annotation and large scale of SSR marker discovery has been achieved using next generation sequencing (NGS) of two pepper varieties. These valuable informations for functional genomics resource shall help to further improve the pepper breeding efforts with respect to genetic linkage maps, QTL mapping and marker-assisted trait selection.
Collapse
Affiliation(s)
- Yul-Kyun Ahn
- Vegetable Research Division, National Institute of Horticultural & Herbal Science, Rural Development Administration, Suwon, 440-706 Republic of Korea
| | - Swati Tripathi
- Vegetable Research Division, National Institute of Horticultural & Herbal Science, Rural Development Administration, Suwon, 440-706 Republic of Korea
| | - Young-Il Cho
- Vegetable Research Division, National Institute of Horticultural & Herbal Science, Rural Development Administration, Suwon, 440-706 Republic of Korea
| | - Jeong-Ho Kim
- Vegetable Research Division, National Institute of Horticultural & Herbal Science, Rural Development Administration, Suwon, 440-706 Republic of Korea
| | - Hye-Eun Lee
- Vegetable Research Division, National Institute of Horticultural & Herbal Science, Rural Development Administration, Suwon, 440-706 Republic of Korea
| | - Do-Sun Kim
- Vegetable Research Division, National Institute of Horticultural & Herbal Science, Rural Development Administration, Suwon, 440-706 Republic of Korea
| | - Jong-Gyu Woo
- Vegetable Research Division, National Institute of Horticultural & Herbal Science, Rural Development Administration, Suwon, 440-706 Republic of Korea
| | - Myeong-Cheoul Cho
- Vegetable Research Division, National Institute of Horticultural & Herbal Science, Rural Development Administration, Suwon, 440-706 Republic of Korea
| |
Collapse
|
9
|
Jun TH, Michel AP, Wenger JA, Kang ST, Mian MAR. Population genetic structure and genetic diversity of soybean aphid collections from the USA, South Korea, and Japan. Genome 2013; 56:345-50. [PMID: 23957674 DOI: 10.1139/gen-2013-0027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Following its recent invasion of North America, the soybean aphid (Aphis glycines Matsumura) has become the number one insect pest of soybean (Glycine max L. Merr.) in the north central states of the USA. A few studies have been conducted on the population genetic structure and genetic diversity of the soybean aphid and the source of its invasion in North America. Molecular markers, such as simple sequence repeats (SSRs) are very useful in the evaluation of population structure and genetic diversity. We used 18 SSR markers to assess the genetic diversity of soybean aphid collections from the USA, South Korea, and Japan. The aphids were collected from two sites in the USA (Indiana and South Dakota), two sites in South Korea (Yeonggwang district and Cheonan city), and one site in Japan (Utsunomiya). The SSR markers were highly effective in differentiating among aphid collections from different countries. The level of differentiation within each population and among populations from the same country was limited, even in the case of the USA where the two collection sites were more than 1200 km apart.
Collapse
Affiliation(s)
- Tae-Hwan Jun
- Department of Entomology, The Ohio State University/OARDC, 1680 Madison Avenue, Wooster, OH 44691, USA
| | | | | | | | | |
Collapse
|
10
|
Wang H, Walla JA, Zhong S, Huang D, Dai W. Development and cross-species/genera transferability of microsatellite markers discovered using 454 genome sequencing in chokecherry (Prunus virginiana L.). PLANT CELL REPORTS 2012; 31:2047-2055. [PMID: 22837059 DOI: 10.1007/s00299-012-1315-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 06/25/2012] [Accepted: 07/11/2012] [Indexed: 06/01/2023]
Abstract
Chokecherry (Prunus virginiana L.) (2n = 4x = 32) is a unique Prunus species for both genetics and disease-resistance research due to its tetraploid nature and X-disease resistance. However, no genetic and genomic information on chokecherry is available. A partial chokecherry genome was sequenced using Roche 454 sequencing technology. A total of 145,094 reads covering 4.8 Mbp of the chokecherry genome were generated and 15,113 contigs were assembled, of which 11,675 contigs were larger than 100 bp in size. A total of 481 SSR loci were identified from 234 (out of 11,675) contigs and 246 polymerase chain reaction (PCR) primer pairs were designed. Of 246 primers, 212 (86.2 %) effectively produced amplification from the genomic DNA of chokecherry. All 212 amplifiable chokecherry primers were used to amplify genomic DNA from 11 other rosaceous species (sour cherry, sweet cherry, black cherry, peach, apricot, plum, apple, crabapple, pear, juneberry, and raspberry). Thus, chokecherry SSR primers can be transferable across Prunus species and other rosaceous species. An average of 63.2 and 58.7 % of amplifiable chokecherry primers amplified DNA from cherry and other Prunus species, respectively, while 47.2 % of amplifiable chokecherry primers amplified DNA from other rosaceous species. Using random genome sequence data generated from next-generation sequencing technology to identify microsatellite loci appears to be rapid and cost-efficient, particularly for species with no sequence information available. Sequence information and confirmed transferability of the identified chokecherry SSRs among species will be valuable for genetic research in Prunus and other rosaceous species. Key message A total of 246 SSR primers were identified from chokecherry genome sequences. Of which, 212 were confirmed amplifiable both in chokecherry and other 11 other rosaceous species.
Collapse
Affiliation(s)
- Hongxia Wang
- Department of Plant Sciences, North Dakota State University, Fargo, ND, USA
| | | | | | | | | |
Collapse
|
11
|
Application of novel polymorphic microsatellite loci identified in the Korean Pacific Abalone (Haliotis diversicolor supertexta (Haliotidae)) in the genetic characterization of wild and released populations. Int J Mol Sci 2012; 13:10750-10764. [PMID: 23109820 PMCID: PMC3472712 DOI: 10.3390/ijms130910750] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 08/10/2012] [Accepted: 08/16/2012] [Indexed: 11/16/2022] Open
Abstract
The small abalone, Haliotis diversicolor supertexta, of the family Haliotidae, is one of the most important species of marine shellfish in eastern Asia. Over the past few decades, this species has drastically declined in Korea. Thus, hatchery-bred seeds have been released into natural coastal areas to compensate for the reduced fishery resources. However, information on the genetic background of the small abalone is scarce. In this study, 20 polymorphic microsatellite DNA markers were identified using next-generation sequencing techniques and used to compare allelic variation between wild and released abalone populations in Korea. Using high-throughput genomic sequencing, a total of 1516 (2.26%; average length of 385 bp) reads containing simple sequence repeats were obtained from 86,011 raw reads. Among the 99 loci screened, 28 amplified successfully, and 20 were polymorphic. When comparing allelic variation between wild and released abalone populations, a total of 243 different alleles were observed, with 18.7 alleles per locus. High genetic diversity (mean heterozygosity = 0.81; mean allelic number = 15.5) was observed in both populations. A statistical analysis of the fixation index (FST) and analysis of molecular variance (AMOVA) indicated limited genetic differences between the two populations (FST = 0.002, p > 0.05). Although no significant reductions in the genetic diversity were found in the released population compared with the wild population (p > 0.05), the genetic diversity parameters revealed that the seeds released for stock abundance had a different genetic composition. These differences are likely a result of hatchery selection and inbreeding. Additionally, all the primer pair sets were effectively amplified in another congeneric species, H. diversicolor diversicolor, indicating that these primers are useful for both abalone species. These microsatellite loci may be valuable for future aquaculture and population genetic studies aimed at developing conservation and management plans for these two abalone species.
Collapse
|