1
|
Fan W, Sun M, Zheng Y, Song S, Zhang Z, Bian Y. Karyotypic and phenotypic condensation in allotetraploid wheats accompanied with reproductive strategy transformation: from natural evolution to domestication. PLANTA 2024; 260:83. [PMID: 39212743 DOI: 10.1007/s00425-024-04514-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
MAIN CONCLUSION Allotetraploid wheat reflects evolutionary divergence and domestication convergence in the karyotypic and phenotypic evolution, accompanied with the transformation from r- strategy to K- strategy in reproductive fitness. Allotetraploid wheat, the progenitor of hexaploidy bread wheat, has undergone 300,000 years of natural evolution and 10,000 years of domestication. The variations in karyotype and phenotype as well as fertility fitness have not been systematically linked. Here, by combining fluorescent in situ hybridization with the quantification of phenotypic and reproductive traits, we compared the karyotype, vegetative growth phenotype and reproductive fitness among synthesized, wild and domesticated accessions of allotetraploid wheat. We detected that the wild accessions showed dramatically high frequencies of homologous recombination and copy number variations of simple sequence repeats (SSR) comparing with synthetic and domesticated accessions. The phenotypic traits reflected significant differences among the populations shaped by distinct evolutionary processes. The diversity observed in wild accessions was significantly greater than that in domesticated ones, particularly in traits associated with vegetative growth and spike morphology. We found that the active pollen of domesticated accessions exhibited greater potential of germination, despite a lower rate of active pollen compared with the wild accessions, indicating a transformation in reproductive fitness strategy for pollen development in domesticated accessions compared to the wild accessions, from r-strategy to K-strategy. Our results demonstrate the condensation of karyotype and phenotype from natural wild accessions to domesticated accessions in allotetraploid wheats. Ecological strategy transformation should be seriously considered from evolution to domestication in polyploid plants, especially crops, which may provide a perspective on the adaptive evolution of polyploid plants.
Collapse
Affiliation(s)
- Wei Fan
- College of Life Sciences, Liaoning Normal University, Dalian, 116000, People's Republic of China
| | - Meiqi Sun
- College of Life Sciences, Liaoning Normal University, Dalian, 116000, People's Republic of China
| | - Yongbao Zheng
- College of Life Sciences, Liaoning Normal University, Dalian, 116000, People's Republic of China
- Key Laboratory of Plant Biotechnology in Liaoning Province, Dalian, 116000, People's Republic of China
| | - Siwen Song
- College of Life Sciences, Liaoning Normal University, Dalian, 116000, People's Republic of China
| | - Zeyao Zhang
- College of Life Sciences, Liaoning Normal University, Dalian, 116000, People's Republic of China
| | - Yao Bian
- College of Life Sciences, Liaoning Normal University, Dalian, 116000, People's Republic of China.
- Key Laboratory of Plant Biotechnology in Liaoning Province, Dalian, 116000, People's Republic of China.
| |
Collapse
|
2
|
Sha Y, Li Y, Zhang D, Lv R, Wang H, Wang R, Ji H, Li S, Gong L, Li N, Liu B. Genome shock in a synthetic allotetraploid wheat invokes subgenome-partitioned gene regulation, meiotic instability, and karyotype variation. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5547-5563. [PMID: 37379452 DOI: 10.1093/jxb/erad247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/27/2023] [Indexed: 06/30/2023]
Abstract
It is becoming increasingly evident that interspecific hybridization at the homoploid level or coupled with whole-genome duplication (i.e. allopolyploidization) has played a major role in biological evolution. However, the direct impacts of hybridization and allopolyploidization on genome structure and function, phenotype, and fitness remains to be fully understood. Synthetic hybrids and allopolyploids are trackable experimental systems that can be used to address this issue. In this study, we resynthesized a pair of reciprocal F1 hybrids and corresponding reciprocal allotetraploids using the two diploid progenitor species of bread wheat (Triticum aestivum, BBAADD), namely T. urartu (AA) and Aegilops tauschii (DD). By comparing phenotypes related to growth, development, and fitness, and by analysing genome expression in both hybrids and allotetraploids in relation to the parents, we found that the types and trends of karyotype variation in the immediately formed allotetraploids were correlated with both instability of meiosis and chromosome- and subgenome-biased expression. We determined clear advantages of allotetraploids over diploid F1 hybrids in several morphological traits including fitness that mirrored the tissue- and developmental stage-dependent subgenome-partitioning of the allotetraploids. The allotetraploids were meiotically unstable primarily due to homoeologous pairing that varied dramatically among the chromosomes. Nonetheless, the manifestation of organismal karyotype variation and the occurrence of meiotic irregularity were not concordant, suggesting a role of functional constraints probably imposed by subgenome- and chromosome-biased gene expression. Our results provide new insights into the direct impacts and consequences of hybridization and allopolyploidization that are relevant to evolution and likely to be informative for future crop improvement approaches using synthetic polyploids.
Collapse
Affiliation(s)
- Yan Sha
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Yang Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Deshi Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Ruili Lv
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Han Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Ruisi Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Heyu Ji
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Shuhang Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Lei Gong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Ning Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| |
Collapse
|
3
|
Hao M, Zhang L, Huang L, Ning S, Yuan Z, Jiang B, Yan Z, Wu B, Zheng Y, Liu D. 渗入杂交与小麦杂种优势. CHINESE SCIENCE BULLETIN-CHINESE 2022. [DOI: 10.1360/tb-2022-0349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
4
|
Li LF, Zhang ZB, Wang ZH, Li N, Sha Y, Wang XF, Ding N, Li Y, Zhao J, Wu Y, Gong L, Mafessoni F, Levy AA, Liu B. Genome sequences of five Sitopsis species of Aegilops and the origin of polyploid wheat B subgenome. MOLECULAR PLANT 2022; 15:488-503. [PMID: 34979290 DOI: 10.1016/j.molp.2021.12.019] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/11/2021] [Accepted: 12/28/2021] [Indexed: 05/23/2023]
Abstract
Common wheat (Triticum aestivum, BBAADD) is a major staple food crop worldwide. The diploid progenitors of the A and D subgenomes have been unequivocally identified; that of B, however, remains ambiguous and controversial but is suspected to be related to species of Aegilops, section Sitopsis. Here, we report the assembly of chromosome-level genome sequences of all five Sitopsis species, namely Aegilops bicornis, Ae. longissima, Ae. searsii, Ae. sharonensis, and Ae. speltoides, as well as the partial assembly of the Amblyopyrum muticum (synonym Aegilops mutica) genome for phylogenetic analysis. Our results reveal that the donor of the common wheat B subgenome is a distinct, and most probably extinct, diploid species that diverged from an ancestral progenitor of the B lineage to which the still extant Ae. speltoides and Am. muticum belong. In addition, we identified interspecific genetic introgressions throughout the evolution of the Triticum/Aegilops species complex. The five Sitopsis species have various assembled genome sizes (4.11-5.89 Gb) with high proportions of repetitive sequences (85.99%-89.81%); nonetheless, they retain high collinearity with other genomes or subgenomes of species in the Triticum/Aegilops complex. Differences in genome size were primarily due to independent post-speciation amplification of transposons. We also identified a set of Sitopsis genes pertinent to important agronomic traits that can be harnessed for wheat breeding. These newly assembled genome resources provide a new roadmap for evolutionary and genetic studies of the Triticum/Aegilops complex, as well as for wheat improvement.
Collapse
Affiliation(s)
- Lin-Feng Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China; Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China.
| | - Zhi-Bin Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China; Department of Plant and Environmental Sciences, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Zhen-Hui Wang
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Ning Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Yan Sha
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Xin-Feng Wang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Ning Ding
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Yang Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Jing Zhao
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Ying Wu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Lei Gong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Fabrizio Mafessoni
- Department of Plant and Environmental Sciences, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Avraham A Levy
- Department of Plant and Environmental Sciences, The Weizmann Institute of Science, 76100 Rehovot, Israel.
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China.
| |
Collapse
|
5
|
Grewal S, Guwela V, Newell C, Yang CY, Ashling S, Scholefield D, Hubbart-Edwards S, Burridge A, Stride A, King IP, King J. Generation of Doubled Haploid Wheat- Triticum urartu Introgression Lines and Their Characterisation Using Chromosome-Specific KASP Markers. FRONTIERS IN PLANT SCIENCE 2021; 12:643636. [PMID: 34054892 PMCID: PMC8155260 DOI: 10.3389/fpls.2021.643636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 04/19/2021] [Indexed: 05/07/2023]
Abstract
Wheat is one of the most important food and protein sources in the world and although, in recent years wheat breeders have achieved yield gains, they are not sufficient to meet the demands of an ever-growing population. Development of high yielding wheat varieties, resilient to abiotic and biotic stress resulting from climate change, has been limited by wheat's narrow genetic base. In contrast to wheat, the wild relatives of wheat provide a vast reservoir of genetic variation for most, if not all, agronomic traits. Previous studies by the authors have shown the transfer of genetic variation from T. urartu into bread wheat. However, before the introgression lines can be exploited for trait analysis, they are required to have stable transmission of the introgressions to the next generation. In this work, we describe the generation of 86 doubled haploid (DH) wheat-T. urartu introgression lines that carry homozygous introgressions which are stably inherited. The DH lines were characterised using the Axiom® Wheat Relative Genotyping Array and 151 KASP markers to identify 65 unique T. urartu introgressions in a bread wheat background. DH production has helped accelerate the breeding process and facilitated the early release of homozygous wheat-T. urartu introgression lines. Together with the KASP markers, this valuable resource could greatly advance identification of beneficial alleles that can be used in wheat improvement.
Collapse
Affiliation(s)
- Surbhi Grewal
- Nottingham BBSRC Wheat Research Centre, School of Biosciences, University of Nottingham, Loughborough, United Kingdom
| | - Veronica Guwela
- Nottingham BBSRC Wheat Research Centre, School of Biosciences, University of Nottingham, Loughborough, United Kingdom
| | - Claire Newell
- Limagrain UK Limited, Bury St Edmunds, United Kingdom
| | - Cai-yun Yang
- Nottingham BBSRC Wheat Research Centre, School of Biosciences, University of Nottingham, Loughborough, United Kingdom
| | - Stephen Ashling
- Nottingham BBSRC Wheat Research Centre, School of Biosciences, University of Nottingham, Loughborough, United Kingdom
| | - Duncan Scholefield
- Nottingham BBSRC Wheat Research Centre, School of Biosciences, University of Nottingham, Loughborough, United Kingdom
| | - Stella Hubbart-Edwards
- Nottingham BBSRC Wheat Research Centre, School of Biosciences, University of Nottingham, Loughborough, United Kingdom
| | - Amanda Burridge
- School of Biological Sciences, University of Bristol, United Kingdom
| | - Alex Stride
- Limagrain UK Limited, Bury St Edmunds, United Kingdom
| | - Ian P. King
- Nottingham BBSRC Wheat Research Centre, School of Biosciences, University of Nottingham, Loughborough, United Kingdom
| | - Julie King
- Nottingham BBSRC Wheat Research Centre, School of Biosciences, University of Nottingham, Loughborough, United Kingdom
- *Correspondence: Julie King,
| |
Collapse
|
6
|
Liu S, Wang D, Lin M, Sehgal SK, Dong L, Wu Y, Bai G. Artificial selection in breeding extensively enriched a functional allelic variation in TaPHS1 for pre-harvest sprouting resistance in wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:339-350. [PMID: 33068119 DOI: 10.1007/s00122-020-03700-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 10/03/2020] [Indexed: 06/11/2023]
Abstract
Pre-harvest sprouting (PHS) causes significant losses in wheat yield and quality worldwide. Previously, we cloned a PHS resistance gene, TaPHS1, and identified two causal mutations for reduced seed dormancy (SD) and increased PHS susceptibility. Here we identified a novel allelic variation of C to T transition in 3'-UTR of TaPHS1, which associated with reduced SD and PHS resistance. The T allele occurred in wild wheat progenitors and was likely the earliest functional mutation in TaPHS1 for PHS susceptibility. Allele frequency analysis revealed low frequency of the T allele in wild diploid and tetraploid wheat progenitors, but very high frequency in modern wheat cultivars and breeding lines, indicating that artificial selection quickly enriched the T allele during modern breeding. The T allele was significantly associated with short SD in both T. aestivum and T. durum, the two most cultivated species of wheat. This variation together with previously reported functional sequence variations co-regulated TaPHS1 expression levels and PHS resistance in different germplasms. Haplotype analysis of the four functional variations identified the best PHS resistance haplotype of TaPHS1. The resistance haplotype can be used in marker-assisted selection to transfer TaPHS1 to new wheat cultivars.
Collapse
Affiliation(s)
- Shubing Liu
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
| | - Danfeng Wang
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Meng Lin
- Department of Agronomy, Kansas State University, Manhattan, KS, 66506, USA
| | - Sunish K Sehgal
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD, 57007, USA
| | - Lei Dong
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Yuye Wu
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Guihua Bai
- Department of Agronomy, Kansas State University, Manhattan, KS, 66506, USA.
- USDA-ARS, Hard Winter Wheat Genetic Research Unit, Manhattan, KS, 66506, USA.
| |
Collapse
|
7
|
Genome-Wide Analysis of LysM-Containing Gene Family in Wheat: Structural and Phylogenetic Analysis during Development and Defense. Genes (Basel) 2020; 12:genes12010031. [PMID: 33383636 PMCID: PMC7823900 DOI: 10.3390/genes12010031] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/19/2020] [Accepted: 12/23/2020] [Indexed: 11/17/2022] Open
Abstract
The lysin motif (LysM) family comprise a number of defense proteins that play important roles in plant immunity. The LysM family includes LysM-containing receptor-like proteins (LYP) and LysM-containing receptor-like kinase (LYK). LysM generally recognizes the chitin and peptidoglycan derived from bacteria and fungi. Approximately 4000 proteins with the lysin motif (Pfam PF01476) are found in prokaryotes and eukaryotes. Our study identified 57 LysM genes and 60 LysM proteins in wheat and renamed these genes and proteins based on chromosome distribution. According to the phylogenetic and gene structure of intron-exon distribution analysis, the 60 LysM proteins were classified into seven groups. Gene duplication events had occurred among the LysM family members during the evolution process, resulting in an increase in the LysM gene family. Synteny analysis suggested the characteristics of evolution of the LysM family in wheat and other species. Systematic analysis of these species provided a foundation of LysM genes in crop defense. A comprehensive analysis of the expression and cis-elements of LysM gene family members suggested that they play an essential role in defending against plant pathogens. The present study provides an overview of the LysM family in the wheat genome as well as information on systematic, phylogenetic, gene duplication, and intron-exon distribution analyses that will be helpful for future functional analysis of this important protein family, especially in Gramineae species.
Collapse
|
8
|
Concia L, Veluchamy A, Ramirez-Prado JS, Martin-Ramirez A, Huang Y, Perez M, Domenichini S, Rodriguez Granados NY, Kim S, Blein T, Duncan S, Pichot C, Manza-Mianza D, Juery C, Paux E, Moore G, Hirt H, Bergounioux C, Crespi M, Mahfouz MM, Bendahmane A, Liu C, Hall A, Raynaud C, Latrasse D, Benhamed M. Wheat chromatin architecture is organized in genome territories and transcription factories. Genome Biol 2020; 21:104. [PMID: 32349780 PMCID: PMC7189446 DOI: 10.1186/s13059-020-01998-1] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 03/12/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Polyploidy is ubiquitous in eukaryotic plant and fungal lineages, and it leads to the co-existence of several copies of similar or related genomes in one nucleus. In plants, polyploidy is considered a major factor in successful domestication. However, polyploidy challenges chromosome folding architecture in the nucleus to establish functional structures. RESULTS We examine the hexaploid wheat nuclear architecture by integrating RNA-seq, ChIP-seq, ATAC-seq, Hi-C, and Hi-ChIP data. Our results highlight the presence of three levels of large-scale spatial organization: the arrangement into genome territories, the diametrical separation between facultative and constitutive heterochromatin, and the organization of RNA polymerase II around transcription factories. We demonstrate the micro-compartmentalization of transcriptionally active genes determined by physical interactions between genes with specific euchromatic histone modifications. Both intra- and interchromosomal RNA polymerase-associated contacts involve multiple genes displaying similar expression levels. CONCLUSIONS Our results provide new insights into the physical chromosome organization of a polyploid genome, as well as on the relationship between epigenetic marks and chromosome conformation to determine a 3D spatial organization of gene expression, a key factor governing gene transcription in polyploids.
Collapse
Affiliation(s)
- Lorenzo Concia
- Institute of Plant Sciences Paris of Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Orsay, France
| | - Alaguraj Veluchamy
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Juan S Ramirez-Prado
- Institute of Plant Sciences Paris of Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Orsay, France
| | | | - Ying Huang
- Institute of Plant Sciences Paris of Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Orsay, France
| | - Magali Perez
- Institute of Plant Sciences Paris of Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Orsay, France
| | - Severine Domenichini
- Institute of Plant Sciences Paris of Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Orsay, France
| | | | - Soonkap Kim
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Thomas Blein
- Institute of Plant Sciences Paris of Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Orsay, France
| | - Susan Duncan
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UG, UK
| | - Clement Pichot
- Institute of Plant Sciences Paris of Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Orsay, France
| | - Deborah Manza-Mianza
- Institute of Plant Sciences Paris of Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Orsay, France
| | - Caroline Juery
- INRA UMR1095 Genetics, Diversity and Ecophysiology of Cereals, 5 chemin de Beaulieu, 63039, Clermont-Ferrand, France
| | - Etienne Paux
- INRA UMR1095 Genetics, Diversity and Ecophysiology of Cereals, 5 chemin de Beaulieu, 63039, Clermont-Ferrand, France
| | - Graham Moore
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Heribert Hirt
- Institute of Plant Sciences Paris of Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Orsay, France
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Catherine Bergounioux
- Institute of Plant Sciences Paris of Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Orsay, France
| | - Martin Crespi
- Institute of Plant Sciences Paris of Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Orsay, France
| | - Magdy M Mahfouz
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Abdelhafid Bendahmane
- Institute of Plant Sciences Paris of Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Orsay, France
| | - Chang Liu
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 32, 72076, Tübingen, Germany
| | - Anthony Hall
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UG, UK
| | - Cécile Raynaud
- Institute of Plant Sciences Paris of Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Orsay, France
| | - David Latrasse
- Institute of Plant Sciences Paris of Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Orsay, France
| | - Moussa Benhamed
- Institute of Plant Sciences Paris of Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Orsay, France.
- Institut Universitaire de France (IUF), Paris, France.
| |
Collapse
|
9
|
Fatiukha A, Klymiuk V, Peleg Z, Saranga Y, Cakmak I, Krugman T, Korol AB, Fahima T. Variation in phosphorus and sulfur content shapes the genetic architecture and phenotypic associations within the wheat grain ionome. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 98:667-679. [PMID: 31571297 DOI: 10.1111/tpj.14264] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/21/2019] [Accepted: 01/23/2019] [Indexed: 05/27/2023]
Abstract
Dissection of the genetic basis of wheat ionome is crucial for understanding the physiological and biochemical processes underlying mineral accumulation in seeds, as well as for efficient crop breeding. Most of the elements essential for plants are metals stored in seeds as chelate complexes with phytic acid or sulfur-containing compounds. We assume that the involvement of phosphorus and sulfur in metal chelation is the reason for strong phenotypic correlations within ionome. Adjustment of element concentrations for the effect of variation in phosphorus and sulfur seed content resulted in drastic change of phenotypic correlations between the elements. The genetic architecture of wheat grain ionome was characterized by quantitative trait loci (QTL) analysis using a cross between durum and wild emmer wheat. QTL analysis of the adjusted traits and two-trait analysis of the initial traits paired with either P or S considerably improved QTL detection power and accuracy, resulting in the identification of 105 QTLs and 617 QTL effects for 11 elements. Candidate gene search revealed some potential functional associations between QTLs and corresponding genes within their intervals. Thus, we have shown that accounting for variation in P and S is crucial for understanding of the physiological and genetic regulation of mineral composition of wheat grain ionome and can be implemented for other plants.
Collapse
Affiliation(s)
- Andrii Fatiukha
- Institute of Evolution, University of Haifa, Haifa, 3498838, Israel
- Department of Evolutionary and Environmental Biology, University of Haifa, 199 Abba-Khoushy Ave, Mt. Carmel, Haifa, 3498838, Israel
| | - Valentyna Klymiuk
- Institute of Evolution, University of Haifa, Haifa, 3498838, Israel
- Department of Evolutionary and Environmental Biology, University of Haifa, 199 Abba-Khoushy Ave, Mt. Carmel, Haifa, 3498838, Israel
| | - Zvi Peleg
- R. H. Smith Institute of Plant Science & Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, 7610001, Israel
| | - Yehoshua Saranga
- R. H. Smith Institute of Plant Science & Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, 7610001, Israel
| | - Ismail Cakmak
- Faculty of Engineering & Natural Sciences, Sabanci University, Tuzla İstanbul, 34956, Turkey
| | - Tamar Krugman
- Institute of Evolution, University of Haifa, Haifa, 3498838, Israel
| | - Abraham B Korol
- Institute of Evolution, University of Haifa, Haifa, 3498838, Israel
- Department of Evolutionary and Environmental Biology, University of Haifa, 199 Abba-Khoushy Ave, Mt. Carmel, Haifa, 3498838, Israel
| | - Tzion Fahima
- Institute of Evolution, University of Haifa, Haifa, 3498838, Israel
- Department of Evolutionary and Environmental Biology, University of Haifa, 199 Abba-Khoushy Ave, Mt. Carmel, Haifa, 3498838, Israel
| |
Collapse
|
10
|
Wu X, Ding B, Zhang B, Feng J, Wang Y, Ning C, Wu H, Zhang F, Zhang Q, Li N, Zhang Z, Sun X, Zhang Q, Li W, Liu B, Cui Y, Gong L. Phylogenetic and population structural inference from genomic ancestry maintained in present-day common wheat Chinese landraces. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 99:201-215. [PMID: 31134682 DOI: 10.1111/tpj.14421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 05/10/2019] [Indexed: 06/09/2023]
Abstract
Hexaploid common wheat is one of the most important food crops worldwide. Common wheat domestication began in the Fertile Crescent of the Near East approximately 10 000 years ago and then spread west into Europe and eastward into East Asia and China. However, the possible spreading route into and within China is still unclear. In this study, we successfully extracted DNA from single ancient wheat seeds and sequenced the whole genome of seven ancient samples from Xiaohe and Gumugou cemeteries in Xinjiang, China. Genomic inference and morphological observation confirmed their identity as hexaploid common wheat grown in prehistoric China at least 3200 years before present (BP). Phylogenetic and admixture analyses with RNA-seq data of modern hexaploid wheat cultivars from both China and Western countries demonstrated a close kinship of the ancient wheat to extant common wheat landraces in southwestern China. The highly similar allelic frequencies in modern landraces of the Qinghai-Tibetan plateau with the ancient wheat support the previously suggested southwestern spreading route into highland China. A subsequent dispersal route from the Qinghai-Tibetan plateau margins to the Yangtze valley was proposed in this study. Furthermore, the common wheat populations grown in the Middle and Lower Yangtze valley wheat zones were also proposed to be established by population admixture with the wheat grown in the Upper Yangtze valley. Our study reports ancient common wheat sequences at a genome-wide scale, providing important information on the origin, dispersal, and genetic improvement under cultivation of present-day wheat landraces grown in China.
Collapse
Affiliation(s)
- Xiyan Wu
- School of Life Sciences, Jilin University, Changchun, 130012, People's Republic of China
| | - Baoxu Ding
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, 130024, People's Republic of China
| | - Bingqi Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, 130024, People's Republic of China
| | - Jiaojiao Feng
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, 130024, People's Republic of China
| | - Yibing Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, 130024, People's Republic of China
| | - Chao Ning
- School of Life Sciences, Jilin University, Changchun, 130012, People's Republic of China
| | - Haidan Wu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, 130024, People's Republic of China
| | - Fan Zhang
- School of Life Sciences, Jilin University, Changchun, 130012, People's Republic of China
| | - Qun Zhang
- Research Center for Chinese Frontier Archaeology, Jilin University, Changchun, 130012, People's Republic of China
| | - Ning Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, 130024, People's Republic of China
| | - Zhibin Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, 130024, People's Republic of China
| | - Xuhan Sun
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, 130024, People's Republic of China
| | - Quanchao Zhang
- Research Center for Chinese Frontier Archaeology, Jilin University, Changchun, 130012, People's Republic of China
| | - Wenying Li
- Xinjiang Cultural Relics and Archaeology Institute, Ürümchi, 830000, PR China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, 130024, People's Republic of China
| | - Yinqiu Cui
- School of Life Sciences, Jilin University, Changchun, 130012, People's Republic of China
- Research Center for Chinese Frontier Archaeology, Jilin University, Changchun, 130012, People's Republic of China
| | - Lei Gong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, 130024, People's Republic of China
| |
Collapse
|
11
|
Gou X, Bian Y, Zhang A, Zhang H, Wang B, Lv R, Li J, Zhu B, Gong L, Liu B. Transgenerationally Precipitated Meiotic Chromosome Instability Fuels Rapid Karyotypic Evolution and Phenotypic Diversity in an Artificially Constructed Allotetraploid Wheat (AADD). Mol Biol Evol 2019; 35:1078-1091. [PMID: 29365173 PMCID: PMC5913668 DOI: 10.1093/molbev/msy009] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Although a distinct karyotype with defined chromosome number and structure characterizes each biological species, it is intrinsically labile. Polyploidy or whole-genome duplication has played a pervasive and ongoing role in the evolution of all eukaryotes, and is the most dramatic force known to cause rapid karyotypic reconfiguration, especially at the initial stage. However, issues concerning transgenerational propagation of karyotypic heterogeneity and its translation to phenotypic diversity in nascent allopolyploidy, at the population level, have yet to be studied in detail. Here, we report a large-scale examination of transgenerationally propagated karyotypic heterogeneity and its phenotypic manifestation in an artificially constructed allotetraploid with a genome composition of AADD, that is, involving two of the three progenitor genomes of polyploid wheat. Specifically, we show that 1) massive organismal karyotypic heterogeneity is precipitated after 12 consecutive generations of selfing from a single euploid founder individual, 2) there exist dramatic differences in aptitudes between subgenomes and among chromosomes for whole-chromosome gain and/or loss and structural variations, 3) majority of the numerical and structural chromosomal variations are concurrent due to mutual contingency and possible functional constraint, 4) purposed and continuous selection and propagation for euploidy over generations did not result in enhanced karyotype stabilization, and 5) extent of karyotypic variation correlates with variability of phenotypic manifestation. Together, our results document that allopolyploidization catalyzes rampant and transgenerationally heritable organismal karyotypic heterogeneity that drives population-level phenotypic diversification, which lends fresh empirical support to the still contentious notion that whole-genome duplication enhances organismal evolvability.
Collapse
Affiliation(s)
- Xiaowan Gou
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, People's Republic of China
| | - Yao Bian
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, People's Republic of China
| | - Ai Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, People's Republic of China
| | - Huakun Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, People's Republic of China
| | - Bin Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, People's Republic of China
| | - Ruili Lv
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, People's Republic of China
| | - Juzuo Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, People's Republic of China
| | - Bo Zhu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, People's Republic of China
| | - Lei Gong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, People's Republic of China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, People's Republic of China
| |
Collapse
|
12
|
Dvorak J, Wang L, Zhu T, Jorgensen CM, Luo MC, Deal KR, Gu YQ, Gill BS, Distelfeld A, Devos KM, Qi P, McGuire PE. Reassessment of the evolution of wheat chromosomes 4A, 5A, and 7B. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:2451-2462. [PMID: 30141064 PMCID: PMC6208953 DOI: 10.1007/s00122-018-3165-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 08/13/2018] [Indexed: 05/02/2023]
Abstract
Comparison of genome sequences of wild emmer wheat and Aegilops tauschii suggests a novel scenario of the evolution of rearranged wheat chromosomes 4A, 5A, and 7B. Past research suggested that wheat chromosome 4A was subjected to a reciprocal translocation T(4AL;5AL)1 that occurred in the diploid progenitor of the wheat A subgenome and to three major rearrangements that occurred in polyploid wheat: pericentric inversion Inv(4AS;4AL)1, paracentric inversion Inv(4AL;4AL)1, and reciprocal translocation T(4AL;7BS)1. Gene collinearity along the pseudomolecules of tetraploid wild emmer wheat (Triticum turgidum ssp. dicoccoides, subgenomes AABB) and diploid Aegilops tauschii (genomes DD) was employed to confirm these rearrangements and to analyze the breakpoints. The exchange of distal regions of chromosome arms 4AS and 4AL due to pericentric inversion Inv(4AS;4AL)1 was detected, and breakpoints were validated with an optical Bionano genome map. Both breakpoints contained satellite DNA. The breakpoints of reciprocal translocation T(4AL;7BS)1 were also found. However, the breakpoints that generated paracentric inversion Inv(4AL;4AL)1 appeared to be collocated with the 4AL breakpoints that had produced Inv(4AS;4AL)1 and T(4AL;7BS)1. Inv(4AS;4AL)1, Inv(4AL;4AL)1, and T(4AL;7BS)1 either originated sequentially, and Inv(4AL;4AL)1 was produced by recurrent chromosome breaks at the same breakpoints that generated Inv(4AS;4AL)1 and T(4AL;7BS)1, or Inv(4AS;4AL)1, Inv(4AL;4AL)1, and T(4AL;7BS)1 originated simultaneously. We prefer the latter hypothesis since it makes fewer assumptions about the sequence of events that produced these chromosome rearrangements.
Collapse
Affiliation(s)
- Jan Dvorak
- Department of Plant Sciences, University of California, Davis, CA USA
| | - Le Wang
- Department of Plant Sciences, University of California, Davis, CA USA
| | - Tingting Zhu
- Department of Plant Sciences, University of California, Davis, CA USA
| | - Chad M. Jorgensen
- Department of Plant Sciences, University of California, Davis, CA USA
| | - Ming-Cheng Luo
- Department of Plant Sciences, University of California, Davis, CA USA
| | - Karin R. Deal
- Department of Plant Sciences, University of California, Davis, CA USA
| | - Yong Q. Gu
- Crop Improvement and Genetics Research, USDA-ARS, Albany, CA USA
| | - Bikram S. Gill
- Department of Plant Pathology, Kansas State University, Manhattan, KS USA
| | - Assaf Distelfeld
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Katrien M. Devos
- Institute of Plant Breeding, Genetics and Genomics, Department of Crop and Soil Sciences, University of Georgia, Athens, GA USA
- Department of Plant Biology, University of Georgia, Athens, GA USA
| | - Peng Qi
- Institute of Plant Breeding, Genetics and Genomics, Department of Crop and Soil Sciences, University of Georgia, Athens, GA USA
- Department of Plant Biology, University of Georgia, Athens, GA USA
| | | |
Collapse
|
13
|
Grewal S, Hubbart-Edwards S, Yang C, Scholefield D, Ashling S, Burridge A, Wilkinson PA, King IP, King J. Detection of T. urartu Introgressions in Wheat and Development of a Panel of Interspecific Introgression Lines. FRONTIERS IN PLANT SCIENCE 2018; 9:1565. [PMID: 30420865 PMCID: PMC6216105 DOI: 10.3389/fpls.2018.01565] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 10/08/2018] [Indexed: 05/23/2023]
Abstract
Tritcum urartu (2n = 2x = 14, AuAu), the A genome donor of wheat, is an important source for new genetic variation for wheat improvement due to its high photosynthetic rate and disease resistance. By facilitating the generation of genome-wide introgressions leading to a variety of different wheat-T. urartu translocation lines, T. urartu can be practically utilized in wheat improvement. Previous studies that have generated such introgression lines have been unable to successfully use cytological methods to detect the presence of T. urartu in these lines. Many have, thus, used a variety of molecular markers with limited success due to the low-density coverage of these markers and time-consuming nature of the techniques rendering them unsuitable for large-scale breeding programs. In this study, we report the generation of a resource of single nucleotide polymorphic (SNP) markers, present on a high-throughput SNP genotyping array, that can detect the presence of T. urartu in a hexaploid wheat background making it a potentially valuable tool in wheat pre-breeding programs. A whole genome introgression approach has resulted in the transfer of different chromosome segments from T. urartu into wheat which have then been detected and characterized using these SNP markers. The molecular analysis of these wheat-T. urartu recombinant lines has resulted in the generation of a genetic map of T. urartu containing 368 SNP markers, spread across all seven chromosomes of T. urartu. Comparative analysis of the genetic map of T. urartu and the physical map of the hexaploid wheat genome showed that synteny between the two species is highly conserved at the macro-level and confirmed the presence of the 4/5 translocation in T. urartu also present in the A genome of wheat. A panel of 17 wheat-T. urartu recombinant lines, which consisted of introgressed segments that covered the whole genome of T. urartu, were also selected for self-fertilization to provide a germplasm resource for future trait analysis. This valuable resource of high-density molecular markers specifically designed for detecting wild relative chromosomes and a panel of stable interspecific introgression lines will greatly enhance the efficiency of wheat improvement through wild relative introgressions.
Collapse
Affiliation(s)
- Surbhi Grewal
- Nottingham BBSRC Wheat Research Centre, Plant and Crop Sciences, School of Biosciences, The University of Nottingham, Loughborough, United Kingdom
| | - Stella Hubbart-Edwards
- Nottingham BBSRC Wheat Research Centre, Plant and Crop Sciences, School of Biosciences, The University of Nottingham, Loughborough, United Kingdom
| | - Caiyun Yang
- Nottingham BBSRC Wheat Research Centre, Plant and Crop Sciences, School of Biosciences, The University of Nottingham, Loughborough, United Kingdom
| | - Duncan Scholefield
- Nottingham BBSRC Wheat Research Centre, Plant and Crop Sciences, School of Biosciences, The University of Nottingham, Loughborough, United Kingdom
| | - Stephen Ashling
- Nottingham BBSRC Wheat Research Centre, Plant and Crop Sciences, School of Biosciences, The University of Nottingham, Loughborough, United Kingdom
| | - Amanda Burridge
- Cereal Genomics Lab, Life Sciences Building, School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - Paul Anthony Wilkinson
- Cereal Genomics Lab, Life Sciences Building, School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - Ian P. King
- Nottingham BBSRC Wheat Research Centre, Plant and Crop Sciences, School of Biosciences, The University of Nottingham, Loughborough, United Kingdom
| | - Julie King
- Nottingham BBSRC Wheat Research Centre, Plant and Crop Sciences, School of Biosciences, The University of Nottingham, Loughborough, United Kingdom
| |
Collapse
|
14
|
Chromosomal structural changes and microsatellite variations in newly synthesized hexaploid wheat mediated by unreduced gametes. J Genet 2017; 95:819-830. [PMID: 27994180 DOI: 10.1007/s12041-016-0704-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Allohexaploid wheat was derived from interspecific hybridization, followed by spontaneous chromosome doubling. Newly synthesized hexaploid wheat by crossing Triticum turgidum and Aegilops tauschii provides a classical model to understand the mechanisms of allohexaploidization in wheat. However, immediate chromosome level variation and microsatellite level variation of newly synthesized hexaploid wheat have been rarely reported. Here, unreduced gametes were applied to develop synthesized hexaploid wheat, NA0928, population by crossing T. turgidum ssp. dicoccum MY3478 and Ae. tauschii SY41, and further S0-S3 generations of NA0928 were assayed by sequential cytological and microsatellite techniques. We demonstrated that plentiful chromosomal structural changes and microsatellite variations emerged in the early generations of newly synthesized hexaploid wheat population NA0928, including aneuploidy with whole-chromosome loss or gain, aneuploidy with telosome formation, chromosome-specific repeated sequence elimination (indicated by fluorescence in situ hybridization) and microsatellite sequence elimination (indicated by sequencing), and many kinds of variations have not been previously reported. Additionally, we reported a new germplasm, T. turgidum accession MY3478 with excellent unreduced gametes trait, and then succeeded to transfer powdery mildew resistance from Ae. tauschii SY41 to synthesized allohexaploid wheat population NA0928, which would be valuable resistance resources for wheat improvement.
Collapse
|
15
|
Liu W, Koo DH, Friebe B, Gill BS. A set of Triticum aestivum-Aegilops speltoides Robertsonian translocation lines. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2016; 129:2359-2368. [PMID: 27558595 DOI: 10.1007/s00122-016-2774-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 08/12/2016] [Indexed: 06/06/2023]
Abstract
Here we report the production of a set of wheat - Aegilops speltoides Robertsonian translocations covering all Ae. speltoides chromosome arms except the long arm of the homoeologous group 4 chromosome. Aegilops speltoides of the Poaceae family is the most probable donor of the B and G genomes of polyploid Triticum species and also an important source of resistance to diseases and pests of wheat. Previously, we reported the production of a complete set of T aestivum-Ae. speltoides chromosome addition lines and a set of disomic S(B/A)-genome chromosome substitution lines. The isolation of compensating Robertsonian translocations (RobTs) composed of alien chromosome arms translocated to homoeologous wheat chromosome arms is the important next step to exploit the genetic variation of a wild relative of wheat. Here, we report the development of molecular markers specific for the S-genome chromosomes and their use in the isolation of a set of 13 compensating wheat-Ae. speltoides RobTs covering the S genome of Ae. speltoides except for the long arm of chromosome 4S. Most of the RobTs were fully fertile and will facilitate mapping of genes to specific chromosome arms and also will accelerate the introgression of agronomically useful traits from Ae. speltoides into wheat by homologous recombination.
Collapse
Affiliation(s)
- Wenxuan Liu
- Laboratory of Cell and Chromosome Engineering, College of Life Sciences, Henan Agricultural University, Zhengzhou, Henan, 450002, People's Republic of China
| | - Dal-Hoe Koo
- Wheat Genetics Resource Center, Department of Plant Pathology, Throckmorton Plant Sciences Center, Kansas State University, Manhattan, KS, 66506-5502, USA
| | - Bernd Friebe
- Wheat Genetics Resource Center, Department of Plant Pathology, Throckmorton Plant Sciences Center, Kansas State University, Manhattan, KS, 66506-5502, USA.
| | - Bikram S Gill
- Wheat Genetics Resource Center, Department of Plant Pathology, Throckmorton Plant Sciences Center, Kansas State University, Manhattan, KS, 66506-5502, USA
| |
Collapse
|
16
|
Diversification of the Homoeologous Lr34 Sequences in Polyploid Wheat Species and Their Diploid Progenitors. J Mol Evol 2016; 82:291-302. [PMID: 27300207 DOI: 10.1007/s00239-016-9748-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 06/04/2016] [Indexed: 10/21/2022]
Abstract
Allopolyploidization induces a multiple processes of genomic reorganization, including the structurally functional diversification of the homoeologous genes. An example of such diversification is the appearance of the Lr34 gene on chromosome 7D of bread wheat T. aestivum (BAD), the gene conferring durable, race non-specific protection against three fungal pathogens. In this study, we focused on the variability of a functionally critical region between exons 10-12 of Lr34 among diploid progenitors of wheat genomes and their respective polyploids. In the diploid A-genome species, two basic forms of the studied region have been revealed: (1) non-functional forms containing stop codons, or/and frameshifts (T. monococcum/T. urartu) and (2) forms with no such a mutations (T. boeoticum). The Lr34 sequence of T. urartu containing a TGA stop codon was inherited by the first tetraploid T. dicoccoides (BA), and then reorganized in some accessions of this species due to the insertion of an LTR retroelement in exon 10. Besides T. boeoticum, the second form of the Lr34 sequence is also characteristic of A. speltoides, which presumably donated this form to all polyploid descendants bearing B-genome. No differences were found between the D-genome-specific Lr34 sequences studied here and downloaded from databases, implying the highest level of conservation of the Lr34 predecessor throughout evolution. The sequence data were later used to construct phylograms, and apparent peculiarities in the evolution of the studied region of Lr34 genes discussed.
Collapse
|
17
|
Wang X, Zhang H, Li Y, Zhang Z, Li L, Liu B. Transcriptome asymmetry in synthetic and natural allotetraploid wheats, revealed by RNA-sequencing. THE NEW PHYTOLOGIST 2016; 209:1264-77. [PMID: 26436593 DOI: 10.1111/nph.13678] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 08/20/2015] [Indexed: 05/20/2023]
Abstract
Allopolyploidization has occurred frequently within the Triticum-Aegilops complex which provides a suitable system to investigate how allopolyploidization shapes the expression patterns of duplicated homeologs. We have conducted transcriptome-profiling of leaves and young inflorescences in wild and domesticated tetraploid wheats, Triticum turgidum ssp. dicoccoides (BBAA) and ssp. durum (BBAA), an extracted tetraploid (BBAA), and a synthetic tetraploid (S(l) S(l) AA) wheat together with its diploid parents, Aegilops longissima (S(l) S(l) ) and Triticum urartu (AA). The two diploid species showed tissue-specific differences in genome-wide ortholog expression, which plays an important role in transcriptome shock-mediated homeolog expression rewiring and hence transcriptome asymmetry in the synthetic tetraploid. Further changes of homeolog expression apparently occurred in natural tetraploid wheats, which led to novel transcriptome asymmetry between the two subgenomes. In particular, our results showed that extremely biased homeolog expression can occur rapidly upon the allotetraploidzation and this trend is further enhanced in the course of domestication and evolution of polyploid wheats. Our results suggest that allopolyploidization is accompanied by distinct phases of homeolog expression changes, with parental legacy playing major roles in the immediate rewiring of homeolog expression upon allopolyploidization, while evolution and domestication under allotetraploidy drive further homeolog-expression changes toward re-established subgenome expression asymmetry.
Collapse
Affiliation(s)
- Xutong Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Huakun Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Yaling Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Zhibin Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Linfeng Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
- Department of Biology, Washington University in St Louis, St Louis, MO, 63130, USA
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| |
Collapse
|
18
|
Liu S, Sehgal SK, Lin M, Li J, Trick HN, Gill BS, Bai G. Independent mis-splicing mutations in TaPHS1 causing loss of preharvest sprouting (PHS) resistance during wheat domestication. THE NEW PHYTOLOGIST 2015; 208:928-35. [PMID: 26255630 DOI: 10.1111/nph.13489] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 04/30/2015] [Indexed: 05/19/2023]
Abstract
Preharvest sprouting (PHS) is one of the major constraints of wheat production in areas where prolonged rainfall occurs during harvest. TaPHS1 is a gene that regulates PHS resistance on chromosome 3A of wheat, and two causal mutations in the positions +646 and +666 of the TaPHS1 coding region result in wheat PHS susceptibility. Three competitive allele-specific PCR (KASP) markers were developed based on the two mutations in the coding region and one in the promoter region and validated in 82 wheat cultivars with known genotypes. These markers can be used to transfer TaPHS1 in breeding through marker-assisted selection. Screening of 327 accessions of wheat A genome progenitors using the three KASP markers identified different haplotypes in both diploid and tetraploid wheats. Only one Triticum monococcum accession, however, carries both causal mutations in the TaPHS1 coding region and shows PHS susceptibility. Five of 249 common wheat landraces collected from the Fertile Crescent and surrounding areas carried the mutation (C) in the promoter (-222), and one landrace carries both the causal mutations in the TaPHS1 coding region, indicating that the mis-splicing (+646) mutation occurred during common wheat domestication. PHS assay of wheat progenitor accessions demonstrated that the wild-types were highly PHS-resistant, whereas the domesticated type showed increased PHS susceptibility. The mis-splicing TaPHS1 mutation for PHS susceptibility was involved in wheat domestication and might arise independently between T. monococcum and Triticum aestivum.
Collapse
Affiliation(s)
- Shubing Liu
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China
- Department of Agronomy, Kansas State University, Manhattan, KS, 66506, USA
| | - Sunish K Sehgal
- Department of Plant Science, South Dakota State University, Brookings, SD, 57006, USA
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA
| | - Meng Lin
- Department of Agronomy, Kansas State University, Manhattan, KS, 66506, USA
| | - Jiarui Li
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA
| | - Harold N Trick
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA
| | - Bikram S Gill
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA
| | - Guihua Bai
- Department of Agronomy, Kansas State University, Manhattan, KS, 66506, USA
- Hard Winter Wheat Genetic Research Unit, USDA-ARS, Manhattan, KS, 66506, USA
| |
Collapse
|
19
|
Affiliation(s)
- R. A. McIntosh
- University of Sydney; Plant Breeding Institute; Castle Hill, N.S.W. Australia
| | - Jane E. Cusick
- University of Sydney; Plant Breeding Institute; Castle Hill, N.S.W. Australia
| |
Collapse
|
20
|
Briggs J, Chen S, Zhang W, Nelson S, Dubcovsky J, Rouse MN. Mapping of SrTm4, a Recessive Stem Rust Resistance Gene from Diploid Wheat Effective to Ug99. PHYTOPATHOLOGY 2015; 105:1347-54. [PMID: 25844826 PMCID: PMC5102501 DOI: 10.1094/phyto-12-14-0382-r] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Race TTKSK (or Ug99) of Puccinia graminis f. sp. tritici, the causal agent of wheat stem rust, is a serious threat to wheat production worldwide. Diploid wheat, Triticum monococcum (genome Am), has been utilized previously for the introgression of stem rust resistance genes Sr21, Sr22, and Sr35. Multipathotype seedling tests of biparental populations demonstrated that T. monococcum accession PI 306540 collected in Romania contains a recessive resistance gene effective to all P. graminis f. sp. tritici races screened, including race TTKSK. We will refer to this gene as SrTm4, which is the fourth stem rust resistance gene characterized from T. monococcum. Using two mapping populations derived from crosses of PI 272557×PI 306540 and G3116×PI 306540, we mapped SrTm4 on chromosome arm 2AmL within a 2.1 cM interval flanked by sequence-tagged markers BQ461276 and DR732348, which corresponds to a 240-kb region in Brachypodium chromosome 5. The eight microsatellite and nine sequence-tagged markers linked to SrTm4 will facilitate the introgression and accelerate the deployment of SrTm4-mediated Ug99 resistance in wheat breeding programs.
Collapse
Affiliation(s)
- Jordan Briggs
- First, fourth, and sixth authors: Department of Plant Pathology, University of Minnesota, St. Paul 55108; second, third, and fifth author: Department of Plant Sciences, University of California, Davis 95616; second author: Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China; fifth author: Howard Hughes Medical Institute, Chevy Chase, MD 20815; and sixth author: USDA-ARS Cereal Disease Laboratory, St. Paul, MN 55108
| | - Shisheng Chen
- First, fourth, and sixth authors: Department of Plant Pathology, University of Minnesota, St. Paul 55108; second, third, and fifth author: Department of Plant Sciences, University of California, Davis 95616; second author: Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China; fifth author: Howard Hughes Medical Institute, Chevy Chase, MD 20815; and sixth author: USDA-ARS Cereal Disease Laboratory, St. Paul, MN 55108
| | - Wenjun Zhang
- First, fourth, and sixth authors: Department of Plant Pathology, University of Minnesota, St. Paul 55108; second, third, and fifth author: Department of Plant Sciences, University of California, Davis 95616; second author: Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China; fifth author: Howard Hughes Medical Institute, Chevy Chase, MD 20815; and sixth author: USDA-ARS Cereal Disease Laboratory, St. Paul, MN 55108
| | - Sarah Nelson
- First, fourth, and sixth authors: Department of Plant Pathology, University of Minnesota, St. Paul 55108; second, third, and fifth author: Department of Plant Sciences, University of California, Davis 95616; second author: Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China; fifth author: Howard Hughes Medical Institute, Chevy Chase, MD 20815; and sixth author: USDA-ARS Cereal Disease Laboratory, St. Paul, MN 55108
| | - Jorge Dubcovsky
- First, fourth, and sixth authors: Department of Plant Pathology, University of Minnesota, St. Paul 55108; second, third, and fifth author: Department of Plant Sciences, University of California, Davis 95616; second author: Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China; fifth author: Howard Hughes Medical Institute, Chevy Chase, MD 20815; and sixth author: USDA-ARS Cereal Disease Laboratory, St. Paul, MN 55108
| | - Matthew N Rouse
- First, fourth, and sixth authors: Department of Plant Pathology, University of Minnesota, St. Paul 55108; second, third, and fifth author: Department of Plant Sciences, University of California, Davis 95616; second author: Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China; fifth author: Howard Hughes Medical Institute, Chevy Chase, MD 20815; and sixth author: USDA-ARS Cereal Disease Laboratory, St. Paul, MN 55108
| |
Collapse
|
21
|
Liu C, Yang X, Zhang H, Wang X, Zhang Z, Bian Y, Zhu B, Dong Y, Liu B. Genetic and epigenetic modifications to the BBAA component of common wheat during its evolutionary history at the hexaploid level. PLANT MOLECULAR BIOLOGY 2015; 88:53-64. [PMID: 25809554 DOI: 10.1007/s11103-015-0307-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 03/12/2015] [Indexed: 05/11/2023]
Abstract
The formation and evolution of common wheat (Triticum aestivum L., genome BBAADD) involves allopolyploidization events at two ploidy levels. Whether the two ploidy levels (tetraploidy and hexaploidy) have impacted the BBAA subgenomes differentially remains largely unknown. We have reported recently that extensive and distinct modifications of transcriptome expression occurred to the BBAA component of common wheat relative to the evolution of gene expression at the tetraploid level in Triticum turgidum. As a step further, here we analyzed the genetic and cytosine DNA methylation differences between an extracted tetraploid wheat (ETW) harboring genome BBAA that is highly similar to the BBAA subgenomes of common wheat, and a set of diverse T. turgidum collections, including both wild and cultivated genotypes. We found that while ETW had no significantly altered karyotype from T. turgidum, it diverged substantially from the later at both the nucleotide sequence level and in DNA methylation based on molecular marker assay of randomly sampled loci across the genome. In particular, ETW is globally less cytosine-methylated than T. turgidum, consistent with earlier observations of a generally higher transcriptome expression level in ETW than in T. turgidum. Together, our results suggest that genome evolution at the allohexaploid level has caused extensive genetic and DNA methylation modifications to the BBAA subgenomes of common wheat, which are distinctive from those accumulated at the tetraploid level in both wild and cultivated T. turgidum genotypes.
Collapse
Affiliation(s)
- Chang Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Intrinsic karyotype stability and gene copy number variations may have laid the foundation for tetraploid wheat formation. Proc Natl Acad Sci U S A 2013; 110:19466-71. [PMID: 24218593 DOI: 10.1073/pnas.1319598110] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Polyploidy or whole-genome duplication is recurrent in plant evolution, yet only a small fraction of whole-genome duplications has led to successful speciation. A major challenge in the establishment of nascent polyploids is sustained karyotype instability, which compromises fitness. The three putative diploid progenitors of bread wheat, with AA, SS (S ∼ B), and DD genomes occurred sympatrically, and their cross-fertilization in different combinations may have resulted in fertile allotetraploids with various genomic constitutions. However, only SSAA or closely related genome combinations have led to the speciation of tetraploid wheats like Triticum turgidum and Triticum timopheevii. We analyzed early generations of four newly synthesized allotetraploid wheats with genome compositions S(sh)S(sh)A(m)A(m), S(l)S(l)AA, S(b)S(b)DD, and AADD by combined fluorescence and genomic in situ hybridization-based karyotyping. Results of karyotype analyses showed that although S(sh)S(sh)A(m)A(m) and S(l)S(l)AA are characterized by immediate and persistent karyotype stability, massive aneuploidy and extensive chromosome restructuring are associated with S(b)S(b)DD and AADD in which parental subgenomes showed markedly different propensities for chromosome gain/loss and rearrangements. Although compensating aneuploidy and reciprocal translocation between homeologs prevailed, reproductive fitness was substantially compromised due to chromosome instability. Strikingly, localized genomic changes in repetitive DNA and copy-number variations in gene homologs occurred in both chromosome stable lines, S(sh)S(sh)A(m)A(m) and S(l)S(l)AA. Our data demonstrated that immediate and persistent karyotype stability is intrinsic to newly formed allotetraploid wheat with genome combinations analogous to natural tetraploid wheats. This property, coupled with rapid gene copy-number variations, may have laid the foundation of tetraploid wheat establishment.
Collapse
|
23
|
Abstract
The wheat group has evolved through allopolyploidization, namely, through hybridization among species from the plant genera Aegilops and Triticum followed by genome doubling. This speciation process has been associated with ecogeographical expansion and with domestication. In the past few decades, we have searched for explanations for this impressive success. Our studies attempted to probe the bases for the wide genetic variation characterizing these species, which accounts for their great adaptability and colonizing ability. Central to our work was the investigation of how allopolyploidization alters genome structure and expression. We found in wheat that allopolyploidy accelerated genome evolution in two ways: (1) it triggered rapid genome alterations through the instantaneous generation of a variety of cardinal genetic and epigenetic changes (which we termed "revolutionary" changes), and (2) it facilitated sporadic genomic changes throughout the species' evolution (i.e., evolutionary changes), which are not attainable at the diploid level. Our major findings in natural and synthetic allopolyploid wheat indicate that these alterations have led to the cytological and genetic diploidization of the allopolyploids. These genetic and epigenetic changes reflect the dynamic structural and functional plasticity of the allopolyploid wheat genome. The significance of this plasticity for the successful establishment of wheat allopolyploids, in nature and under domestication, is discussed.
Collapse
|
24
|
|
25
|
Feldman M, Levy AA, Fahima T, Korol A. Genomic asymmetry in allopolyploid plants: wheat as a model. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:5045-59. [PMID: 22859676 DOI: 10.1093/jxb/ers192] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The evolvement of duplicated gene loci in allopolyploid plants has become the subject of intensive studies. Most duplicated genes remain active in neoallopolyploids contributing either to a favourable effect of an extra gene dosage or to the build-up of positive inter-genomic interactions when genes or regulation factors on homoeologous chromosomes are divergent. However, in a small number of loci (about 10%), genes of only one genome are active, while the homoeoalleles on the other genome(s) are either eliminated or partially or completely suppressed by genetic or epigenetic means. For several traits, the retention of controlling genes is not random, favouring one genome over the other(s). Such genomic asymmetry is manifested in allopolyploid wheat by the control of various morphological and agronomical traits, in the production of rRNA and storage proteins, and in interaction with pathogens. It is suggested that the process of cytological diploidization leading to exclusive intra-genomic meiotic pairing and, consequently, to complete avoidance of inter-genomic recombination, has two contrasting effects. Firstly, it provides a means for the fixation of positive heterotic inter-genomic interactions and also maintains genomic asymmetry resulting from loss or silencing of genes. The possible mechanisms and evolutionary advantages of genomic asymmetry are discussed.
Collapse
Affiliation(s)
- Moshe Feldman
- Department of Plant Sciences, The Weizmann Institute of Science, Rehovot 76100, Israel.
| | | | | | | |
Collapse
|
26
|
Dobrovolskaya O, Boeuf C, Salse J, Pont C, Sourdille P, Bernard M, Salina E. Microsatellite mapping of Ae. speltoides and map-based comparative analysis of the S, G, and B genomes of Triticeae species. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2011; 123:1145-1157. [PMID: 21792632 DOI: 10.1007/s00122-011-1655-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2008] [Accepted: 07/09/2011] [Indexed: 05/31/2023]
Abstract
The first microsatellite linkage map of Ae. speltoides Tausch (2n = 2x = 14, SS), which is a wild species with a genome closely related to the B and G genomes of polyploid wheats, was developed based on two F(2) mapping populations using microsatellite (SSR) markers from Ae. speltoides, wheat genomic SSRs (g-SSRs) and EST-derived SSRs. A total of 144 different microsatellite loci were mapped in the Ae. speltoides genome. The transferability of the SSRs markers between the related S, B, and G genomes allowed possible integration of new markers into the T. timopheevii G genome chromosomal maps and map-based comparisons. Thirty-one new microsatellite loci assigned to the genetic framework of the T. timopheevii G genome maps were composed of wheat g-SSR (genomic SSR) markers. Most of the used Ae. speltoides SSRs were mapped onto chromosomes of the G genome supporting a close relationship between the G and S genomes. Comparative microsatellite mapping of the S, B, and G genomes demonstrated colinearity between the chromosomes within homoeologous groups, except for intergenomic T6A(t)S.1G, T4AL.5AL.7BS translocations. A translocation between chromosomes 2 and 6 that is present in the T. aestivum B genome was found in neither Ae. speltoides nor in T. timopheevii. Although the marker order was generally conserved among the B, S, and G genomes, the total length of the Ae. speltoides chromosomal maps and the genetic distances between homoeologous loci located in the proximal regions of the S genome chromosomes were reduced compared with the B, and G genome chromosomes.
Collapse
Affiliation(s)
- O Dobrovolskaya
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Lavrentieva Ave. 10, Novosibirsk, 630090, Russia.
| | | | | | | | | | | | | |
Collapse
|
27
|
Matsuoka Y. Evolution of polyploid triticum wheats under cultivation: the role of domestication, natural hybridization and allopolyploid speciation in their diversification. PLANT & CELL PHYSIOLOGY 2011; 52:750-64. [PMID: 21317146 DOI: 10.1093/pcp/pcr018] [Citation(s) in RCA: 192] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The evolution of the polyploid Triticum wheats is distinctive in that domestication, natural hybridization and allopolyploid speciation have all had significant impacts on their diversification. In this review, I outline the phylogenetic relationships of cultivated wheats and their wild relatives and provide an overview of the recent progress and remaining issues in understanding the genetic and ecological factors that favored their evolution. An attempt is made to view the evolution of the polyploid Triticum wheats as a continuous process of diversification that was initiated by domestication of tetraploid emmer wheat and driven by various natural events ranging from interploidy introgression via hybridization to allopolyploid speciation of hexaploid common wheat, instead of viewing it as a group of discrete evolutionary processes that separately proceeded at the tetraploid and hexaploid levels. This standpoint underscores the important role of natural hybridization in the reticulate diversification of the tetraploid-hexaploid Triticum wheat complex and highlights critical, but underappreciated, issues that concern the allopolyploid speciation of common wheat.
Collapse
Affiliation(s)
- Yoshihiro Matsuoka
- Fukui Prefectural University, Matsuoka, Eiheiji, Yoshida, Fukui 910-1195, Japan.
| |
Collapse
|
28
|
Ehtemam MH, Rahiminejad MR, Saeidi H, Tabatabaei BES, Krattinger SG, Keller B. Relationships among the A Genomes of Triticum L. species as evidenced by SSR markers, in Iran. Int J Mol Sci 2010; 11:4309-25. [PMID: 21151440 PMCID: PMC3000084 DOI: 10.3390/ijms11114309] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Revised: 10/06/2010] [Accepted: 10/22/2010] [Indexed: 11/16/2022] Open
Abstract
The relationships among 55 wheat accessions (47 accessions collected from Iran and eight accessions provided by the Institute of Plant Biology of the University of Zurich, Switzerland) belonging to eight species carrying A genome (Triticum monococcum L., T. boeoticum Boiss., T. urartu Tumanian ex Gandilyan, T. durum Desf., T. turgidum L., T. dicoccum Schrank ex Schübler, T. dicoccoides (Körn. ex Asch. & Graebner) Schweinf. and T. aestivum L.) were evaluated using 31 A genome specific microsatellite markers. A high level of polymorphism was observed among the accessions studied (PIC = 0.77). The highest gene diversity was revealed among T. durum genotypes, while the lowest genetic variation was found in T. dicoccoides accessions. The analysis of molecular variance (AMOVA) showed a significant genetic variance (75.56%) among these accessions, representing a high intra-specific genetic diversity within Triticum taxa in Iran. However, such a variance was not observed among their ploidy levels. Based on the genetic similarity analysis, the accessions collected from Iran were divided into two main groups: diploids and polyploids. The genetic similarity among the diploid and polyploid species was 0.85 and 0.89 respectively. There were no significant differences in A genome diversity from different geographic regions. Based on the genetic diversity analyses, we consider there is value in a greater sampling of each species in Iran to discover useful genes for breeding purposes.
Collapse
Affiliation(s)
- Mohammad Hosein Ehtemam
- Department of Biology, University of Isfahan, Isfahan, 81746-73441, Iran; E-Mails: (M.H.E.); (H.S.)
| | | | - Hojjatollah Saeidi
- Department of Biology, University of Isfahan, Isfahan, 81746-73441, Iran; E-Mails: (M.H.E.); (H.S.)
| | | | - Simon G. Krattinger
- Institute of Plant Biology, University of Zurich, Switzerland; E-Mails: (S.G.K.); (B.K.)
| | - Beat Keller
- Institute of Plant Biology, University of Zurich, Switzerland; E-Mails: (S.G.K.); (B.K.)
| |
Collapse
|
29
|
Zoshchuk SA, Zoshchuk NV, Amosova AV, Dedkova OS, Badaeva ED. Intraspecific divergence in wheats of the Emmer group using in situ hybridization with the Spelt-1 family of tandem repeats. RUSS J GENET+ 2009. [DOI: 10.1134/s102279540911012x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
30
|
Zoshchuk SA, Badaeva ED, Zoshchuk NV, Adonina IG, Shcherban’ AB, Salina EA. Intraspecific divergence in wheats of the Timopheevi group as revealed by in situ hybridization with tandem repeats of the Spelt1 and Spelt52 families. RUSS J GENET+ 2007. [DOI: 10.1134/s1022795407060063] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
31
|
Abstract
Pairing between wheat (Triticum turgidum and T. aestivum) homeologous chromosomes is prevented by the expression of the Ph1 locus on the long arm of chromosome 5B. The genome of Aegilops speltoides suppresses Ph1 expression in wheat x Ae. speltoides hybrids. Suppressors with major effects were mapped as Mendelian loci on the long arms of Ae. speltoides chromosomes 3S and 7S. The chromosome 3S locus was designated Su1-Ph1 and the chromosome 7S locus was designated Su2-Ph1. A QTL with a minor effect was mapped on the short arm of chromosome 5S and was designated QPh.ucd-5S. The expression of Su1-Ph1 and Su2-Ph1 increased homeologous chromosome pairing in T. aestivum x Ae. speltoides hybrids by 8.4 and 5.8 chiasmata/cell, respectively. Su1-Ph1 was completely epistatic to Su2-Ph1, and the two genes acting together increased homeologous chromosome pairing in T. aestivum x Ae. speltoides hybrids to the same level as Su1-Ph1 acting alone. QPh.ucd-5S expression increased homeologous chromosome pairing by 1.6 chiasmata/cell in T. aestivum x Ae. speltoides hybrids and was additive to the expression of Su2-Ph1. It is hypothesized that the products of Su1-Ph1 and Su2-Ph1 affect pairing between homeologous chromosomes by regulating the expression of Ph1 but the product of QPh.ucd-5S may primarily regulate recombination between homologous chromosomes.
Collapse
Affiliation(s)
- J Dvorak
- Department of Plant Sciences, University of California, Davis, California 95616, USA.
| | | | | |
Collapse
|
32
|
Luo MC, Deal KR, Yang ZL, Dvorak J. Comparative genetic maps reveal extreme crossover localization in the Aegilops speltoides chromosomes. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2005; 111:1098-106. [PMID: 16088396 DOI: 10.1007/s00122-005-0035-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2005] [Accepted: 06/29/2005] [Indexed: 05/03/2023]
Abstract
A total of 137 loci were mapped in Aegilops speltoides, the closest extant relative of the wheat B genome, using two F(2) mapping populations and a set of wheat-Ae. speltoides disomic addition (DA) lines. Comparisons of Ae. speltoides genetic maps with those of Triticum monococcum indicated that Ae. speltoides conserved the gross chromosome structure observed across the tribe Triticeae. A putative inversion involving the short arm of chromosome 2 was detected in Ae. speltoides. A translocation between chromosomes 2 and 6, present in the wheat B genome, was absent. The ligustica/aucheri spike dimorphism behaved as allelic variation at a single locus, which was mapped in the centromeric region of chromosome 3. The genetic length of each chromosome arm was about 50 cM, irrespective of its physical length. Compared to T. monococcum genetic maps, recombination was virtually eliminated from the proximal 50-100 cM and was localized in short distal regions, which were often expanded compared to the T. monococcum maps. The wheat B genome and the genome of Ae. longissima, a close relative of Ae. speltoides, do not show the extreme localization of crossovers observed in Ae. speltoides.
Collapse
Affiliation(s)
- Ming-Cheng Luo
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
| | | | | | | |
Collapse
|
33
|
MIZUMOTO KOTA, HIROSAWA SHUJIRO, NAKAMURA CHIHARU, TAKUMI SHIGEO. Nuclear and chloroplast genome genetic diversity in the wild einkorn wheat, Triticum urartu, revealed by AFLP and SSLP analyses. Hereditas 2002. [DOI: 10.1034/j.1601-5223.2002.01654.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
34
|
Vasu K, Dhaliwal HS. Microsatellite markers reveal chimeric origin of redesignated chromosome 4A of wheat from Triticum urartu and other species. Genome 2001; 44:628-32. [PMID: 11550897 DOI: 10.1139/g01-048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although a new nomenclature has been adopted for wheat in which chromosome 4A (4AO) has been renamed 4B (4BN) and chromosome 4B (4BO) has been renamed 4A (4AN), their specific origin remains uncertain. The use of wheat microsatellite (WMS) markers mapped to chromosomes 4AN and 4BN in a set of polyploid wheats and diploid genome donors has unequivocally indicated that the entire short arm of 4AN, some part of 4ANL. and a segment of 4BNL were derived from Triticum urartu. The presence of a T. urartu-specific allele at locus gwm368 on 4BNL and of an Aegilops speltoides allele at locus gwm397 on 4ANL suggests the possibility of a reciprocal translocation between 4ANL and 4BNL. The subcentromeric and telomeric regions of 4ANL corresponding to heterochromatic C-bands were derived neither from diploid wheats nor from Ae. speltoides or Aegilops longissima.
Collapse
Affiliation(s)
- K Vasu
- Department of Genetics and Biotechnology, Punjab Agricultural University, Ludhiana, India
| | | |
Collapse
|
35
|
Ciaffi M, Dominici L, Lafiandra D. Gliadin polymorphism in wild and cultivated einkorn wheats. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 1997; 94:68-74. [PMID: 19352747 DOI: 10.1007/s001220050383] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/1996] [Accepted: 07/12/1996] [Indexed: 05/27/2023]
Abstract
To study the relationships between different species of the Einkorn group, 408 accessions of Triticum monococcum, T. boeoticum, T. boeoticum ssp. thauodar and T. urartu were analyzed electrophoretically for their protein composition at the Gli-1 and Gli-2 loci. In all the species the range of allelic variation at the loci examined is remarkable. The gliadin patterns of T. monococcum and T. boeoticum were very similar to one another but differed substantially from those of T. urartu. Several accessions of T. boeoticum and T. monococcum were shown to share the same alleles at the Gli-1 and Gli-2 loci, confirming the recent nomenclature that considers these wheats as different subspecies of the same species, T. monococcum. The gliadin composition of T. urartu resembled that of the A genome of polyploid wheats more than did T. boeoticum or T. monococcum, supporting the hypothesis that T. urartu, rather than T. boeoticum, is the donor of the A genome in cultivated wheats. Because of their high degree of polymorphism the gliadin markers may help in selecting breeding parents from diploid wheat germ plasm collections and can be used both to search for valuable genes linked to the gliadin-coding loci and to monitor the transfer of alien genes into cultivated polyploid wheats.
Collapse
Affiliation(s)
- M Ciaffi
- Dipartimento di Agrobiologia ed Agrochimica, Universitá della Tuscia, 01100, Viterbo, Italy
| | | | | |
Collapse
|
36
|
Devos KM, Dubcovsky J, Dvořák J, Chinoy CN, Gale MD. Structural evolution of wheat chromosomes 4A, 5A, and 7B and its impact on recombination. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 1995; 91:282-8. [PMID: 24169776 DOI: 10.1007/bf00220890] [Citation(s) in RCA: 134] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/1994] [Accepted: 03/03/1995] [Indexed: 05/05/2023]
Abstract
The construction of comparative genetic maps of chromosomes 4A(m) and 5A(m) of Triticum monococcum and chromosomes of homoeologous groups 4, 5 and 7 of T. aestivum has provided insight into the evolution of these chromosomes. The structures of chromosomes 4A, 5A and 7B of modern-day hexaploid bread wheat can be explained by a 4AL/5AL translocation that occurred at the diploid level and is present both in T. monococcum and T. aestivum. Three further rearrangements, a 4AL/7BS translocation, a pericentric inversion and a paracentric inversion, have taken place in the tetraploid progenitor of hexaploid wheat. These structural rearrangements and the evolution of chromosomes 4A, 5A and 7B of bread wheat are discussed. The presence of the 4AL/5AL translocation in several Triticeae genomes raises two questions - which state is the more primitive, and is the translocation of mono- or poly-phylogenetic origin?The rearrangements that have occurred in chromosome 4A resulted in segments of both arms having different positions relative to the telomere, compared to 4A(m) and to 4B and 4D. Comparisons of map length in these regions indicate that genetic length is a function of distance from the telomere, with the distal regions showing the highest recombination.
Collapse
Affiliation(s)
- K M Devos
- John Innes Centre, Norwich Research Park, NR4 7UH, Colney, Norwich, UK
| | | | | | | | | |
Collapse
|
37
|
Metakovsky EV, Baboev SK. Polymorphism and inheritance of gliadin polypeptides in T. monococcum L. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 1992; 84:971-978. [PMID: 24201502 DOI: 10.1007/bf00227412] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/1991] [Accepted: 10/13/1991] [Indexed: 06/02/2023]
Abstract
More than 80 different gliadin electrophoretic patterns (spectra) have been found in 109 accessions of the diploid wheat Triticum monococcum. Each pattern consists of 15-20 gliadin bands. Some patterns are clearly related and might arise from one another through single mutations in the gliadin-coding loci. From the analysis of 15 grains of each, only 61 accessions were found to be uniform; others consisted of two or more grain variants differing in their gliadin spectrum. An analysis of F2 grains from three crosses between different accessions showed that groups (blocks) of components are jointly and codominantly inherited. Two independent major Gli loci were established. The close resemblance of the composition of some blocks of T. monococcum to some of those in polyploid wheats indicates that one locus in each T. monococcum genotype is located on chromosome 1A (Gli-A1) and the other on 6A (Gli-A2). However, the blocks of T. monococcum include more bands than corresponding (equivalent) blocks of polyploid wheats. Two out of 275 F2 grains of the cross k-14244 x k-20409 were found to have gliadin spectra which can be explained as a result of intralocus recombination. Also, a second gliadin-coding locus on chromosome 1A was found in the cross k-46140 x k-46753. This locus recombines with the main Gli-A1 locus with a frequency of about 22% and was clearly analogous to the additional Gli locus found earlier on chromosome 1A of certain polyploid wheats.
Collapse
Affiliation(s)
- E V Metakovsky
- N. I. Vavilov Institute of General Genetics, Gubkin St., 3, B-333, Moscow, Russia
| | | |
Collapse
|
38
|
Dvořák J, Zhang HB. Reconstruction of the phylogeny of the genus Triticum from variation in repeated nucleotide sequences. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 1992; 84:419-29. [PMID: 24203203 DOI: 10.1007/bf00229502] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/1991] [Accepted: 12/19/1991] [Indexed: 05/08/2023]
Abstract
The potential of variation in repeated nucleotide sequences as a tool for phylogenetic studies was examined by investigating the phylogeny of 13 diploid species of the genus Triticum L. sensu Bowden. Low intraspecific variation in repeated nucleotide sequence families in Triticum indicated that restriction fragment profiles of repeated nucleotide sequences in Southern blots are reliable and uniform characteristics of each species. Cloned repeated nucleotide sequences were hybridized with Southern blots of DNAs of the Triticum species and the outgroup, Lophopyrum elongatum (Host) Á. Löve. The presence or absence of bands in the Southern blot autoradiograms was considered to be a character for phylogenetic analysis. A most parsimonious tree was resolved with the PAUP version 3.0L computer package. The tree was consistent with cytotaxonomic and evolutionary data available on the species.
Collapse
Affiliation(s)
- J Dvořák
- Department of Agronomy and Range Science, University of California, 95616, Davis, CA, USA
| | | |
Collapse
|
39
|
Fernández-Calvín B, Orellana J. Metaphase I bound arms frequency and genome analysis in wheat-Aegilops hybrids : 1. Ae. variabilis-wheat and Ae. kotschyi-wheat hybrids with low and high homoeologous pairing. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 1991; 83:264-272. [PMID: 24202368 DOI: 10.1007/bf00226261] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/1990] [Accepted: 03/25/1991] [Indexed: 05/28/2023]
Abstract
Meiotic associations of different wheat-Aegilops variabilis and wheat-Ae. kotschyi hybrid combinations with low and high homoeologous pairing were analyzed at metaphase I. Five types of pairing involving wheat and Aegilops genomes were identified by using C-banding. A genotype that seems to promote homoeologous pairing has been found in Ae. variabilis var. cylindrostachys. Its effect is detectable in the low pairing hybrids but not in the high ones. Pairing affinity has been analyzed on the basis of metaphase I associations in the low and high homoeologous pairing hybrids, and in bivalents and multivalents in the high pairing hybrids. The results indicate that the amount of bound arms of each type of identifiable association relative to the total associations formed (relative contribution) was not maintained, either between the different levels of pairing (low and high) or between different meiotic configurations (bivalents and multivalents). These findings seem to indicate that quantifications of genomic relationships based on the amount of chromosome pairing at metaphase I must be carefully done in this type of hybrid combinations.
Collapse
Affiliation(s)
- B Fernández-Calvín
- Genetics Unit, E.T.S.I. Agronomy, Polytechnic University of Madrid, E-28040, Madrid, Spain
| | | |
Collapse
|
40
|
Wheat X Maize and Other Wide Sexual Hybrids: Their Potential for Genetic Manipulation and Crop Improvement. GENE MANIPULATION IN PLANT IMPROVEMENT II 1990. [DOI: 10.1007/978-1-4684-7047-5_6] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
41
|
Ferrer E, González JM, Jouve N. The meiotic pairing of nine wheat chromosomes. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 1984; 69:193-198. [PMID: 24253711 DOI: 10.1007/bf00272894] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/1984] [Accepted: 05/04/1984] [Indexed: 06/02/2023]
Abstract
The meiotic identification of nine pairs of chromosomes at metaphase I of meiosis of Triticum aestivum (B genome, 4A and 7A) has been achieved using a Giemsa C-banding technique. As a result, the analysis of the pairing of each chromosome arm in disomic and monosomic intervarietal hybrids between 'Chinese Spring' and the Spanish cultivar 'Pané 247' could be carried out. Differences in the chiasmata frequencies per chromosome arm cannot be explained on the basis of relative arm lengths only. Possible effects of arm-to-arm heterochromatic differences on meiotic pairing are discussed.
Collapse
Affiliation(s)
- E Ferrer
- Department of Genetics, Faculty of Sciences, University of Alcalá de Henares, Madrid, Spain
| | | | | |
Collapse
|
42
|
Nath J, Hanzel JJ, Thompson JP, McNay JW. Additional evidence implicating Triticum searsii as the B-genome donor to wheat. Biochem Genet 1984; 22:37-50. [PMID: 6712588 DOI: 10.1007/bf00499285] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
In vitro DNA:DNA hybridizations and hydroxyapatite thermal-elution chromatography were employed to identify the diploid wheat species ancestral to the B genome of Triticum turgidum. 3H-T. turgidum DNA was hybridized to the unlabeled DNAs of T. urartu, T. speltoides, T. sharonensis, T. bicorne, T. longissimum, and T. searsii. 3H-Labeled DNAs of T. monococcum and a synthetic tetraploid AADD were hybridized with unlabeled DNAs of T. urartu and T. searsii to determine the relationship of the A genome of polyploid wheat and T. urartu. The heteroduplex thermal stabilities indicated that T. searsii was most closely related to the B genome of T. turgidum (AB) and that the genome of T. urartu and the A genome have a great deal of base-sequence homology. Thus, it appears that T. searsii is the B-genome donor to polyploid wheat or a major chromosome donor if the B genome is polyphyletic in origin.
Collapse
|
43
|
Nath J, McNay JW, Paroda CM, Gulati SC. Implication of Triticum searsii as the B-genome donor to wheat using DNA hybridizations. Biochem Genet 1983; 21:745-60. [PMID: 6626143 DOI: 10.1007/bf00498921] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
In vitro DNA:DNA hybridizations and hydroxyapatite thermal chromatography were employed to help identify the species ancestral to the B genome of the polyploid wheats. We hybridized 3H-Triticum aestivum DNA to the unlabeled DNAs of T. urartu, T. speltoides, T. sharonensis, T. bicorne, T. longissimum, and T. searsii, 3H-Labeled DNA of T. urartu was hybridized with the DNA of a synthetic tetraploid. AADD. The heteroduplex thermal stabilities indicated that T. searsii was most closely related to T. aestivum (ABD) and that the genome of T. urartu was more closely related to the A genome than the B genome. The degree of reassociation which may have occurred between the six diploid species and the D genome of T. aestivum was evaluated by hybridizing 3H-T. tauschii DNA with the DNAs of the diploids. The results indicated that T. urartu had the least sequence homology to T. tauschii, the D-genome donor lending additional support to the conclusion that T. urartu is related to the A genome. Thus, it is highly probable that T. searsii is the B-genome donor to the polyploid wheats or a major chromosome donor if the B genome is, in fact, polyphyletic in origin.
Collapse
|
44
|
Miller TE, Hutchinson J, Reader SM. The identification of the nucleolus organiser chromosomes of diploid wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 1983; 65:145-147. [PMID: 24263342 DOI: 10.1007/bf00264881] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The two nucleolus organiser chromosomes of diploid wheat are identified as 1A and 5A by the combination of in situ hybridisation and cytological markers.
Collapse
Affiliation(s)
- T E Miller
- Plant Breeding Institute, Maris Lane, CB2 2LQ, Trumpington, Cambridge, England
| | | | | |
Collapse
|
45
|
Bowman CM, Bonnard G, Dyer TA. Chloroplast DNA variation between species of Triticum and Aegilops. Location of the variation on the chloroplast genome and its relevance to the inheritance and classification of the cytoplasm. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 1983; 65:247-262. [PMID: 24263422 DOI: 10.1007/bf00308076] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/1983] [Indexed: 06/02/2023]
Abstract
Restriction endonuclease analysis revealed interspecific and intraspecific variation between the chloroplast DNAs and therefore between the cytoplasms of 14 selected species of Triticum and Aegilops. Eleven distinct chloroplast DNA types were detected, the differences between them residing in the varied combination of a relatively few DNA alterations.The variation was simple enough for chloroplast DNA analysis to be used as a basis for the identification and classification of the Triticum and Aegilops cytoplasms. There was good agreement with the classification based on analysis of the phenotypic effects of the cytoplasm when combined with the T. aestivum nucleus in nuclear-cytoplasmic hybrids (Tsunewaki et al. 1976). There was however no correlation between specific chloroplast DNA alterations and any of the phenotypic effects known to be associated with specific cytoplasms.Although the diploid species examined included all those which have been suggested as possible donors of the cytoplasm and the B genome to T. aestivum, none of the chosen accessions belonged to the same cytoplasmic class as T. aestivum itself, except that of the tetraploid T. dicoccoides. Therefore, none of the diploid accessions analysed was the B genome donor. The analyses did however support several other suggestions which have been made concerning wheat ancestry. Scoring the different chloroplast DNA types according to the rarity of their banding patterns indicated that four of the eleven cytoplasms are of relatively recent origin.The DNA alterations most easily detectable by the limited comparison of the eleven Triticum/Aegilops chloroplast DNA types using only 4 endonucleases were insertions and deletions. These ranged between approximately 50 bp and 1,200 bp in size and most of them were clustered in 2 segments of the large single-copy region of the genome. Only two examples of the loss of restriction endonuclease sites through possible point mutations were observed. No variation was detected in the inverted repeat regions. Several of the deletions and insertions map close to known chloroplast protein genes, and there is also an indication that the more variable regions of the chloroplast genome may contain sequences which have allowed DNA recombination and rearrangement to occur.
Collapse
Affiliation(s)
- C M Bowman
- Plant Breeding Institute, Maris Lane, CB2 2LQ, Trumpington, Cambridge, UK
| | | | | |
Collapse
|
46
|
Dhaliwal HS, Johnson BL. Diploidization and chromosomal pairing affinities in the tetraploid wheats and their putative amphiploid progenitor. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 1982; 61:117-123. [PMID: 24270332 DOI: 10.1007/bf00273878] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/1981] [Indexed: 06/02/2023]
Abstract
The genomes of the diploid wheats Triticum boeoticum and T. urartu are closely related, giving 7II in the f1 hybrid (T(b)T(u)) and 8.4 (0-14) II + 2.5 (0-7) IV in the derived amphiploid (T(b)T(b)T(u)T(u)). The genomes of the tetraploid wheats are also closely related, giving up to 7II at the polyhaploid level (AB) in the absence of the gene Ph but 14II at the tetraploid level (AABB) in the normal presence of Ph. If the amphiploid is the progenitor of the tetraploids, one or the other homoeologue (T(b) or T(u)) in each of the 7 homoeologous groups (the 7 potential IV) must have differentiated with respect to pairing affinity in order to account for 14II in the tetraploid. Consequently, in tetraploid X amphiploid hybrids (T(b)T(u)AB) carrying the Ph gene from the tetraploid, the seven differentiated chromosomes (B) would be expected to give 7I while, on the basis of their observed chiasma frequency, T(b), T(u) and the less differentiated A would be expected to give 4.17I + 3.57II + 3.23III), assuming homoeologous pairing. The expected chromosomal configuration freqencies at MI (11.17I + 3.57II + 3.23III) closely fit the observed values (11.22I + 3.45II + 3.19III + 0.071IV) for such hybrids (X(2) = 0.0046; P>0.99). Thus diploidization of the boeoticum-urartu amphiploid clearly could account for the origin of the tetraploid wheats. Furthermore, T. aestivum X amphiploid hybrids (T(b)T(u)ABD) with and without Ph indicated that B as well as A chomosomes tended to pair with their presumed T(b)T(u) homologues in the absence of Ph. Other tests showed that the tetraploid wheats could not plausibly have originated from any postulated Triticum-Sitopsis (TTSS) parental combinations with or without such chromosomal differentiation.
Collapse
Affiliation(s)
- H S Dhaliwal
- Regional Research Station, Punjab Agricultural University, Gurdaspur, India
| | | |
Collapse
|
47
|
Kimber G, Alonso LC, Sallee PJ. THE ANALYSIS OF MEIOSIS IN HYBRIDS. I. ANEUPLOID HYBRIDS. ACTA ACUST UNITED AC 1981. [DOI: 10.1139/g81-024] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The use of telocentric chromosomes in the analysis of the genomic relationships of wheat Triticum aestivum L. em Thell. and its relatives is described and 20 examples are given. The connection between this method of analysis and other mathematical theories of chromosome pairing in hybrids is established. A demonstration of the validity of the assumption that all chromosome arms pair at an equal frequency in calculating expected meiotic analyses is presented. This establishes a practical basis for the development of further mathematical models for predicting meiotic chromosome behavior. Numerical values of the genomic relationships of wheat and its immediate relatives are given.
Collapse
|
48
|
Kimber G, Alonso LC. THE ANALYSIS OF MEIOSIS IN HYBRIDS. III. TETRAPLOID HYBRIDS. ACTA ACUST UNITED AC 1981. [DOI: 10.1139/g81-026] [Citation(s) in RCA: 70] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Models are developed which simulate expected chromosome pairing in tetraploid hybrids in plants. Comparison of the various models with observed meiotic data allow the investigation of species and evolutionary relationships, genomic affinity and the effects of pairing-regulator genes.
Collapse
|
49
|
Viegas WS. The effect of B-chromosomes of rye on the chromosome association in F1 hybrids Triticum aestivum x Secale cereale in the absence of chromosomes 5B or 5D. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 1980; 56:193-198. [PMID: 24305853 DOI: 10.1007/bf00295448] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/1979] [Indexed: 06/02/2023]
Abstract
T. aestivum var. 'Chinese Spring' (monosomic 5B and 5D, respectively) was crossed with S. cereale (with and without B-chromosomes). The resulting nullisomic 5B hybrids exhibited a high degree of chromosome association both at 20°C and 10°C. The presence of B-chromosomes reduced association slightly whether 5B was present or not.In nullisomic 5D hybrids B-chromosomes of rye raise chromosome association at 20°C when compared to hybrids with 5D, with as well as without, B's. At 10°C, due to the absence of the Ltp gene on 5D, chromosome association in nullisomic 5D hybrids is low, and no effects of rye B-chromosomes is detectable.The hypothesis that B-chromosomes of rye carry (an) asynaptic gene(s) decreasing effective pairing, and (an) independent post-synaptic gene(s) increasing chiasma frequency on effective pairing sites, is presented.
Collapse
Affiliation(s)
- W S Viegas
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| |
Collapse
|
50
|
Dvořák J. HOMOEOLOGY BETWEEN AGROPYRON ELONGATUM CHROMOSOMES AND TRITICUM AESTIVUM CHROMOSOMES. ACTA ACUST UNITED AC 1980. [DOI: 10.1139/g80-029] [Citation(s) in RCA: 84] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Genetic compensation of Agropyron chromosomes for wheat chromosomes in the male gametophyte and compensation of Agropyron chromosomes for wheat chromosomes in disomic substitutions were used to investigate relationships between the chromosomes of Agropyron elongatum (Host.) P.B. (2n = 2x = 14) and Triticum aestivum L. emend. Thell. (2n = 6x = 42). Gametophytic compensation indicated that A. elongatum chromosomes I, II, III, IV, and VII were related to wheat chromosomes of homoeologous groups 1, 7, 4, 3, and 6, respectively, and were designated 1E, 7E, 4E, 3E, and 6E. Chromosomes V and VI appeared to be related to homoeologous group 2. Other analyses showed that chromosomes V and VI originated from arm exchanges between chromosome 2E and other Agropyron chromosomes. An unaltered disome of Agropyron chromosome 2E was added to the wheat chromosome complement. In the disomic substitutions Agropyron chromosomes 1E, 6E, and 7E compensated for all three wheat homoeologues of the respective homoeologous groups. Chromosome 4E fully compensated for chromosome 4D but only partially for chromosomes 4A and 4B. Chromosomes V and VI compensated poorly or not at all for wheat chromosomes of group 2.
Collapse
|