1
|
Martins MP, Gomes EV, Sanches PR, Pedersoli WR, Martinez-Rossi NM, Rossi A. mus-52 disruption and metabolic regulation in Neurospora crassa: Transcriptional responses to extracellular phosphate availability. PLoS One 2018; 13:e0195871. [PMID: 29668735 PMCID: PMC5905970 DOI: 10.1371/journal.pone.0195871] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 03/30/2018] [Indexed: 12/01/2022] Open
Abstract
Advances in the understanding of molecular systems depend on specific tools like the disruption of genes to produce strains with the desired characteristics. The disruption of any mutagen sensitive (mus) genes in the model fungus Neurospora crassa, i.e. mus-51, mus-52, or mus-53, orthologous to the human genes KU70, KU80, and LIG4, respectively, provides efficient tools for gene targeting. Accordingly, we used RNA-sequencing and reverse transcription-quantitative polymerase chain reaction amplification techniques to evaluate the effects of mus-52 deletion in N. crassa gene transcriptional modulation, and thus, infer its influence regarding metabolic response to extracellular availability of inorganic phosphate (Pi). Notably, the absence of MUS-52 affected the transcription of a vast number of genes, highlighting the expression of those coding for transcription factors, kinases, circadian clocks, oxi-reduction balance, and membrane- and nucleolus-related proteins. These findings may provide insights toward the KU molecular mechanisms, which have been related to telomere maintenance, apoptosis, DNA replication, and gene transcription regulation, as well as associated human conditions including immune system disorders, cancer, and aging.
Collapse
Affiliation(s)
- Maíra P. Martins
- Department of Genetics, Ribeirão Preto Medical School, São Paulo University, Ribeirão Preto, São Paulo, Brazil
| | - Eriston V. Gomes
- Department of Genetics, Ribeirão Preto Medical School, São Paulo University, Ribeirão Preto, São Paulo, Brazil
| | - Pablo R. Sanches
- Department of Genetics, Ribeirão Preto Medical School, São Paulo University, Ribeirão Preto, São Paulo, Brazil
| | - Wellington R. Pedersoli
- Department of Genetics, Ribeirão Preto Medical School, São Paulo University, Ribeirão Preto, São Paulo, Brazil
| | - Nilce M. Martinez-Rossi
- Department of Genetics, Ribeirão Preto Medical School, São Paulo University, Ribeirão Preto, São Paulo, Brazil
| | - Antonio Rossi
- Department of Genetics, Ribeirão Preto Medical School, São Paulo University, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
2
|
Phenotypic analysis of newly isolated short-lifespan Neurospora crassa mutant deficient in a high mobility group box protein. Fungal Genet Biol 2017; 105:28-36. [DOI: 10.1016/j.fgb.2017.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 06/01/2017] [Accepted: 06/02/2017] [Indexed: 12/21/2022]
|
3
|
A uvs-5 strain is deficient for a mitofusin gene homologue, fzo1, involved in maintenance of long life span in Neurospora crassa. EUKARYOTIC CELL 2012; 12:233-43. [PMID: 23223037 DOI: 10.1128/ec.00226-12] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Mitochondria are highly dynamic organelles that continuously fuse and divide. To maintain mitochondria, cells establish an equilibrium of fusion and fission events, which are mediated by dynamin-like GTPases. We previously showed that an mus-10 strain, a mutagen-sensitive strain of the filamentous fungus Neurospora crassa, is defective in an F-box protein that is essential for the maintenance of mitochondrial DNA (mtDNA), long life span, and mitochondrial morphology. Similarly, a uvs-5 mutant accumulates deletions within its mtDNA, has a shortened life span, and harbors fragmented mitochondria, the latter of which is indicative of an imbalance between mitochondrial fission and fusion. Since the uvs-5 mutation maps very close to the locus of fzo1, encoding a mitofusin homologue thought to mediate mitochondrial outer membrane fusion, we determined the sequence of the fzo1 gene in the uvs-5 mutant. A single amino acid substitution (Q368R) was found in the GTPase domain of the FZO1 protein. Expression of wild-type FZO1 in the uvs-5 strain rescued the mutant phenotypes, while expression of a mutant FZO1 protein did not. Moreover, when knock-in of the Q368R mutation was performed on a wild-type strain, the resulting mutant displayed phenotypes identical to those of the uvs-5 mutant. Therefore, we concluded that the previously unidentified uvs-5 gene is fzo1. Furthermore, we used immunoprecipitation analysis to show that the FZO1 protein interacts with MUS-10, which suggests that these two proteins may function together to maintain mitochondrial morphology.
Collapse
|
4
|
Inoue H. Exploring the processes of DNA repair and homologous integration in Neurospora. Mutat Res 2011; 728:1-11. [PMID: 21757027 DOI: 10.1016/j.mrrev.2011.06.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2011] [Indexed: 12/23/2022]
Abstract
This review offers a personal perspective on historical developments related to our current understanding of DNA repair, recombination, and homologous integration in Neurospora crassa. Previous reviews have summarized and analyzed the characteristics of Neurospora DNA repair mutants. The early history is reviewed again here as a prelude to a discussion of the molecular cloning, annotation, gene disruption and reverse genetics of Neurospora DNA repair genes. The classical studies and molecular analysis are then linked in a perspective on new directions in research on mutagen-sensitive mutants.
Collapse
Affiliation(s)
- Hirokazu Inoue
- Laboratory of Genetics, Department of Regulation Biology, Faculty of Science, Saitama University, Urawa 338-8570, Japan.
| |
Collapse
|
5
|
Deletion of a novel F-box protein, MUS-10, in Neurospora crassa leads to altered mitochondrial morphology, instability of mtDNA and senescence. Genetics 2010; 185:1257-69. [PMID: 20516500 DOI: 10.1534/genetics.110.117200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
While mitochondria are renowned for their role in energy production, they also perform several other integral functions within the cell. Thus, it is not surprising that mitochondrial dysfunction can negatively impact cell viability. Although mitochondria have received an increasing amount of attention in recent years, there is still relatively little information about how proper maintenance of mitochondria and its genomes is achieved. The Neurospora crassa mus-10 mutant was first identified through its increased sensitivity to methyl methanesulfonate (MMS) and was thus believed to be defective in some aspect of DNA repair. Here, we report that mus-10 harbors fragmented mitochondria and that it accumulates deletions in its mitochondrial DNA (mtDNA), suggesting that the mus-10 gene product is involved in mitochondrial maintenance. Interestingly, mus-10 begins to senesce shortly after deletions are visualized in its mtDNA. To uncover the function of MUS-10, we used a gene rescue approach to clone the mus-10 gene and discovered that it encodes a novel F-box protein. We show that MUS-10 interacts with a core component of the Skp, Cullin, F-box containing (SCF) complex, SCON-3, and that its F-box domain is essential for its function in vivo. Thus, we provide evidence that MUS-10 is part of an E3 ubiquitin ligase complex involved in maintaining the integrity of mitochondria and may function to prevent cellular senescence.
Collapse
|
6
|
Yokoyama M, Inoue H, Ishii C, Murakami Y. The novel gene mus7(+) is involved in the repair of replication-associated DNA damage in fission yeast. DNA Repair (Amst) 2007; 6:770-80. [PMID: 17307401 DOI: 10.1016/j.dnarep.2007.01.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2006] [Revised: 12/22/2006] [Indexed: 11/17/2022]
Abstract
The progression of replication forks is often impeded by obstacles that cause them to stall or collapse, and appropriate responses to replication-associated DNA damage are important for genome integrity. Here we identified a new gene, mus7(+), that is involved in the repair of replication-associated DNA damage in the fission yeast Schizosaccharomyces pombe. The Deltamus7 mutant shows enhanced sensitivity to methyl methanesulfonate (MMS), camptothecin, and hydroxyurea, agents that cause replication fork stalling or collapse, but not to ultraviolet light or X-rays. Epistasis analysis of MMS sensitivity indicates that Mus7 functions in the same pathway as Mus81, a subunit of the Mus81-Eme1 structure-specific endonuclease, which has been implicated in the repair of the replication-associated DNA damage. In Deltamus7 and Deltamus81 cells, the repair of MMS-induced DNA double-strand breaks (DSBs) is severely impaired. Moreover, some cells with either mutation are hyper-elongated or enlarged, and most of these cells accumulate in late G2 phase. Spontaneous Rad22 (recombination mediator protein RAD52 homolog) foci increase in S phase to late G2 phase in Deltamus7 and Deltamus81 cells. These results suggest that replication-associated DSBs accumulate in these cells and that Rad22 foci form in the absence of Mus7 or Mus81. We also found that the rate of spontaneous conversion-type recombination is reduced in mitotic Deltamus7 cells, suggesting that Rhp51- (RAD51 homolog) dependent homologous recombination is disturbed in this mutant. From these data, we propose that Mus7 functions in the repair of replication-associated DSBs by promoting RAD51-dependent conversion-type recombination downstream of Rad22 and Mus81.
Collapse
Affiliation(s)
- Mika Yokoyama
- Institute for Virus Research, Kyoto University, Shogoinkawahara-cho, Kyoto, Japan
| | | | | | | |
Collapse
|
7
|
Goldman GH, Kafer E. Aspergillus nidulans as a model system to characterize the DNA damage response in eukaryotes. Fungal Genet Biol 2004; 41:428-42. [PMID: 14998526 DOI: 10.1016/j.fgb.2003.12.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2003] [Accepted: 12/05/2003] [Indexed: 11/27/2022]
Abstract
Interest in DNA repair in Aspergillus nidulans had mainly grown out of studies of three different biological processes, namely mitotic recombination, inducible responses to detrimental environmental changes, and genetic control of the cell cycle. Ron Morris started the investigation of the genetic control of the cell cycle by screening hundreds of cell cycle temperature sensitive Aspergillus mutants. The sequencing and innovative analysis of these genes revealed not only several components of the cell cycle machinery that are directly involved in checkpoint response, but also components required for DNA replication and DNA damage response machinery. Here, we will provide an overview about currently known aspects of the DNA damage response in A. nidulans. Emphasis is put on analyzed mutants that are available and review epistatic relationships and other interactions among them. Furthermore, a comprehensive list of A. nidulans genes involved in different processes of the DNA damage response, as identified by homology of genome sequences with well-characterized human and yeast DNA repair genes, is shown.
Collapse
Affiliation(s)
- Gustavo H Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil.
| | | |
Collapse
|
8
|
Abstract
The mechanisms used by fungal cells to repair DNA damage have been subjects of intensive investigation for almost 50 years. As a result, the model yeasts Schizosaccharomyces pombe and Saccharomyces cerevisiae have led the way in yielding critical insights into the nature of the DNA damage response. At the same time, largely through the efforts of Etta Kafer, Hirokazu Inoue, and colleagues, a substantial collection of Aspergillus nidulans and Neurospora crassa DNA repair mutants has been identified and characterized in detail. As the analysis of these mutants continues and increasing amounts of annotated genome sequence become available, it is becoming readily apparent that the DNA damage response of filamentous fungi possesses several features that distinguish it from the model yeasts. These features are emphasized in this review, which describes the genes, regulatory networks, and processes that compose the fungal DNA damage response. Further characterization of this response will likely yield general insights that are applicable to animals and plants. Moreover, it may also become evident that the DNA damage response can be manipulated to control fungal growth.
Collapse
Affiliation(s)
- Gustavo H Goldman
- Faculdade de Ciencias Farmaceuticas de Ribeirao Preto, Universidade de Sao Paulo, Sao Paulo, Brazil
| | | | | |
Collapse
|
9
|
Affiliation(s)
- H Inoue
- Department of Regulation-Biology, Faculty of Science, Saitama University, Urawa, Japan.
| |
Collapse
|
10
|
Tomita H, Soshi T, Inoue H. The Neurospora uvs-2 gene encodes a protein which has homology to yeast RAD18, with unique zinc finger motifs. MOLECULAR & GENERAL GENETICS : MGG 1993; 238:225-33. [PMID: 8097557 DOI: 10.1007/bf00279551] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A clone containing the DNA repair gene uvs-2 of Neurospora crassa was identified from a Neurospora genomic DNA library using the sib-selection method. Transformants were screened for resistance to methyl methane sulfonate (MMS). A DNA fragment that complements the uvs-2 mutation was subcloned by monitoring its ability to transform the uvs-2 mutant to MMS resistance. Deletion analysis of the cloned DNA indicated that the size of the uvs-2 gene is approximately 1.6 kb. The identity of the uvs-2 gene was verified by restriction fragment length polymorphism (RFLP) mapping. The sensitivity of the transformant to three different mutagens was similar to that of the wild-type strain. Nucleotide sequences of genomic DNA and cDNA of the uvs-2 gene indicated that it has an open reading frame (ORF) of 1572 bp with a 69 bp intron in the middle of the sequence. Two transcription initiation sites located around 73 bp and 290 bp upstream of the translation initiation codon were identified by primer extension experiments. Northern analysis revealed that the nature transcript of the uvs-2 gene was about 1.8 kb long. The uvs-2 gene ORF is deduced to encode a polypeptide of 501 amino acids with a molecular mass of 54 kDa. The proposed polypeptide has 25% identity to the RAD18 polypeptide of Saccharomyces cerevisiae and contains two unique zinc finger motifs for nucleic acid binding. Similarities between the phenotypes of the rad18 and uvs-2 mutants suggest that the uvs-2 gene encodes a protein which is involved in postreplication repair, rather than excision repair.
Collapse
Affiliation(s)
- H Tomita
- Department of Regulation Biology, Faculty of Science, Saitama University, Urawa, Japan
| | | | | |
Collapse
|
11
|
|
12
|
Genetics and Molecular Biology of Neurospora crassa. ADVANCES IN GENETICS 1991. [DOI: 10.1016/s0065-2660(08)60106-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
13
|
Käfer E, Luk D. Sensitivity to bleomycin and hydrogen peroxide of DNA repair-defective mutants in Neurospora crassa. Mutat Res 1989; 217:75-81. [PMID: 2463486 DOI: 10.1016/0921-8777(89)90038-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Mutations were induced in Neurospora which cause increased sensitivity to MMS (methyl methane-sulfonate) and other mutagens. Genetic analysis of such mus demonstrated that some of them defined new DNA repair genes (mus-21, and mus-27 to mus-30), while others represented new alleles in previously known genes. To characterize them further, and especially to identify rec- types which have not yet been found in this species, many MMS-sensitive strains were tested for cross-sensitivities to bleomycin (BLM) and to hydrogen peroxide (H2O2) to which some rec- of other species are hypersensitive. In Neurospora, many of the MMS-sensitive mutants were found to be cross-sensitive to BLM and frequently these were also hypersensitive to ionizing radiation. Bleomycin sensitivity was demonstrated for all alleles of 10 different genes, 4 of them new ones, with mus-27 being the most sensitive of the latter (resembling uvs-6; Koga and Schroeder, 1987, Mutation Res., 183, 139). In contrast, very few of the MMS-sensitive mutants were hypersensitive to H2O2 and, in general, results of H2O2 tests were variable and differences between strains small. However, consistent deviations from wild type were observed in a few cases (most clearly for mus-9 and mus-11) when results from treatments of germinating conidia were compared with those of non-growing ones.
Collapse
Affiliation(s)
- E Käfer
- Biology Department, McGill University, Montreal, Canada
| | | |
Collapse
|
14
|
Relationship of histidine sensitivity to DNA damage and stress induced responses in mutagen sensitive mutants of Neurospora crassa. Curr Genet 1988; 13:391-9. [PMID: 2969780 DOI: 10.1007/bf00365660] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Previous work in other laboratories has shown that several mutagen sensitive mutants of Neurospora crassa are extremely sensitive to low levels of histidine in the culture medium. We have shown that wild type Neurospora accumulates nicks or breaks in the DNA in the presence of histidine. The number of nicks accumulating in histidine sensitive mutants is found to increase in relation to their sensitivity to histidine. Although these nicks can be repaired by both wild type and histidine sensitive mutants when histidine is removed from the medium, a steady state number of nicks exists as long as histidine is present. We suggest that the presence of these nicks or breaks induces an increase in recombination in these possibly recombination defective mutants and that this is the source of the high level of histidine sensitivity. We speculate on the mechanisms by which histidine induces this DNA damage. This report also shows that several polypeptides are induced by the wild type organism in the presence of histidine. Some of these polypeptides are also induced during other stress situations, such as heat shock and DNA damage due to ultraviolet irradiation. Two of the histidine induced proteins cannot be induced by any of the histidine sensitive mutants.
Collapse
|
15
|
Koga SJ, Schroeder AL. Gamma-ray-sensitive mutants of Neurospora crassa with characteristics analogous to ataxia telangiectasia cell lines. Mutat Res 1987; 183:139-48. [PMID: 2434849 DOI: 10.1016/0167-8817(87)90056-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Well characterized gamma-ray sensitive mutants of the fungus Neurospora crassa have been screened for characteristics analogous to those of cell lines derived from humans with the genetic disease, ataxia telangiectasia (AT). Two Neurospora mutants, uvs-6 and mus-9, show the AT cell line characteristics of gamma-ray and bleomycin sensitivity, and little or no repression of DNA synthesis following treatment with these agents. Normal human or Neurospora cells show an extensive biphasic DNA synthesis repression (to 50% of control) and when DNA synthesis is analyzed by alkaline sucrose gradient centrifugation, repression of DNA synthesis by low doses of gamma-radiation occurs primarily in low molecular weight (MW) DNA pieces in both organisms. In AT cells and the uvs-6 mutant, no repression in synthesis of low or higher MW DNA is seen at low doses, while the mus-9 mutant shows little repression of high MW DNA, but an intermediate level of low MW DNA synthesis. Both mutants have been shown previously to have an increased level of spontaneous chromosome instability as do AT lines. The uvs-6 and mus-9 mutations are known to be due to two different genes in two different epistatic groups. These results demonstrate that AT-like cellular characteristics can arise from defects in at least two and probably any of several genes, and that lower eukaryotes such as Neurospora can provide an inexpensive and useful model for AT while avoiding the problems inherent in using transformed cell lines.
Collapse
|
16
|
Postmeiotic mitoses without chromosome replication in a mutagen-sensitiveNeurospora mutant. ACTA ACUST UNITED AC 1986. [DOI: 10.1016/0147-5975(86)90008-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
17
|
Abstract
Four mutagen sensitive mutants of Neurospora (mus-7, mus-9, mus-11, and mei-2) are shown to increase mitotic chromosome instability in the duplication test developed by Newmeyer. Three other mutagen-sensitive mutants (upr-1, mus-8, and mus-10) do not increase chromosome instability. Previously three mutagen-sensitive mutants (uvs-3, uvs-6, and mei-3) were also shown to increase chromosome instability. The growth of all seven mutants that increase chromosome instability, is shown here to be more sensitive to hydroxyurea than that of wild type. Hydroxyurea, a compound which inhibits the enzyme ribonucleotide diphosphate reductase, is also shown to increase chromosome instability in the absence of any mutagen-sensitive mutation. These seven mutations are known to represent seven different genes in two epistasis groups. They have been shown previously to have four other properties in common: meiotic defects and sensitivity to gamma-rays, methyl methane sulfonate and the amino acid histidine. Their shared properties lead to the prediction here that all have reduced or altered deoxyribonucleotide pools.
Collapse
Affiliation(s)
- A L Schroeder
- Program in Genetics and Cell Biology, Washington State University, Pullman 99164-4350
| |
Collapse
|
18
|
Inoue H, Ishii C. A new ultraviolet-light sensitive mutant of Neurospora crassa with unusual photoreactivation property. Mutat Res 1985; 152:161-8. [PMID: 2933585 DOI: 10.1016/0027-5107(85)90058-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A mutant, uvs-(SA3B), which shows high sensitivity to UV light segregated among the progeny in a back-cross of a presumptive MMS-sensitive mutant to a wild-type strain. At 37% survival, this mutant was approximately 5 times more sensitive to UV and also 6 times more sensitive to 4-NQO than the wild type. But it was only slightly sensitive to gamma-ray, MMS, MNNG, MTC and histidine. It showed an unusual photoreactivation response. Its time course of photorecovery was similar to the photoreactivation-defective strain upr-1 of Neurospora crassa. Mutation induction by UV at the ad-3 loci in this mutant strain was lower than that at the same loci in the wild-type strain. The uvs-(SA3B) mutant maps between met-1 and col-4 in linkage group IV, and it was not allelic with the mutagen-sensitive mutant mus-8 which is located in this area. We have concluded, therefore, that uvs-(SA3B) has resulted from mutation in a new DNA-repair gene. This new mutant was barren in homozygous crosses.
Collapse
|
19
|
Neurospora mutants sensitive both to mutagens and to histidine. Curr Genet 1984; 9:65-74. [DOI: 10.1007/bf00396206] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/1984] [Indexed: 10/26/2022]
|
20
|
Käfer E, Witchell GR. Effects of Neurospora nuclease halo (nuh) mutants on secretion of two phosphate-repressible alkaline deoxyribonucleases. Biochem Genet 1984; 22:403-17. [PMID: 6235804 DOI: 10.1007/bf00484512] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Various recently isolated nuh mutants of Neurospora crassa (i.e., mutants which show reduced nuclease haloes on DNA-sorbose plates flooded with HCl) were mapped in several new genes or gene clusters and checked for effects on DNA repair and nuclease secretion. Some of them were found to be sensitive to MMS (methylmethane sulfonate) and sterile in meiosis. Release of nuclease activities into filtrates of liquid cultures was analyzed by DEAE-Sepharose chromatography. In the wild type, three alkaline deoxyribonuclease activities (A, B, and C) can be separated after growth in sorbose minimal media [Fraser, M. J. (1979). Nucleic Acids Res. 6: 231]. When strains were grown in phosphate-free DNA sucrose media, high (200-fold derepressed) DNase levels were found, and crude dialyzed filtrates could be chromatographed. Only two peaks were found, namely, those of DNase A, a Ca2+-dependent strand-nonspecific endonuclease, and DNase B, a ss-DNA-specific Mg2+-dependent exonuclease. Of the nuh mutants analyzed by one or both of these methods, many resembled the wild type. A few showed poor derepression, since their sorbose filtrates were normal, while profiles from DNA media lacked all peaks. These grew variably in liquid media with organic phosphates and probably produced suppressors, as was regularly found for nuc-2. Other mutants, which lacked specific peaks, gave the same results with both methods. One of these, nuh-7, produced no peaks at all but secreted unusually high amounts of protein.
Collapse
|
21
|
Abstract
Seven different mutants that show high sensitivity to MMS killing were isolated and mapped at different loci. One group, mms-(SA1), mms-(SA2) and mms-(SA6), showed high sensitivity to MMS but not to UV or gamma-rays. Another group, mms-(SA4) and mms-(SA5), showed extremely high sensitivity to UV and MMS. And mms-(SA3) and mms-(SA7) were moderately sensitive to both UV and MMS. Mms-(SA4) and mms-(SA1) were identified as alleles of uvs-2 and mus-7, respectively, which had been previously isolated. The mms-(SA1), mms-(SA6) and mms-(SA7) strains were barren in homozygous crosses, and the mms-(SA5) strain was barren in heterozygous crosses. The mms-(SA1), mms-(SA3) and mms-(SA5) strains showed high sensitivity to histidine. In summary, at least two new loci involved in the repair of MMS damage have been identified. The possibility that some of these new mutants are in new repair pathways is suggested.
Collapse
|
22
|
Käfer E. Epistatic Grouping of Repair-Deficient Mutants in Neurospora: Comparative Analysis of Two uvs-3 Alleles, uvs-6 and Their mus Double Mutant Strains. Genetics 1983; 105:19-33. [PMID: 17246153 PMCID: PMC1202144 DOI: 10.1093/genetics/105.1.19] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The nuclease halo mutant, nuh-4, of Neurospora crassa was identified conclusively as an allele of uvs-3, a gene involved in error-prone DNA repair. Like uvs-3, nuh-4 showed spontaneous mutator effects, and any previous contradictory findings were found to be due to newly arisen mutants. In normal strains the two alleles are noncomplementing and indistinguishable for sensitivity to UV and methyl methanesulfonate (MMS). Like uvs-3, nuh-4 lacked secretion of the extracellular enzyme, DNase A, a Ca(++)-dependent strand-nonspecific endonuclease which was found to be phosphate repressible. However, nuh-4 differed from uvs-3 in showing much higher conidial viability and lower sensitivity to ionizing radiation and mitomycin C.--Epistatic relationships of the two uvs-3 alleles with seven other MMS-sensitive mutants were determined and compared with those of the highly X-ray-sensitive mutant, uvs-6. Three epistatic groups were found, based on survival of double mutant strains relative to that of their component single mutant strains after treatment with MMS. Both, uvs-3 and nuh-4, were epistatic to mus-9 which also is a mutator. None of the three produced viable double mutants in crosses to uvs-6. On the other hand, uvs-6, but not the uvs-3 alleles, was found to be epistatic to mus-7 and mus-10. The excision-defective uvs-2 and mus-8 both showed synergism with the uvs-3 alleles and with uvs-6, forming a third, separate epistatic group.
Collapse
Affiliation(s)
- E Käfer
- Department of Biology, McGill University, Montreal, Canada H3A 1B1
| |
Collapse
|
23
|
|
24
|
Abstract
Several MMS-sensitive mutants of Neurospora crassa were compared with the wild-type strain for their relative sensitivities to UV, X-ray, and histidine. They were also compared for the frequency of spontaneous mutation at the loci which confer assistance to p-fluorophenylalanine. The mutants were also examined for possible defects in meiotic behavior in homozygous crosses and for any change in the inducible DNA salvage pathways (as indicated by their ability to utilize DNA as the sole phosphate source in the growth medium). On the basis of these characterizations, the present MMS-sensitive mutants of Neurospora can be placed into three groups. The first group includes three mutants, mus-(SC3), mus-(SC13), and mus-(SC28). These are slow growers, insensitive to histidine with no apparent meiotic defects and may have reduced frequency of spontaneous mutation. In addition, their mycelial growth is sensitive to MMS but the conidial viability following MMS, UV or X-ray treatment appears normal or only slightly more sensitive than the wild-type. The second group includes only one mutant, mus-(SC15); its mycelial growth is very sensitive to MMS but the conidial survival following treatment with MMS or UV appears normal; however, the conidial survival following exposure to X-ray is significantly reduced. This mutant shows an increased (more than 10-fold) frequency of spontaneous mutation, but behaves normal like the wild-type with respect to fertility, growth rate and insensitivity to histidine. The third group includes mutants mus-(SC10), mus-(SC25), and mus-(SC29). These mutants are very sensitive to UV, X-rays and MMS and to histidine but have normal growth rates on minimal medium. Mutant mus-(SC10), but not mus-(SC25) and mus-(SC29), has an increased (11 X) frequency of spontaneous mutation. On the basis of data presented, the MMS sensitivity of the first group of mutants cannot be ascertained to arise from a defect in the DNA repair pathways; instead, it may stem from altered cell permeability or other pleotropic effects of the mus mutations. However, it can be suggested that the second and third group of mus mutants may indeed result from a defect in the DNA repair pathways controlled by the mus genes; this conclusion is based on their cross-sensitivity to the number of DNA-damaging agents such as MMS, UV and/or X-ray, high frequencies of spontaneous mutation (mutator effects) and defects in meiotic behavior.
Collapse
|
25
|
Inoue H, Harvey RC, Callen DF, de Serres FJ. Mutagenesis at the ad-3A and ad-3B loci in haploid UV-sensitive strains of Neurospora crassa. V. Comparison of dose--response curves of single- and double-mutant strains with wild-type. Mutat Res 1981; 84:49-71. [PMID: 6460180 DOI: 10.1016/0027-5107(81)90049-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The interactions of mutant alleles that individually confer radiation sensitivity in Neurospora crassa are being studied with regard to their effects on radiation-induced inactivation and forward-mutation induction at the ad-3 loci. This paper reports attempts to construct 3 double-mutant strains containing the following pair-wise combinations of repair-deficient mutants: upr-1,uvs-2; uvs-2,uvs-6; and uvs-3,uvs-6. The double-mutant strain with the 2 excision-repair-deficient mutants upr-1 and uvs-2 shows increased sensitivity to X-ray-induced mutagenesis and inactivation, relative to that shown by either of the parental single-mutant strains. This double mutant is no more sensitive than the parental single-mutant strains to either UV mutagenesis or inactivation. The combination of the uvs-2 and uvs-6 double-mutant strain is considerably more sensitive to both UV and X-ray inactivation than either the uvs-2 or uvs-6 strain, but it shows no greater sensitivity than the parental strains to ad-3 mutation induction by either agent. The combination of the uvs-3 and uvs-6 alleles is inviable. Tetrad analysis and microscopical examination of ascospores shows that ascospores of presumptive genotype uvs-3, uvs-6 do not grow beyond the formation of a few hyphal threads. The lethal and mutagenic effects of UV and X-irradiation in these double-mutant strains are interpreted in terms of the repair systems in Neurospora and other microorganisms.
Collapse
|
26
|
Abstract
7 mus (mutagen-sensitive) mutants of Neurospora crassa, which are more sensitive to the toxic effects of MMS (methyl methanesulfonate) than wild-type, were investigated for cross-sensitivities to other mutagens and inhibitors. These mutants have recently been mapped in 5 new genes, mus-7 to mus-11, and mutant alleles from each gene were checked for their effects on mutation frequencies. It was found that mutants in 3 of these 5 genes showed radiation-induced mutation frequencies similar to wild-type. These included 2 alleles of the gene mus-10, which were cross-sensitive only to UV and were the only mutants that produced some viable ascospores in homozygous crosses. The mutant of the second gene, mus-8, was especially sensitive to UV and mitomycin C and produced slightly reduced frequencies of spontaneous mutation. In contrast, the mutant of the third gene, mus-7, was not UV-sensitive but showed some cross-sensitivity to X-rays; mus-7 was highly sensitive to MMS and also to histidine, which inhibits various repair-defective mutants at concentrations well below those that reduce wild-type growth. None of these mus resemble mutants previously found in Neurospora, nor do they conform clearly to mutant types identified in E. coli or yeast. On the other hand mutants in 2 further genes, mus-11, and especially 2 alleles of mus-9, are very similar to uvs-3 of Neurospora and generally resemble mutants that are considered to be defective in "error-prone" repair. They were UV- as well as X-ray-sensitive, and showed strong spontaneous mutator effects but almost no increase in recessive lethal frequencies in heterokaryons after UV-treatments.
Collapse
|