1
|
Taylor R, Messenger LA, Abeku TA, Clarke SE, Yadav RS, Lines J. Invasive Anopheles stephensi in Africa: insights from Asia. Trends Parasitol 2024; 40:731-743. [PMID: 39054167 DOI: 10.1016/j.pt.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/03/2024] [Accepted: 06/19/2024] [Indexed: 07/27/2024]
Abstract
Anopheles stephensi is a highly competent urban malaria vector species, endemic in South Asia and the Persian Gulf, which has colonised eight countries in sub-Saharan Africa (SSA) since 2013 and is now spreading uncontrollably. In urban areas of Africa, where malaria transmission has previously been low or non-existent, the invasion of An. stephensi represents a significant problem, particularly to immunologically naïve populations. Despite this rapidly advancing threat, there is a paucity of information regarding the bionomics of An. stephensi in SSA. Here, we offer a critical synthesis of literature from An. stephensi's native range, focusing on the future of An. stephensi in a rapidly urbanising Africa, and highlighting key questions that warrant prioritisation by the global malaria vector control community.
Collapse
Affiliation(s)
- Roz Taylor
- RAFT (Resilience Against Future Threats Through Vector Control) Consortium, Department of Disease Control, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK.
| | - Louisa A Messenger
- Department of Environmental and Occupational Health, School of Public Health, University of Nevada, Las Vegas, NV 89154, USA; Parasitology and Vector Biology (PARAVEC) Laboratory, School of Public Health, University of Nevada, Las Vegas, NV 89154, USA
| | - Tarekegn A Abeku
- Malaria Consortium, Green House, 244-254 Cambridge Heath Road, London E2 9DA, UK
| | - Sian E Clarke
- RAFT (Resilience Against Future Threats Through Vector Control) Consortium, Department of Disease Control, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Rajpal S Yadav
- Academy of Public Health Entomology, Udaipur 313002, Rajasthan, India
| | - Jo Lines
- RAFT (Resilience Against Future Threats Through Vector Control) Consortium, Department of Disease Control, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK.
| |
Collapse
|
2
|
Samano A, Kumar N, Liao Y, Ishtiaq F, Chakraborty M. Genome structural variants shape adaptive success of an invasive urban malaria vector Anopheles stephensi. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.29.605641. [PMID: 39211149 PMCID: PMC11360885 DOI: 10.1101/2024.07.29.605641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Global changes are associated with the emergence of several invasive species. However, the genomic determinants of the adaptive success of an invasive species in a new environment remain poorly understood. Genomic structural variants (SVs), consisting of copy number variants, play an important role in adaptation. SVs often cause large adaptive shifts in ecologically important traits, which makes SVs compelling candidates for driving rapid adaptations to environmental changes, which is critical to invasive success. To address this problem, we investigated the role SVs play in the adaptive success of Anopheles stephensi , a primary vector of urban malaria in South Asia and an invasive malaria vector in several South Asian islands and Africa. We collected whole genome sequencing data from 115 mosquitoes from invasive island populations and four locations from mainland India, an ancestral range for the species. We identified 2,988 duplication copy number variants and 16,038 deletions in these strains, with ∼50% overlapping genes. SVs are enriched in genomic regions with signatures of selective sweeps in the mainland and invasive island populations, implying a putative adaptive role of SVs. Nearly all high-frequency SVs, including the candidate adaptive variants, in the invasive island populations are present on the mainland, suggesting a major contribution of existing variation to the success of the island populations. Among the candidate adaptive SVs, three duplications involving toxin-resistance genes evolved, likely due to the widespread application of insecticides in India since the 1950s. We also identify two SVs associated with the adaptation of An. stephensi larvae to brackish water in the island and two coastal mainland populations, where the mutations likely originated. Our results suggest that existing SVs play a vital role in the evolutionary success of An. stephensi in new environmental conditions.
Collapse
|
3
|
Ghosh C, Soumya M, Kumar N, Kumar R C, Joshi SG, Kumar S, Subramani S, Swain S. Aeroplane wing, a new recessive autosomal phenotypic marker in the malaria vector, Anopheles stephensi Liston. Heliyon 2024; 10:e23693. [PMID: 38187285 PMCID: PMC10770597 DOI: 10.1016/j.heliyon.2023.e23693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 11/30/2023] [Accepted: 12/09/2023] [Indexed: 01/09/2024] Open
Abstract
A novel and distinct mutant with a phenotype, aeroplane wing (ae) is reported for the first time in the urban malaria vector Anopheles stephensi. The main aim of this study was to establish the mode of inheritance of the ae gene performing genetic crossings between the mutants and wild types. These mutants show extended open wings that are visible to naked eyes in both the sexes. Mutants were first noticed in a nutritionally stressed isofemale colony. Strategic genetic crosses revealed that the ae gene is a recessive, autosomal, and monogenic trait having full penetrance with uniform expression in its adult stage. Egg morphometric analysis confirmed that these mutants were intermediate variant. No significant differences were observed in the wing venation and size of ae mutants compared to their control parental lines. Further cytogenetic analysis on the ovarian polytene chromosome of ae mutant showed an inversion (3Li) on the 3L arm like its parental line. This ae mutant would be a prominent marker and could be useful to study the functions of related specific genes within its genome.
Collapse
Affiliation(s)
- Chaitali Ghosh
- Tata Institute for Genetics and Society, Centre at inStem – GKVK Campus, Bellary Road, Bangalore 560065, India
| | - M. Soumya
- Tata Institute for Genetics and Society, Centre at inStem – GKVK Campus, Bellary Road, Bangalore 560065, India
| | - Naveen Kumar
- Tata Institute for Genetics and Society, Centre at inStem – GKVK Campus, Bellary Road, Bangalore 560065, India
| | - Chethan Kumar R
- Tata Institute for Genetics and Society, Centre at inStem – GKVK Campus, Bellary Road, Bangalore 560065, India
| | - Soumya Gopal Joshi
- Tata Institute for Genetics and Society, Centre at inStem – GKVK Campus, Bellary Road, Bangalore 560065, India
| | - Sampath Kumar
- Tata Institute for Genetics and Society, Centre at inStem – GKVK Campus, Bellary Road, Bangalore 560065, India
| | | | - Sunita Swain
- Tata Institute for Genetics and Society, Centre at inStem – GKVK Campus, Bellary Road, Bangalore 560065, India
| |
Collapse
|
4
|
Srinivasan S, Ghosh C, Das S, Thakare A, Singh S, Ganesh A, Mahawar H, Jaisimha A, Krishna M, Chattopadhyay A, Borah R, Singh V, M S, Kumar N, Kumar S, Swain S, Subramani S. Identification of a TNF-TNFR-like system in malaria vectors (Anopheles stephensi) likely to influence Plasmodium resistance. Sci Rep 2022; 12:19079. [PMID: 36351999 PMCID: PMC9646898 DOI: 10.1038/s41598-022-23780-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 11/04/2022] [Indexed: 11/11/2022] Open
Abstract
Identification of Plasmodium-resistance genes in malaria vectors remains an elusive goal despite the recent availability of high-quality genomes of several mosquito vectors. Anopheles stephensi, with its three distinctly-identifiable forms at the egg stage, correlating with varying vector competence, offers an ideal species to discover functional mosquito genes implicated in Plasmodium resistance. Recently, the genomes of several strains of An. stephensi of the type-form, known to display high vectorial capacity, were reported. Here, we report a chromosomal-level assembly of an intermediate-form of An. stephensi strain (IndInt), shown to have reduced vectorial capacity relative to a strain of type-form (IndCh). The contig level assembly with a L50 of 4 was scaffolded into chromosomes by using the genome of IndCh as the reference. The final assembly shows a heterozygous paracentric inversion, 3Li, involving 8 Mbp, which is syntenic to the extensively-studied 2La inversion implicated in Plasmodium resistance in An. gambiae involving 21 Mbp. Deep annotation of genes within the 3Li region in the IndInt assembly using the state-of-the-art protein-fold prediction and other annotation tools reveals the presence of a tumor necrosis factor-alpha (TNF-alpha) like gene, which is the homolog of the Eiger gene in Drosophila. Subsequent chromosome-wide searches revealed homologs of Wengen (Wgn) and Grindelwald (Grnd) genes, which are known to be the receptors for Eiger in Drosophila. We have identified all the genes in IndInt required for Eiger-mediated signaling by analogy to the TNF-alpha system, suggesting the presence of a functionally-active Eiger signaling pathway in IndInt. Comparative genomics of the three type-forms with that of IndInt, reveals structurally disruptive mutations in Eiger gene in all three strains of the type-form, suggesting compromised innate immunity in the type-form as the likely cause of high vectorial capacity in these strains. This is the first report of the presence of a homolog of Eiger in malaria vectors, known to be involved in cell death in Drosophila, within an inversion region in IndInt syntenic to an inversion associated with Plasmodium resistance in An. gambiae.
Collapse
Affiliation(s)
- Subhashini Srinivasan
- grid.418831.70000 0004 0500 991XInstitute of Bioinformatics and Applied Biotechnology, Biotech Park, Electronic City Phase I, Bengaluru, 560100 India
| | - Chaitali Ghosh
- grid.508203.c0000 0004 9410 4854Tata Institute for Genetics and Society (TIGS), Center at inStem, Bellary Road, GKVK Campus, Bengaluru, 560065 India
| | - Shrestha Das
- grid.418831.70000 0004 0500 991XInstitute of Bioinformatics and Applied Biotechnology, Biotech Park, Electronic City Phase I, Bengaluru, 560100 India
| | - Aditi Thakare
- grid.418831.70000 0004 0500 991XInstitute of Bioinformatics and Applied Biotechnology, Biotech Park, Electronic City Phase I, Bengaluru, 560100 India
| | - Siddharth Singh
- grid.418831.70000 0004 0500 991XInstitute of Bioinformatics and Applied Biotechnology, Biotech Park, Electronic City Phase I, Bengaluru, 560100 India
| | - Apoorva Ganesh
- grid.418831.70000 0004 0500 991XInstitute of Bioinformatics and Applied Biotechnology, Biotech Park, Electronic City Phase I, Bengaluru, 560100 India
| | - Harsh Mahawar
- grid.418831.70000 0004 0500 991XInstitute of Bioinformatics and Applied Biotechnology, Biotech Park, Electronic City Phase I, Bengaluru, 560100 India
| | - Aadhya Jaisimha
- grid.418831.70000 0004 0500 991XInstitute of Bioinformatics and Applied Biotechnology, Biotech Park, Electronic City Phase I, Bengaluru, 560100 India
| | - Mohanapriya Krishna
- grid.418831.70000 0004 0500 991XInstitute of Bioinformatics and Applied Biotechnology, Biotech Park, Electronic City Phase I, Bengaluru, 560100 India
| | - Aritra Chattopadhyay
- grid.418831.70000 0004 0500 991XInstitute of Bioinformatics and Applied Biotechnology, Biotech Park, Electronic City Phase I, Bengaluru, 560100 India
| | - Rishima Borah
- grid.418831.70000 0004 0500 991XInstitute of Bioinformatics and Applied Biotechnology, Biotech Park, Electronic City Phase I, Bengaluru, 560100 India
| | - Vikrant Singh
- grid.418831.70000 0004 0500 991XInstitute of Bioinformatics and Applied Biotechnology, Biotech Park, Electronic City Phase I, Bengaluru, 560100 India
| | - Soumya M
- grid.508203.c0000 0004 9410 4854Tata Institute for Genetics and Society (TIGS), Center at inStem, Bellary Road, GKVK Campus, Bengaluru, 560065 India
| | - Naveen Kumar
- grid.508203.c0000 0004 9410 4854Tata Institute for Genetics and Society (TIGS), Center at inStem, Bellary Road, GKVK Campus, Bengaluru, 560065 India
| | - Sampath Kumar
- grid.508203.c0000 0004 9410 4854Tata Institute for Genetics and Society (TIGS), Center at inStem, Bellary Road, GKVK Campus, Bengaluru, 560065 India
| | - Sunita Swain
- grid.508203.c0000 0004 9410 4854Tata Institute for Genetics and Society (TIGS), Center at inStem, Bellary Road, GKVK Campus, Bengaluru, 560065 India
| | - Suresh Subramani
- grid.266100.30000 0001 2107 4242TIGS, University of California San Diego, La Jolla, CA 92093 USA
| |
Collapse
|
5
|
Lukyanchikova V, Nuriddinov M, Belokopytova P, Taskina A, Liang J, Reijnders MJMF, Ruzzante L, Feron R, Waterhouse RM, Wu Y, Mao C, Tu Z, Sharakhov IV, Fishman V. Anopheles mosquitoes reveal new principles of 3D genome organization in insects. Nat Commun 2022; 13:1960. [PMID: 35413948 PMCID: PMC9005712 DOI: 10.1038/s41467-022-29599-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 03/24/2022] [Indexed: 11/24/2022] Open
Abstract
Chromosomes are hierarchically folded within cell nuclei into territories, domains and subdomains, but the functional importance and evolutionary dynamics of these hierarchies are poorly defined. Here, we comprehensively profile genome organizations of five Anopheles mosquito species and show how different levels of chromatin architecture influence each other. Patterns observed on Hi-C maps are associated with known cytological structures, epigenetic profiles, and gene expression levels. Evolutionary analysis reveals conservation of chromatin architecture within synteny blocks for tens of millions of years and enrichment of synteny breakpoints in regions with increased genomic insulation. However, in-depth analysis shows a confounding effect of gene density on both insulation and distribution of synteny breakpoints, suggesting limited causal relationship between breakpoints and regions with increased genomic insulation. At the level of individual loci, we identify specific, extremely long-ranged looping interactions, conserved for ~100 million years. We demonstrate that the mechanisms underlying these looping contacts differ from previously described Polycomb-dependent interactions and clustering of active chromatin.
Collapse
Affiliation(s)
- Varvara Lukyanchikova
- Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
- Fralin Life Science Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Miroslav Nuriddinov
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Polina Belokopytova
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Alena Taskina
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Jiangtao Liang
- Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
- Fralin Life Science Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Maarten J M F Reijnders
- Department of Ecology and Evolution, University of Lausanne and Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland
| | - Livio Ruzzante
- Department of Ecology and Evolution, University of Lausanne and Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland
| | - Romain Feron
- Department of Ecology and Evolution, University of Lausanne and Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland
| | - Robert M Waterhouse
- Department of Ecology and Evolution, University of Lausanne and Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland
| | - Yang Wu
- Fralin Life Science Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
- Department of Pathogen Biology, School of Public Health, Southern Medical University, 510515, Guangzhou, Guangdong, China
| | - Chunhong Mao
- Biocomplexity Institute & Initiative, University of Virginia, Charlottesville, VA, 22911, USA
| | - Zhijian Tu
- Fralin Life Science Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Igor V Sharakhov
- Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA.
- Fralin Life Science Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA.
- Department of Genetics and Cell Biology, Tomsk State University, Tomsk, Russia.
| | - Veniamin Fishman
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia.
- Novosibirsk State University, Novosibirsk, Russia.
- AIRI, Moscow, Russia.
| |
Collapse
|
6
|
Khan J, Gholizadeh S, Zhang D, Wang G, Guo Y, Zheng X, Wu Z, Wu Y. Identification of a biological form in the Anopheles stephensi laboratory colony using the odorant-binding protein 1 intron I sequence. PLoS One 2022; 17:e0263836. [PMID: 35192647 PMCID: PMC8863247 DOI: 10.1371/journal.pone.0263836] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/27/2022] [Indexed: 11/18/2022] Open
Abstract
Background Anopheles stephensi Listen (1901) is a major vector of malaria in Asia and has recently been found in some regions of Africa. The An. stepehnsi species complex is suspected to have three sibling species: type, intermediate, and mysorensis, each with its own vector competence to the malaria parasite and ecology. To identify the members of the species complex in our An. stephensi insectary colony, we used the morphological features of eggs and genetic markers such as AnsteObp1 (Anopheles stephensi odorant binding protein 1), mitochondrial oxidases subunit 1 and 2 (COI and COII), and nuclear internal transcribed spacer 2 locus (ITS2). Methods Eggs were collected from individual mosquitoes (n = 50) and counted for the number of ridges under stereomicroscope. Genomic DNA was extracted from female mosquitoes. After the amplification of partial fragments of AnsteObp1, COI, COII and ITS2 genes, the PCR products were purified and sequenced. Phylogenetic analysis was performed after aligning query sequences against the submitted sequences in GenBank using MEGA 7. Results The range of ridges number on each egg float was 12–13 that corresponds to the mysorensis form of An. stephensi. The generated COI, COII and ITS2 sequences showed 100%, 99.46% and 99.29% similarity with the sequences deposited for Chinese, Indian and Iranian strains of An. stephensi, respectively. All the generated AnsteObp1 intron I region sequences matched 100% with the sequences deposited for An. stephensi sibling species C (mysorensis form) from Iran and Afghanistan. Conclusions This manuscript precisely describes the morphological and molecular details of the ‘var mysorensis’ form of An. stephensi that could be exploited in elucidating its classification as well as in differentiation from other biotypes of the same or other anopheline species. Based on our findings, we recommend AnsteObp1 as a robust genetic marker for rapid and accurate discrimination (taxonomic identification) of the An. stephensi species complex, rather than the COI, COII, and ITS2 marker, which could only be utilized for interspecies (Anopheles) differentiation.
Collapse
Affiliation(s)
- Jehangir Khan
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Key Laboratory of Tropical Disease Control of the Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University-Michigan State University Joint Center of Vector Control for Tropical Disease, Guangzhou, Guangdong, China
- Department of Zoology, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan
- Chinese Atomic Energy Agency Center of Excellence on Nuclear Technology Applications for Insect Control, Sun Yat-sen University, Guangzhou, China
- * E-mail: (JK); (ZW); (YW)
| | - Saber Gholizadeh
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
- Medical Entomology and Vector Control Department, School of Public Health, Urmia University of Medical Sciences, Urmia, Iran
| | - Dongjing Zhang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Key Laboratory of Tropical Disease Control of the Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University-Michigan State University Joint Center of Vector Control for Tropical Disease, Guangzhou, Guangdong, China
- Chinese Atomic Energy Agency Center of Excellence on Nuclear Technology Applications for Insect Control, Sun Yat-sen University, Guangzhou, China
| | - Gang Wang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Key Laboratory of Tropical Disease Control of the Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University-Michigan State University Joint Center of Vector Control for Tropical Disease, Guangzhou, Guangdong, China
- Chinese Atomic Energy Agency Center of Excellence on Nuclear Technology Applications for Insect Control, Sun Yat-sen University, Guangzhou, China
| | - Yan Guo
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Key Laboratory of Tropical Disease Control of the Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University-Michigan State University Joint Center of Vector Control for Tropical Disease, Guangzhou, Guangdong, China
| | - Xiaoying Zheng
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Key Laboratory of Tropical Disease Control of the Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University-Michigan State University Joint Center of Vector Control for Tropical Disease, Guangzhou, Guangdong, China
- Chinese Atomic Energy Agency Center of Excellence on Nuclear Technology Applications for Insect Control, Sun Yat-sen University, Guangzhou, China
| | - Zhongdao Wu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Key Laboratory of Tropical Disease Control of the Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University-Michigan State University Joint Center of Vector Control for Tropical Disease, Guangzhou, Guangdong, China
- Chinese Atomic Energy Agency Center of Excellence on Nuclear Technology Applications for Insect Control, Sun Yat-sen University, Guangzhou, China
- * E-mail: (JK); (ZW); (YW)
| | - Yu Wu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Key Laboratory of Tropical Disease Control of the Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University-Michigan State University Joint Center of Vector Control for Tropical Disease, Guangzhou, Guangdong, China
- Chinese Atomic Energy Agency Center of Excellence on Nuclear Technology Applications for Insect Control, Sun Yat-sen University, Guangzhou, China
- * E-mail: (JK); (ZW); (YW)
| |
Collapse
|
7
|
The genome trilogy of Anopheles stephensi, an urban malaria vector, reveals structure of a locus associated with adaptation to environmental heterogeneity. Sci Rep 2022; 12:3610. [PMID: 35246568 PMCID: PMC8897464 DOI: 10.1038/s41598-022-07462-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 02/15/2022] [Indexed: 12/31/2022] Open
Abstract
Anopheles stephensi is the most menacing malaria vector to watch for in newly urbanising parts of the world. Its fitness is reported to be a direct consequence of the vector adapting to laying eggs in over-head water tanks with street-side water puddles polluted by oil and sewage. Large frequent inversions in the genome of malaria vectors are implicated in adaptation. We report the genome assembly of a strain of An. stephensi of the type-form, collected from a construction site from Chennai (IndCh) in 2016. The genome reported here with a L50 of 4, completes the trilogy of high-resolution genomes of strains with respect to a 16.5 Mbp 2Rb genotype in An. stephensi known to be associated with adaptation to environmental heterogeneity. Unlike the reported genomes of two other strains, STE2 (2R+b/2Rb) and UCI (2Rb/2Rb), IndCh is found to be homozygous for the standard form (2R+b/2R+b). Comparative genome analysis revealed base-level details of the breakpoints and allowed extraction of 22,650 segregating SNPs for typing this inversion in populations. Whole genome sequencing of 82 individual mosquitoes from diverse geographical locations reveal that one third of both wild and laboratory populations maintain the heterozygous genotype of 2Rb. The large number of SNPs can be tailored to 1740 exonic SNPs enabling genotyping directly from transcriptome sequencing. The genome trilogy approach accelerated the study of fine structure and typing of an important inversion in An. stephensi, putting the genome resources for this understudied species on par with the extensively studied malaria vector, Anopheles gambiae. We argue that the IndCh genome is relevant for field translation work compared to those reported earlier by showing that individuals from diverse geographical locations cluster with IndCh, pointing to significant convergence resulting from travel and commerce between cities, perhaps, contributing to the survival of the fittest strain.
Collapse
|
8
|
Chida AR, Ravi S, Jayaprasad S, Paul K, Saha J, Suresh C, Whadgar S, Kumar N, Rao K R, Ghosh C, Choudhary B, Subramani S, Srinivasan S. A Near-Chromosome Level Genome Assembly of Anopheles stephensi. Front Genet 2020; 11:565626. [PMID: 33312190 PMCID: PMC7703621 DOI: 10.3389/fgene.2020.565626] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 09/28/2020] [Indexed: 12/31/2022] Open
Abstract
Malaria remains a major healthcare risk to growing economies like India, and a chromosome-level reference genome of Anopheles stephensi is critical for successful vector management and understanding of vector evolution using comparative genomics. We report chromosome-level assemblies of an Indian strain, STE2, and a Pakistani strain SDA-500 by combining draft genomes of the two strains using a homology-based iterative approach. The resulting assembly IndV3/PakV3 with L50 of 9/12 and N50 6.3/6.9 Mb had scaffolds long enough for building 90% of the euchromatic regions of the three chromosomes, IndV3s/PakV3s, using low-resolution physical markers and enabled the generation of the next version of genome assemblies, IndV4/PakV4, using HiC data. We have validated these assemblies using contact maps against publicly available HiC raw data from two strains including STE2 and another lab strain of An. stephensi from UCI and compare the quality of the assemblies with other assemblies made available as preprints since the submission of the manuscript. We show that the IndV3s and IndV4 assemblies are sensitive in identifying a homozygous 2Rb inversion in the UCI strain and a 2Rb polymorphism in the STE2 strain. Multiple tandem copies of CYP6a14, 4c1, and 4c21 genes, implicated in insecticide resistance, lie within this inversion locus. Comparison of assembled genomes suggests a variation of 1 in 81 positions between the UCI and STE2 lab strains, 1 in 82 between SDA-500 and UCI strain, and 1 in 113 between SDA-500 and STE2 strains of An. stephensi, which are closer than 1 in 68 variations among individuals from two other lab strains sequenced and reported here. Based on the developmental transcriptome and orthology of all the 54 olfactory receptors (ORs) to those of other Anopheles species, we identify an OR with the potential for host recognition in the genus Anopheles. A comparative analysis of An. stephensi genomes with the completed genomes of a few other Anopheles species suggests limited inter-chromosomal gene flow and loss of synteny within chromosomal arms even among the closely related species.
Collapse
Affiliation(s)
- Afiya Razia Chida
- Institute of Bioinformatics and Applied Biotechnology, Bangalore, India
| | - Samathmika Ravi
- Institute of Bioinformatics and Applied Biotechnology, Bangalore, India
| | | | - Kiran Paul
- Institute of Bioinformatics and Applied Biotechnology, Bangalore, India
| | - Jaysmita Saha
- Institute of Bioinformatics and Applied Biotechnology, Bangalore, India
| | - Chinjusha Suresh
- Institute of Bioinformatics and Applied Biotechnology, Bangalore, India
| | - Saurabh Whadgar
- Institute of Bioinformatics and Applied Biotechnology, Bangalore, India
| | - Naveen Kumar
- Tata Institute for Genetics and Society Center at inStem, Bangalore, India
| | - Raksha Rao K
- Institute of Bioinformatics and Applied Biotechnology, Bangalore, India
| | - Chaitali Ghosh
- Tata Institute for Genetics and Society Center at inStem, Bangalore, India
| | - Bibha Choudhary
- Institute of Bioinformatics and Applied Biotechnology, Bangalore, India
| | - Suresh Subramani
- Tata Institute for Genetics and Society Center at inStem, Bangalore, India
| | - Subhashini Srinivasan
- Institute of Bioinformatics and Applied Biotechnology, Bangalore, India
- Tata Institute for Genetics and Society Center at inStem, Bangalore, India
| |
Collapse
|
9
|
Subbarao SK, Nanda N, Rahi M, Raghavendra K. Biology and bionomics of malaria vectors in India: existing information and what more needs to be known for strategizing elimination of malaria. Malar J 2019; 18:396. [PMID: 31796010 PMCID: PMC6892149 DOI: 10.1186/s12936-019-3011-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 11/16/2019] [Indexed: 01/28/2023] Open
Abstract
India has committed to eliminate malaria by 2030. The national framework for malaria elimination released by the Government of India plans to achieve this goal through strategic planning in a phased manner. Since vector control is a major component of disease management and vector elimination, it requires a thorough understanding of the biology and bionomics of malaria vectors exhibiting definite distribution patterns in diverse ecosystems in the country. Although a wealth of information is available on these aspects, lesser-known data are on biting time and rhythm, and the magnitude of outdoor transmission by the vectors which are crucial for effective implementation of the key vector control interventions. Most of the data available for the vector species are at sensu lato level, while the major vectors are species complexes and their members distinctly differ in biological characters. Furthermore, the persistent use of insecticides in indoor residual spray and long-lasting insecticidal nets has resulted in widespread resistance in vectors and changes in their behaviour. In this document, challenges in vector control in the Indian context have been identified and possible solutions to overcome the problem are suggested. Adequate addressing of the issues raised would greatly help make a deep dent in malaria transmission and consequently result in disease elimination within the targeted time frame.
Collapse
Affiliation(s)
- Sarala K Subbarao
- Indian Council of Medical Research (ICMR), Ramalingaswami Bhavan, New Delhi, India. .,ICMR-National Institute of Malaria Research (NIMR), Sector-8, Dwarka, Delhi, India. .,, Delhi, India.
| | - Nutan Nanda
- ICMR-National Institute of Malaria Research (NIMR), Sector-8, Dwarka, Delhi, India.,, Delhi, India
| | - Manju Rahi
- Indian Council of Medical Research (ICMR), Ramalingaswami Bhavan, New Delhi, India
| | - Kamaraju Raghavendra
- ICMR-National Institute of Malaria Research (NIMR), Sector-8, Dwarka, Delhi, India
| |
Collapse
|
10
|
A cytogenetic photomap from ovarian nurse cell polytene chromosome of Anopheles stephensi (Diptera: Culicidae): a comparative study. THE NUCLEUS 2018. [DOI: 10.1007/s13237-018-0241-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
11
|
Sharakhov IV, Artemov GN, Sharakhova MV. Chromosome evolution in malaria mosquitoes inferred from physically mapped genome assemblies. J Bioinform Comput Biol 2016; 14:1630003. [PMID: 27021248 DOI: 10.1142/s0219720016300033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Polymorphic inversions in mosquitoes are distributed nonrandomly among chromosomes and are associated with ecological, behavioral, and physiological adaptations related to pathogen transmission. Despite their significance, the patterns and mechanism of genome rearrangements are not well understood. Recent sequencing and physical mapping of the genomes for 16 Anopheles mosquito species provided an opportunity to study chromosome evolution at the highest resolution. New studies revealed that fixed rearrangement accumulated [Formula: see text]3 times faster on the X chromosome than on autosomes. The highest densities of transposable elements (TEs) and satellites of different sizes have also been found on the X chromosome, suggesting a mechanism for the inversion generation. The high rate of X chromosome rearrangements is in sharp contrast with the paucity of polymorphic inversions on the X in the majority of anopheline species. This paper highlights the advances in understanding chromosome evolution in malaria vectors and discusses possible future directions in studying mechanisms and biological roles of genome rearrangements.
Collapse
Affiliation(s)
- Igor V Sharakhov
- 1 Department of Entomology, Virginia Tech, Blacksburg, Virginia 24061, USA.,2 Tomsk State University, Tomsk 634050, Russia
| | | | - Maria V Sharakhova
- 1 Department of Entomology, Virginia Tech, Blacksburg, Virginia 24061, USA.,2 Tomsk State University, Tomsk 634050, Russia
| |
Collapse
|
12
|
Jiang X, Peery A, Hall AB, Sharma A, Chen XG, Waterhouse RM, Komissarov A, Riehle MM, Shouche Y, Sharakhova MV, Lawson D, Pakpour N, Arensburger P, Davidson VLM, Eiglmeier K, Emrich S, George P, Kennedy RC, Mane SP, Maslen G, Oringanje C, Qi Y, Settlage R, Tojo M, Tubio JMC, Unger MF, Wang B, Vernick KD, Ribeiro JMC, James AA, Michel K, Riehle MA, Luckhart S, Sharakhov IV, Tu Z. Genome analysis of a major urban malaria vector mosquito, Anopheles stephensi. Genome Biol 2014; 15:459. [PMID: 25244985 PMCID: PMC4195908 DOI: 10.1186/s13059-014-0459-2] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Accepted: 09/03/2014] [Indexed: 12/24/2022] Open
Abstract
Background Anopheles stephensi is the key vector of malaria throughout the Indian subcontinent and Middle East and an emerging model for molecular and genetic studies of mosquito-parasite interactions. The type form of the species is responsible for the majority of urban malaria transmission across its range. Results Here, we report the genome sequence and annotation of the Indian strain of the type form of An. stephensi. The 221 Mb genome assembly represents more than 92% of the entire genome and was produced using a combination of 454, Illumina, and PacBio sequencing. Physical mapping assigned 62% of the genome onto chromosomes, enabling chromosome-based analysis. Comparisons between An. stephensi and An. gambiae reveal that the rate of gene order reshuffling on the X chromosome was three times higher than that on the autosomes. An. stephensi has more heterochromatin in pericentric regions but less repetitive DNA in chromosome arms than An. gambiae. We also identify a number of Y-chromosome contigs and BACs. Interspersed repeats constitute 7.1% of the assembled genome while LTR retrotransposons alone comprise more than 49% of the Y contigs. RNA-seq analyses provide new insights into mosquito innate immunity, development, and sexual dimorphism. Conclusions The genome analysis described in this manuscript provides a resource and platform for fundamental and translational research into a major urban malaria vector. Chromosome-based investigations provide unique perspectives on Anopheles chromosome evolution. RNA-seq analysis and studies of immunity genes offer new insights into mosquito biology and mosquito-parasite interactions. Electronic supplementary material The online version of this article (doi:10.1186/s13059-014-0459-2) contains supplementary material, which is available to authorized users.
Collapse
|
13
|
Kamali M, Sharakhova MV, Baricheva E, Karagodin D, Tu Z, Sharakhov IV. An integrated chromosome map of microsatellite markers and inversion breakpoints for an Asian malaria mosquito, Anopheles stephensi. ACTA ACUST UNITED AC 2011; 102:719-26. [PMID: 21810771 DOI: 10.1093/jhered/esr072] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Anopheles stephensi is one of the major vectors of malaria in the Middle East and Indo-Pakistan subcontinent. Understanding the population genetic structure of malaria mosquitoes is important for developing adequate and successful vector control strategies. Commonly used markers for inferring anopheline taxonomic and population status include microsatellites and chromosomal inversions. Knowledge about chromosomal locations of microsatellite markers with respect to polymorphic inversions could be useful for better understanding a genetic structure of natural populations. However, fragments with microsatellites used in population genetic studies are usually too short for successful labeling and hybridization with chromosomes. We designed new primers for amplification of microsatellite loci identified in the A. stephensi genome sequenced with next-generation technologies. Twelve microsatellites were mapped to polytene chromosomes from ovarian nurse cells of A. stephensi using fluorescent in situ hybridization. All microsatellites hybridized to unique locations on autosomes, and 7 of them localized to the largest arm 2R. Ten microsatellites were mapped inside the previously described polymorphic chromosomal inversions, including 4 loci located inside the widespread inversion 2Rb. We analyzed microsatellite-based population genetic data available for A. stephensi in light of our mapping results. This study demonstrates that the chromosomal position of microsatellites may affect estimates of population genetic parameters and highlights the importance of developing physical maps for nonmodel organisms.
Collapse
Affiliation(s)
- Maryam Kamali
- Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | | | | | | | | | | |
Collapse
|
14
|
Sharakhova MV, Xia A, Leman SC, Sharakhov IV. Arm-specific dynamics of chromosome evolution in malaria mosquitoes. BMC Evol Biol 2011; 11:91. [PMID: 21473772 PMCID: PMC3094232 DOI: 10.1186/1471-2148-11-91] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Accepted: 04/07/2011] [Indexed: 11/14/2022] Open
Abstract
Background The malaria mosquito species of subgenus Cellia have rich inversion polymorphisms that correlate with environmental variables. Polymorphic inversions tend to cluster on the chromosomal arms 2R and 2L but not on X, 3R and 3L in Anopheles gambiae and homologous arms in other species. However, it is unknown whether polymorphic inversions on homologous chromosomal arms of distantly related species from subgenus Cellia nonrandomly share similar sets of genes. It is also unclear if the evolutionary breakage of inversion-poor chromosomal arms is under constraints. Results To gain a better understanding of the arm-specific differences in the rates of genome rearrangements, we compared gene orders and established syntenic relationships among Anopheles gambiae, Anopheles funestus, and Anopheles stephensi. We provided evidence that polymorphic inversions on the 2R arms in these three species nonrandomly captured similar sets of genes. This nonrandom distribution of genes was not only a result of preservation of ancestral gene order but also an outcome of extensive reshuffling of gene orders that created new combinations of homologous genes within independently originated polymorphic inversions. The statistical analysis of distribution of conserved gene orders demonstrated that the autosomal arms differ in their tolerance to generating evolutionary breakpoints. The fastest evolving 2R autosomal arm was enriched with gene blocks conserved between only a pair of species. In contrast, all identified syntenic blocks were preserved on the slowly evolving 3R arm of An. gambiae and on the homologous arms of An. funestus and An. stephensi. Conclusions Our results suggest that natural selection favors specific gene combinations within polymorphic inversions when distant species are exposed to similar environmental pressures. This knowledge could be useful for the discovery of genes responsible for an association of inversion polymorphisms with phenotypic variations in multiple species. Our data support the chromosomal arm specificity in rates of gene order disruption during mosquito evolution. We conclude that the distribution of breakpoint regions is evolutionary conserved on slowly evolving arms and tends to be lineage-specific on rapidly evolving arms.
Collapse
|
15
|
Sharakhov IV, Sharakhova MV. Chromosome evolution in malaria mosquitoes. RUSS J GENET+ 2010. [DOI: 10.1134/s1022795410090255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Rafael MS, Rohde C, Bridi LC, Valente Gaiesky VLDS, Tadei WP. Salivary polytene chromosome map of Anopheles darlingi, the main vector of neotropical malaria. Am J Trop Med Hyg 2010; 83:241-9. [PMID: 20682862 PMCID: PMC2911165 DOI: 10.4269/ajtmh.2010.09-0481] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Accepted: 04/29/2010] [Indexed: 11/07/2022] Open
Abstract
New photomap of Anopheles (Nyssorhynchus) darlingi Root, 1926, is described for a population from Guajará-Mirim, State of Rondonia, Brazil. The number of sections in the previous A. darlingi reference map was maintained and new subsections were added to the five chromosome arms. Breakage points of paracentric inversions had been previously incorporated into the photomap of this species. An additional inversion is reported, called 3Lc, totaling 14 inversions in the A. darlingi chromosome arms. The proposed photomap is potentially useful for further evolutionary studies in addition to physical and in silico chromosome mapping using A. darlingi genomic and transcriptome sequences. Furthermore, in our attempt to compare sections of the 2R chromosome arm of A. darlingi with Anopheles funestus, Anopheles stephensi, and Anopheles gambiae, we found great differences in the arrangement of the polytene chromosome bands, which are consistent with the known phylogenetic divergence of these species.
Collapse
|
17
|
Genome landscape and evolutionary plasticity of chromosomes in malaria mosquitoes. PLoS One 2010; 5:e10592. [PMID: 20485676 PMCID: PMC2868863 DOI: 10.1371/journal.pone.0010592] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Accepted: 04/14/2010] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Nonrandom distribution of rearrangements is a common feature of eukaryotic chromosomes that is not well understood in terms of genome organization and evolution. In the major African malaria vector Anopheles gambiae, polymorphic inversions are highly nonuniformly distributed among five chromosomal arms and are associated with epidemiologically important adaptations. However, it is not clear whether the genomic content of the chromosomal arms is associated with inversion polymorphism and fixation rates. METHODOLOGY/PRINCIPAL FINDINGS To better understand the evolutionary dynamics of chromosomal inversions, we created a physical map for an Asian malaria mosquito, Anopheles stephensi, and compared it with the genome of An. gambiae. We also developed and deployed novel Bayesian statistical models to analyze genome landscapes in individual chromosomal arms An. gambiae. Here, we demonstrate that, despite the paucity of inversion polymorphisms on the X chromosome, this chromosome has the fastest rate of inversion fixation and the highest density of transposable elements, simple DNA repeats, and GC content. The highly polymorphic and rapidly evolving autosomal 2R arm had overrepresentation of genes involved in cellular response to stress supporting the role of natural selection in maintaining adaptive polymorphic inversions. In addition, the 2R arm had the highest density of regions involved in segmental duplications that clustered in the breakpoint-rich zone of the arm. In contrast, the slower evolving 2L, 3R, and 3L, arms were enriched with matrix-attachment regions that potentially contribute to chromosome stability in the cell nucleus. CONCLUSIONS/SIGNIFICANCE These results highlight fundamental differences in evolutionary dynamics of the sex chromosome and autosomes and revealed the strong association between characteristics of the genome landscape and rates of chromosomal evolution. We conclude that a unique combination of various classes of genes and repetitive DNA in each arm, rather than a single type of repetitive element, is likely responsible for arm-specific rates of rearrangements.
Collapse
|
18
|
Alam MT, Bora H, Das MK, Sharma YD. The type and mysorensis forms of the Anopheles stephensi (Diptera: Culicidae) in India exhibit identical ribosomal DNA ITS2 and domain-3 sequences. Parasitol Res 2008; 103:75-80. [PMID: 18309520 DOI: 10.1007/s00436-008-0930-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2007] [Accepted: 02/07/2008] [Indexed: 11/25/2022]
Abstract
Anopheles (Cellia) stephensi Liston 1901 is one of the major malaria vectors in the Indian subcontinent, Iran, and the Middle East. Three races in this species, namely A. stephensi stephensi (type form), A. stephensi variety mysorensis, and A. stephensi intermediate form, have earlier been reported by several investigators. We describe here the sequencing of the ribosomal DNA internal transcribed spacer 2 (ITS2) and domain-3 (D3) loci of the A. stephensi type and variety mysorensis forms. We also sequenced field-collected adult specimens of this mosquito from three different regions of India. Both forms of A. stephensi showed identical ITS2 and D3 sequences. We did not find any intraspecies sequence variation among the 70 specimens sequenced in this study. In contrast to the eight ITS2 haplotypes observed among Iranian A. stephensi population, we found only one ITS2 haplotype in India. This is the first time to our knowledge that the sequence of the D3 locus of A. stephensi is being reported here. In conclusion, the type and variety mysorensis forms of A. stephensi exhibit identical nucleotide sequences at their ITS2 and D3 loci.
Collapse
Affiliation(s)
- Mohammad Tauqeer Alam
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | | | | | | |
Collapse
|
19
|
Sharakhova MV, Xia A, McAlister SI, Sharakhov IV. A standard cytogenetic photomap for the mosquito Anopheles stephensi (Diptera: Culicidae): application for physical mapping. JOURNAL OF MEDICAL ENTOMOLOGY 2006; 43:861-6. [PMID: 17017220 DOI: 10.1603/0022-2585(2006)43[861:ascpft]2.0.co;2] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
To facilitate physical genome mapping, we have developed a new cytogenetic photomap for Anopheles stephensi (Liston) (Diptera: Culicidae), an important malaria vector in Asia. The high-resolution images of the ovarian polytene chromosomes have been straightened and divided by numbered divisions and lettered subdivisions. The exact chromosomal locations of eight DNA probes have been determined by fluorescent in situ hybridization. Using the DNA sequences, we have established correspondence between chromosomal arms among An. stephensi, Anopheles gambiae (Patton), and Anopheles funestus (Giles). The results support previous cytogenetic observations of arm translocations taking place during diversification of the species. To make the cytogenetic map useful for population genetics studies, we have indicated the chromosomal positions for the breakpoints of 19 polymorphic inversions.
Collapse
|
20
|
Djadid ND, Gholizadeh S, Aghajari M, Zehi AH, Raeisi A, Zakeri S. Genetic analysis of rDNA-ITS2 and RAPD loci in field populations of the malaria vector, Anopheles stephensi (Diptera: Culicidae): implications for the control program in Iran. Acta Trop 2006; 97:65-74. [PMID: 16188214 DOI: 10.1016/j.actatropica.2005.08.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2004] [Revised: 08/21/2005] [Accepted: 08/25/2005] [Indexed: 12/01/2022]
Abstract
Anopheles stephensi is one of the most important malaria vectors in the Middle-East, the Indian subcontinent, the Far-East and is the main malaria vector in south of Iran. This vector is thought to be a single but polytypic species, despite its enormous geographical range. To examine this hypothesis, we analyzed the rDNA-ITS2 and RAPD loci in different populations of An. stephensi from Iran. rDNA-ITS2 region in all sequenced specimens of An. stephensi contained a (CA)7 microsatellite sequence. Construction of phylogenetic tree based on rDNA-ITS2 sequences revealed that there only is a minor polymorphism between the different populations, despite their vast geographical distances. RAPD-PCR could differentiate rural and urban populations of An. stephensi, but it is unclear whether these two samples represent mysorensis and the type form. Further characterization of interested RAPD fragments by cloning; have shown the nature of inverted repeats and the presence of microsatellite region (GT) in both ends near to inverted repeat sequences of primers. These results showed that An. stephensi in Iran could be considered a single species with different biological and ecological forms in different zoogeographical zones. Further studies are needed to demonstrate the relation between RAPD and microsatellite sequences and the differences seen in the field for this species. This data will serve as first report on the sequence of rDNA-ITS2 and a microsatellite-containing RAPD region, which could be used for species-specific diagnosis and differentiation of urban and rural populations in An. stephensi.
Collapse
Affiliation(s)
- Navid Dinparast Djadid
- Malaria Research Group, Biotechnology Department, Pasteur Institute of Iran, Tehran, Iran.
| | | | | | | | | | | |
Collapse
|
21
|
. AM. Climatic Changes and Natural Population of Anopheles Species in Quetta
Valley. JOURNAL OF MEDICAL SCIENCES 2005. [DOI: 10.3923/jms.2005.298.302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
22
|
Verardi A, Donnelly MJ, Rowland M, Townson H. Isolation and characterization of microsatellite loci in the mosquito Anopheles stephensi Liston (Diptera: Culicidae). ACTA ACUST UNITED AC 2002. [DOI: 10.1046/j.1471-8286.2002.00288.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
23
|
Abstract
Most species of the Drosophila genus and other Diptera are polymorphic for paracentric inversions. A common observation is that successful inversions are of intermediate size. We test here the hypothesis that the selected property is the recombination length of inversions, not their physical length. If so, physical length of successful inversions should be negatively correlated with recombination rate across species. This prediction was tested by a comprehensive statistical analysis of inversion size and recombination map length in 12 Diptera species for which appropriate data are available. We found that (1) there is a wide variation in recombination map length among species; (2) physical length of successful inversions varies greatly among species and is inversely correlated with the species recombination map length; and (3) neither the among-species variation in inversion length nor the correlation are observed in unsuccessful inversions. The clear differences between successful and unsuccessful inversions point to natural selection as the most likely explanation for our results. Presumably the selective advantage of an inversion increases with its length, but so does its detrimental effect on fertility due to double crossovers. Our analysis provides the strongest and most extensive evidence in favor of the notion that the adaptive value of inversions stems from their effect on recombination.
Collapse
Affiliation(s)
- M Cáceres
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.
| | | | | |
Collapse
|
24
|
Anyanwu GI, Davies DH, Molyneux DH, Phillips A, Milligan PJ. Cuticular hydrocarbon discrimination/variation among strains of the mosquito, Anopheles (Cellia) stephensi Liston. ANNALS OF TROPICAL MEDICINE AND PARASITOLOGY 1993; 87:269-75. [PMID: 8257238 DOI: 10.1080/00034983.1993.11812766] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Cuticular lipids were removed from adult female Anopheles stephensi Liston and the hydrocarbons present were separated and quantified by gas chromatography. Comparison was made between the hydrocarbons of four An. stephensi strains: Russ, sensitive to DDT and malathion and originally isolated in the former U.S.S.R.; Beech, a DDT-resistant Indian strain with high sensitivity to Plasmodium species; St Mal, a strain from Pakistan shown to be resistant to malathion; and Iraq, a DDT-susceptible strain from Iraq. Discriminant analysis indicated that the four groups were distinct and that, on average, 78% of the population could be separated on the basis of the quantities of some of the cuticular hydrocarbons. The profiles of Beech and Russ or Russ and St Mal could be separated in 98% of the cases. There was reduced segregation between the profiles of St. Mal and Iraq, suggesting greater similarity in the hydrocarbons of these two strains. The usefulness of cuticular hydrocarbon in determining species relationships is discussed.
Collapse
Affiliation(s)
- G I Anyanwu
- Department of Biological Sciences, University of Salford, U.K
| | | | | | | | | |
Collapse
|
25
|
Use of fluorescein-labelled lectin binding of salivary glands to distinguish between Anopheles stephensi and An. albimanus species and strains. ACTA ACUST UNITED AC 1991. [DOI: 10.1016/0020-1790(91)90118-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|