1
|
Wan W, Zhao R, Chen T, Wang L, Zhang X, Li H, Wang X, Bie T. Rapid development of wheat-Dasypyrum villosum compensating translocations resistant to powdery mildew using a triple marker strategy conducted on a large ph1b-induced population. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:148. [PMID: 37294325 DOI: 10.1007/s00122-023-04393-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/29/2023] [Indexed: 06/10/2023]
Abstract
KEY MESSAGE Twenty-two compensating wheat-Dasypyrum villosum translocations carrying the powdery mildew resistance gene PmV were developed using a triple marker selection strategy in a large homozygous ph1bph1b population. Powdery mildew, caused by Blumeria graminis f. sp. tritici (Bgt), is a destructive wheat disease in China. Currently, nearly all resistant varieties grown in the middle and lower reaches of the Yangtze River carry Pm21 which is present in a wheat-Dasypyrum villosum T6V#2S·6AL translocation. Its widespread use poses a strong risk of loss of effectiveness if the pathogen were to change. PmV, a Pm21 homolog carried by a wheat-D. villosum T6V#4S·6DL translocation, is also resistant to powdery mildew but is less transmittable and exploited in cultivars. To utilize PmV more effectively, a new recombinant translocation T6V#4S-6V#2S·6AL carrying PmV with a higher transmission rate was used as a basic material for inducing smaller alien translocations. A locally adapted ph1b-carrying line, Yangmai 23-ph1b, was crossed with T6V#4S-6V#2S·6AL to generate a homozygous ph1bph1b population of 6300 F3 individuals. A modified triple marker strategy based on three co-dominant markers including the functional marker MBH1 for PmV in combination with distal and proximal markers 6VS-GX4 and 6VS-GX17, respectively, was used to screen for new recombinants efficiently. Forty-eight compensating translocations were identified, 22 of which carried PmV. Two translocation lines, Dv6T25 with the shortest distal segment carrying PmV and Dv6T31 with the shortest proximal segment carrying PmV were identified, both expressed normal transmission and therefore could promote PmV in wheat breeding. This work exemplifies a model for rapid development of wheat-alien compensating translocations.
Collapse
Affiliation(s)
- Wentao Wan
- Key Laboratory of Wheat Biology and Genetic Improvement on Low and Middle Yangtze River Valley Wheat Region (Ministry of Agriculture), Yangzhou Academy of Agricultural Sciences, Yangzhou, 225007, Jiangsu, China
| | - Renhui Zhao
- Key Laboratory of Wheat Biology and Genetic Improvement on Low and Middle Yangtze River Valley Wheat Region (Ministry of Agriculture), Yangzhou Academy of Agricultural Sciences, Yangzhou, 225007, Jiangsu, China.
| | - Tiantian Chen
- Key Laboratory of Wheat Biology and Genetic Improvement on Low and Middle Yangtze River Valley Wheat Region (Ministry of Agriculture), Yangzhou Academy of Agricultural Sciences, Yangzhou, 225007, Jiangsu, China
| | - Ling Wang
- Key Laboratory of Wheat Biology and Genetic Improvement on Low and Middle Yangtze River Valley Wheat Region (Ministry of Agriculture), Yangzhou Academy of Agricultural Sciences, Yangzhou, 225007, Jiangsu, China
| | - Xu Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Haifeng Li
- Yangzhou Polytechnic College, Yangzhou, 225007, Jiangsu, China
| | - Xiue Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Tongde Bie
- Key Laboratory of Wheat Biology and Genetic Improvement on Low and Middle Yangtze River Valley Wheat Region (Ministry of Agriculture), Yangzhou Academy of Agricultural Sciences, Yangzhou, 225007, Jiangsu, China.
| |
Collapse
|
2
|
Li G, Chen Q, Jiang W, Zhang A, Yang E, Yang Z. Molecular and Cytogenetic Identification of Wheat- Thinopyrum intermedium Double Substitution Line-Derived Progenies for Stripe Rust Resistance. PLANTS (BASEL, SWITZERLAND) 2022; 12:28. [PMID: 36616156 PMCID: PMC9823681 DOI: 10.3390/plants12010028] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/23/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Thinopyrum intermedium (2n = 6x = 42, JJJSJSStSt) has been hybridized extensively with common wheat and proven to be a valuable germplasm source for improving disease resistance and yield potential of wheat. A novel disease-resistant wheat-Th. intermedium double substitution line X479, carrying 1St(1B) and 4St-4JS (4B), was identified using multi-color non-denaturing fluorescence in situ hybridization (ND-FISH). With the aim of transferring Thinopyrum-specific chromatin to wheat, a total of 573 plants from F2 and F3 progenies of X479 crossed with wheat cultivar MY11 were developed and characterized using sequential ND-FISH with multiple probes. Fifteen types of wheat-Thinopyrum translocation chromosomes were preferentially transmitted in the progenies, and the homozygous wheat-1St, and wheat-4JSL translocation lines were identified using ND-FISH, Oligo-FISH painting and CENH3 immunostaining. The wheat-4JSL translocation lines exhibited high levels of resistance to stripe rust prevalent races in field screening. The gene for stripe rust resistance was found to be physically located on FL0-0.60 of the 4JSL, using deletion lines and specific DNA markers. The new wheat-Th. intermedium translocation lines can be exploited as useful germplasms for wheat improvement.
Collapse
Affiliation(s)
- Guangrong Li
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Qiheng Chen
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Wenxi Jiang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Ahui Zhang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Ennian Yang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Zujun Yang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| |
Collapse
|
3
|
Yu Z, Wang H, Yang E, Li G, Yang Z. Precise Identification of Chromosome Constitution and Rearrangements in Wheat–Thinopyrum intermedium Derivatives by ND-FISH and Oligo-FISH Painting. PLANTS 2022; 11:plants11162109. [PMID: 36015412 PMCID: PMC9415406 DOI: 10.3390/plants11162109] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 11/26/2022]
Abstract
Thinopyrum intermedium possesses many desirable agronomic traits that make it a valuable genetic source for wheat improvement. The precise identification of individual chromosomes of allohexaploid Th. intermedium is a challenge due to its three sub-genomic constitutions with complex evolutionary ancestries. The non-denaturing fluorescent in situ hybridization (ND-FISH) using tandem-repeat oligos, including Oligo-B11 and Oligo-pDb12H, effectively distinguished the St, J and JS genomes, while Oligo-FISH painting, based on seven oligonucleotide pools derived from collinear regions between barley (Hordeum vulgare L.) and wheat (Triticum aestivum L.), was able to identify each linkage group of the Th. intermedium chromosomes. We subsequently established the first karyotype of Th. intermedium with individual chromosome recognition using sequential ND-FISH and Oligo-FISH painting. The chromosome constitutions of 14 wheat–Th. intermedium partial amphiploids and addition lines were characterized. Distinct intergenomic chromosome rearrangements were revealed among Th. intermedium chromosomes in these amphiploids and addition lines. The precisely defined karyotypes of these wheat–Th. intermedium derived lines may be helpful for further study on chromosome evolution, chromatin introgression and wheat breeding programs.
Collapse
Affiliation(s)
- Zhihui Yu
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Hongjin Wang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Ennian Yang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Guangrong Li
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
- Correspondence: (G.L.); (Z.Y.)
| | - Zujun Yang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
- Correspondence: (G.L.); (Z.Y.)
| |
Collapse
|
4
|
Li J, Li J, Cheng X, Zhao L, Yang Z, Wu J, Yang Q, Chen X, Zhao J. Molecular Cytogenetic and Agronomic Characterization of the Similarities and Differences Between Wheat- Leymus mollis Trin. and Wheat- Psathyrostachys huashanica Keng 3Ns (3D) Substitution Lines. FRONTIERS IN PLANT SCIENCE 2021; 12:644896. [PMID: 33897735 PMCID: PMC8061751 DOI: 10.3389/fpls.2021.644896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/23/2021] [Indexed: 05/12/2023]
Abstract
Psathyrostachys huashanica Keng (2n = 2x = 14, NsNs) and Leymus mollis Trin. (2n = 4x = 28, NsNsXmXm) are valuable resources for wheat breeding improvement as they share the Ns genome, which contains diverse resistance genes. To explore the behaviors and traits of Ns chromosomes from the two species in wheat background, a series of wheat-P. huashanica and wheat-L. mollis substitution lines were developed. In the present study, line DH109 (F7 progeny of wheat-P. huashanica heptaploid line H8911 × durum wheat Trs-372) and line DM131 (F8 progeny of wheat-L. mollis octoploid line M842 × durum wheat Trs-372) were selected. Cytological observation combined with genomic in situ hybridization experiments showed that DH109 and DM131 each had 20 pairs of wheat chromosomes plus a pair of alien chromosomes (Ns chromosome), and the pair of alien chromosomes showed stable inheritance. Multiple molecular markers and wheat 55K SNP array demonstrated that a pair of wheat 3D chromosome in DH109 and in DM131 was substituted by a pair of P. huashanica 3Ns chromosome and a pair of L. mollis 3Ns chromosome, respectively. Fluorescence in situ hybridization (FISH) analysis confirmed that wheat 3D chromosomes were absent from DH109 and DM131, and chromosomal FISH karyotypes of wheat 3D, P. huashanica 3Ns, and L. mollis 3Ns were different. Moreover, the two lines had many differences in agronomic traits. Comparing with their wheat parents, DH109 expressed superior resistance to powdery mildew and fusarium head blight, whereas DM131 had powdery mildew resistance, longer spike, and more tiller number. Therefore, Ns genome from P. huashanica and L. mollis might have some different effects. The two novel wheat-alien substitution lines provide new ideas and resources for disease resistance and high-yield breeding on further utilization of 3Ns chromosomes of P. huashanica or L. mollis.
Collapse
Affiliation(s)
- Jiachuang Li
- Shaanxi Key Laboratory of Plant Genetic Engineering Breeding, College of Agronomy, Northwest A&F University, Xianyang, China
| | - Jiaojiao Li
- Shaanxi Key Laboratory of Plant Genetic Engineering Breeding, College of Agronomy, Northwest A&F University, Xianyang, China
| | - Xueni Cheng
- College of Life Sciences, Northwest A&F University, Xianyang, China
| | - Li Zhao
- Shaanxi Key Laboratory of Plant Genetic Engineering Breeding, College of Agronomy, Northwest A&F University, Xianyang, China
| | - Zujun Yang
- School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Jun Wu
- Shaanxi Key Laboratory of Plant Genetic Engineering Breeding, College of Agronomy, Northwest A&F University, Xianyang, China
| | - Qunhui Yang
- Shaanxi Key Laboratory of Plant Genetic Engineering Breeding, College of Agronomy, Northwest A&F University, Xianyang, China
| | - Xinhong Chen
- Shaanxi Key Laboratory of Plant Genetic Engineering Breeding, College of Agronomy, Northwest A&F University, Xianyang, China
- *Correspondence: Xinhong Chen,
| | - Jixin Zhao
- College of Agronomy, Northwest A&F University, Xianyang, China
- Jixin Zhao,
| |
Collapse
|
5
|
Efremova TT, Chumanova EV, Trubacheeva NV, Pershina LA. Compensation Ability between the Chromosomes of Homoeologous Group 7 of Triticum aestivum L. and Hordeum marinum ssp. gussoneanum Hudson (2n = 28) and Analysis of the Transmission Frequency of Alien 7H1Lmar Chromosome through Gametes in the Progeny of Wheat–Barley Substitution Lines. RUSS J GENET+ 2018. [DOI: 10.1134/s1022795418090065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
|
7
|
Pershina LA, Belova LI, Trubacheeva NV, Osadсhaya TS, Shumny VK, Belan IA, Rosseeva LP, Nemchenko VV, Abakumov SN. Alloplasmic recombinant lines (H. vulgare)-T. aestivum with 1RS.1BL translocation: initial genotypes for production of common wheat varieties. Vavilovskii Zhurnal Genet Selektsii 2018. [DOI: 10.18699/vj18.393] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Alloplasmic lines are formed when the cytoplasm of one species is replaced by the cytoplasm of another as a result of repeated recurrent crosses of wide hybrids with the paternal genotype. Since the cytoplasm replacement results in new intergenomic interactions between a nucleus and cytoplasm leading to variability of plant characteristics, alloplasmic lines with restored fertility can be an additional source of biodiversity of cultivated plants. Earlier, recombinant alloplasmic lines (H. vulgare)-T. aestivumdesignated as L-17(1)–L-17(37) were formed from a plant with partially restored fertility of the BC3 generation of barley-wheat hybridH. vulgare(cv. Nepolegayushchii) ×T. aestivum(cv. Saratovskaya 29). This male-sterile hybrid was consistently backcrossed with wheat varieties Mironovskaya 808 (twice) and Saratovskaya 29, and Mironovskaya 808 had a positive impact on the restoration of fertility. This paper presents the results of investigation into a group of recombinant alloplasmic lines (L-17F4), as well as into doubled haploids (DH) lines – alloplasmic DH-17-lines obtained from anther culture of alloplasmic lines (L-17F2). The most productive of these lines were used as initial breeding genotypes. Hybrid form Lutescens 311/00-22 developed from the crossing of the alloplasmic DH(1)-17 line (as maternal genotype) with euplasmic line Com37 (CIMMYT), the source of the 1RS.1BL wheat-rye translocation, proved to be successful for breeding. The presence of the 1RS.1BL translocation in the genome of the Lutescens 311/00-22 form and the L-311(1)–L-311(6) alloplasmic lines isolated from it did not lead to a decrease of fertility or sterility in the plants. This indicates that the chromosome of the 1BS wheat does not carry the gene(s) that determine the restoration of fertility in the studied (H. vulgare)-T. aestivumalloplasmic lines. Alloplasmic lines L-311(1)–L-311(6) showed their advantage in comparison with the standard varieties for resistance to leaf and stem rust, yield, and grain quality. The breeding tests performed at Omsk Agricultural Scientific Center, Agrocomplex “Kurgansemena”, Federal State Unitary Enterprise “Ishimskoe” (Tyumen Region), using alloplasmic lines L-311(5), L-311(4) and L-311(6) resulted in varieties of spring common wheat Sigma, Uralosibirskaya 2 and Ishimskaya 11, respectively.
Collapse
|
8
|
Lang T, La S, Li B, Yu Z, Chen Q, Li J, Yang E, Li G, Yang Z. Precise identification of wheat - Thinopyrum intermedium translocation chromosomes carrying resistance to wheat stripe rust in line Z4 and its derived progenies. Genome 2018; 61:177-185. [PMID: 29470932 DOI: 10.1139/gen-2017-0229] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The wheat - Thinopyrum intermedium derived line Z4 has displayed novel and effective stripe rust resistance for over 40 years. This study aimed to precisely identify the chromosome constitution of line Z4 and determine the stripe rust resistance contribution using multicolor fluorescent in situ hybridization (FISH) and molecular marker analysis. The results indicated that the Z4 line (2n = 44) contained two pairs of non-Robertsonian translocations without the 3A chromosomes of wheat. FISH karyotypes of F3 progenies derived from crosses between Z4 and MY11 indicated that the transmission of the translocated chromosomes appeared normal and the number of wheat chromosomes 3A and 3D frequently varied. The FISH signal distribution of a new repetitive probe, named Oligo-3A1, confirmed the physical breakage points on chromosome 3AL incorporated into translocated chromosomes. PLUG markers revealed the breakage points on chromosomes 3A, 7JS, and 3D invloved in the translocated chromosomes, and they were designated as T3DS-3AS.3AL-7JSS and T3AL-7JSS.7JSL. Stripe rust resistances surveys indicated that the proximal region of 7JSS or 7JSL may confer the resistance at the adult plant stage. The precise characterization of the chromosome complements of wheat - Th. intermedium Z4 and derived progenies has demonstrated the importance of combining cytogenetic and molecular approaches in the genomics era for further wheat genetic manipulation and breeding purposes.
Collapse
Affiliation(s)
- Tao Lang
- a School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Shixiao La
- a School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Bin Li
- a School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Zhihui Yu
- a School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Qiheng Chen
- a School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Jianbo Li
- a School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Ennian Yang
- b Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, Sichuan, China
| | - Guangrong Li
- a School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Zujun Yang
- a School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| |
Collapse
|
9
|
Tan J, Wang J, Luo L, Yu C, Xu T, Wu Y, Cheng T, Wang J, Pan H, Zhang Q. Genetic relationships and evolution of old Chinese garden roses based on SSRs and chromosome diversity. Sci Rep 2017; 7:15437. [PMID: 29133839 PMCID: PMC5684293 DOI: 10.1038/s41598-017-15815-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 11/02/2017] [Indexed: 11/09/2022] Open
Abstract
Old Chinese garden roses are the foundation of the modern rose, which is one of the best-selling ornamental plants. However, the horticultural grouping and evolution of old Chinese garden roses are unclear. Simple sequence repeat (SSR) markers were employed to survey genetic diversity in old Chinese garden roses and genetic differentiation was estimated among different rose groups. Fluorescence in situ hybridization was used to study the physical localization of 5 S rDNA genes and a karyotype analysis was performed. The SSR data suggest that old Chinese garden roses could be divided into Old Blush group, Odorata group and Ancient hybrid China group. The Old Blush group had the most primitive karyotype. The Ancient hybrid China group and modern rose had the most evolved karyotypes and the highest genetic diversity. During the evolution of rose cultivars, 5 S rDNA increased in number, partially weakened in signal intensity and exhibited variation in distance from the centromere. In conclusion, rose cultivars evolved from the Old Blush Group to the Odorata group, the Ancient Hybrid China group and the modern rose. This work provides a basis for the collection, identification, conservation and innovation of rose germplasm resources.
Collapse
Affiliation(s)
- Jiongrui Tan
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education and College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Jing Wang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education and College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Le Luo
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education and College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Chao Yu
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education and College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Tingliang Xu
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education and College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Yuying Wu
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education and College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Tangren Cheng
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education and College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Jia Wang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education and College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Huitang Pan
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education and College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China.
| | - Qixiang Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education and College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
10
|
Chumanova EV, Efremova TT, Trubacheeva NV, Arbuzova VS, Rosseeva LP. Chromosome composition of wheat-rye lines and the influence of rye chromosomes on disease resistance and agronomic traits. RUSS J GENET+ 2014. [DOI: 10.1134/s1022795414110039] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Ma YZ, Tomita M. Thinopyrum 7Ai-1-derived small chromatin with Barley Yellow Dwarf Virus (BYDV) resistance gene integrated into the wheat genome with retrotransposon. CYTOL GENET+ 2013. [DOI: 10.3103/s0095452713010064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Hohmann U, Busch W, Badaeva K, Friebe B, Gill BS. Molecular cytogenetic analysis of Agropyron chromatin specifying resistance to barley yellow dwarf virus in wheat. Genome 2012; 39:336-47. [PMID: 18469897 DOI: 10.1139/g96-044] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nine families of bread wheat (TC5, TC6, TC7, TC8, TC9, TC10, TC14, 5395-(243AA), and 5395) with resistance to barley yellow dwarf virus and containing putative translocations between wheat and a group 7 chromosome of Agropyron intermedium (L1 disomic addition line, 7Ai#1 chromosome) induced by homoeologous pairing or tissue culture were analyzed. C-banding, genomic in situ hybridization (GISH), and restriction fragment length polymorphism (RFLP) in combination with repetitive Agropyron-specific sequences and deletion mapping in wheat were used to determine the relative locations of the translocation breakpoints and the size of the transferred alien chromatin segments in hexaploid wheat-Agropyron translocation lines. All homoeologous compensating lines had complete 7Ai#1 or translocated 7Ai#1-7D chromosomes that substitute for chromosome 7D. Two complete 7Ai#1 (7D) substitution lines (5395-(243AA) and 5395), one T1BS-7Ai#1S∙7Ai#1L addition line (TC7), and two different translocation types, T7DS-7Ai#1S∙7Ai#1L (TC5, TC6, TC8, TC9, and TC10) and T7DS∙7DL-7Ai#1L (TC14), substituting for chromosome 7D were identified. The substitution line 5395-(243AA) had a reciprocal T1BS∙1BL-4BS/T1BL-4BS∙4BL translocation. TC14 has a 6G (6B) substitution. The RFLP data from deletion mapping studies in wheat using 37 group 7 clones provided 10 molecular tagged chromosome regions for homoeologous and syntenic group 7 wheat or Agropyron chromosomes. Together with GISH we identified three different sizes of the transferred Agropyron chromosome segments with approximate breakpoints at fraction length (FL) 0.33 in the short arm of chromosome T7DS-7Ai#1S∙7Ai#1L (TC5, TC6, TC8, TC9, and TC10) and another at FL 0.37 of the nonhomoeologous translocated chromosome T1BS-7Ai#1S∙7Ai#1L (TC7). One breakpoint was identified in the long arm of chromosome T7DS∙7DL-7Ai#1L (TC14) at FL 0.56. We detected some nonreciprocal translocations for the most proximal region of the chromosome arm of 7DL, which resulted in small duplications. Key words : C-banding, genomic in situ hybridization (GISH), physical mapping, translocation mapping, RFLP analysis.
Collapse
|
13
|
Arbuzova VS, Badaeva ED, Efremova TT, Osadchaya TS, Trubacheeva NV, Dobrovolskaya OB. A cytogenetic study of the blue-grain line of the common wheat cultivar Saratovskaya 29. RUSS J GENET+ 2012. [DOI: 10.1134/s102279541205002x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Genetic improvement of Citrus fruits: New somatic hybrids from Citrus sinensis (L.) Osb. and Citrus limon (L.) Burm. F. Food Res Int 2012. [DOI: 10.1016/j.foodres.2012.04.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
15
|
Sharma SK, Kumaria S, Tandon P, Rama Rao S. Comparative karyo-morphology of the two endemic and critically-endangered species of Mantisia (Zingiberaceae). THE NUCLEUS 2012. [DOI: 10.1007/s13237-012-0053-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
16
|
Da-Silva PR, Milach SCK, Tisian LM. Transferability and utility of white oat (Avena sativa) microsatellite markers for genetic studies in black oat (Avena strigosa). GENETICS AND MOLECULAR RESEARCH 2011; 10:2916-23. [PMID: 22179963 DOI: 10.4238/2011.november.29.2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Preservation and use of wild oat species germplasm are essential for further improvement of cultivated oats. We analyzed the transferability and utility of cultivated (white) oat Avena sativa (AACCDD genome) microsatellite markers for genetic studies of black oat A. strigosa (A(s)A(s) genome) genotypes. The DNA of each black oat genotype was extracted from young leaves and amplified by PCR using 24 microsatellite primers developed from white oat. The PCR products were separated on 3% agarose gel. Eighteen microsatellite primer pairs amplified consistent products and 15 of these were polymorphic in A. strigosa, demonstrating a high degree of transferability. Microsatellite primer pairs AM3, AM4, AM21, AM23, AM30, and AM35 consistently amplified alleles only in A. sativa, which indicates that they are putative loci for either the C or D genomes of Avena. Using the data generated by the 15 polymorphic primer pairs, it was possible to separate 40 genotypes of the 44 that we studied. The four genotypes that could not be separated are probably replicates. We conclude that A. sativa microsatellites have a high transferability index and are a valuable resource for genetic studies and characterization of A. strigosa genotypes.
Collapse
Affiliation(s)
- P R Da-Silva
- Departamento de Ciências Biológicas, Universidade Estadual do Centro-Oeste, Guarapuava, PR, Brasil
| | | | | |
Collapse
|
17
|
Trubacheeva NV, Rosseeva LP, Belan IA, Osadchaya TS, Kravtsova LA, Kolmakov YV, Blokhina NP, Pershina LA. Characteristics of common wheat cultivars of West Siberia carrying the wheat-rye 1RS.1BL translocation. RUSS J GENET+ 2011. [DOI: 10.1134/s1022795411010157] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Szakács É, Kruppa K, Molnár I, Molnár-Láng M. Induction of wheat/barley translocations by irradiation and their detection using fluorescence in situ hybridization. ACTA ACUST UNITED AC 2010. [DOI: 10.1556/aagr.58.2010.3.2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The aim of the present study was to test the efficiency of gamma irradiation in inducing translocations between wheat and barley genomes using addition lines. The Martonvásári 9 kr1-Igri disomic addition set, previously produced in Martonvásár, was irradiated with gamma rays. The pattern of irradiation-induced intergenomic chromosome rearrangements was analysed in the mutagenized (M0) generation by genomic
in situ
hybridization (GISH). Centric fusions and a wide variety of reciprocal, terminal and interstitial translocations were frequently induced. The intergeneric translocations produced here are expected to be stabilized in later backcross progenies as a set of introgression lines carrying few but distinct rearrangements.
Collapse
Affiliation(s)
- É. Szakács
- 1 Agricultural Research Institute of the Hungarian Academy of Sciences Martonvásár Hungary
| | - K. Kruppa
- 1 Agricultural Research Institute of the Hungarian Academy of Sciences Martonvásár Hungary
| | - I. Molnár
- 1 Agricultural Research Institute of the Hungarian Academy of Sciences Martonvásár Hungary
| | - M. Molnár-Láng
- 1 Agricultural Research Institute of the Hungarian Academy of Sciences Martonvásár Hungary
| |
Collapse
|
19
|
Szakács É, Molnár-Láng M. Identification of new winter wheat – winter barley addition lines (6HS and 7H) using fluorescence in situ hybridization and the stability of the whole ‘Martonvásári 9 kr1’ – ‘Igri’ addition set. Genome 2010; 53:35-44. [DOI: 10.1139/g09-085] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A previous paper reported the development of disomic addition lines (2H, 3H, 4H, and 1HS isochromosomic) from hybrids between the winter wheat ‘Martonvásári 9 kr1’ and the two-rowed winter barley cultivar ‘Igri’. The present paper describes the isolation of two new additions, the 7H disomic and 6HS ditelosomic additions, using fluorescence in situ hybridization with the repetitive DNA probes Afa-family and HvT01. The identification of the barley chromosomes in the wheat genome was confirmed with simple sequence repeat markers. The morphological characterization of the new addition lines is also discussed. Studies of the genetic stability of the whole set (2H, 3H, 4H, 7H, 1HS iso, 6HS) of ‘Martonvásári 9 kr1’ – ‘Igri’ additions revealed that the most stable disomic additions are 2H and 3H and the most unstable line is the 1HS isochromosomic addition.
Collapse
Affiliation(s)
- É. Szakács
- Agricultural Research Institute of the Hungarian Academy of Sciences, H-2462 Martonvásár, P.O. Box 19, Hungary
| | - M. Molnár-Láng
- Agricultural Research Institute of the Hungarian Academy of Sciences, H-2462 Martonvásár, P.O. Box 19, Hungary
| |
Collapse
|
20
|
Ohmido N, Fukui K, Kinoshita T. Recent advances in rice genome and chromosome structure research by fluorescence in situ hybridization (FISH). PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2010; 86:103-16. [PMID: 20154468 PMCID: PMC3417561 DOI: 10.2183/pjab.86.103] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Accepted: 01/04/2010] [Indexed: 05/28/2023]
Abstract
Fluorescence in situ hybridization (FISH) is an effective method for the physical mapping of genes and repetitive DNA sequences on chromosomes. Physical mapping of unique nucleotide sequences on specific rice chromosome regions was performed using a combination of chromosome identification and highly sensitive FISH. Increases in the detection sensitivity of smaller DNA sequences and improvements in spatial resolution have ushered in a new phase in FISH technology. Thus, it is now possible to perform in situ hybridization on somatic chromosomes, pachytene chromosomes, and even on extended DNA fibers (EDFs). Pachytene-FISH allows the integration of genetic linkage maps and quantitative chromosome maps. Visualization methods using FISH can reveal the spatial organization of the centromere, heterochromatin/euchromatin, and the terminal structures of rice chromosomes. Furthermore, EDF-FISH and the DNA combing technique can resolve a spatial distance of 1 kb between adjacent DNA sequences, and the detection of even a 300-bp target is now feasible. The copy numbers of various repetitive sequences and the sizes of various DNA molecules were quantitatively measured using the molecular combing technique. This review describes the significance of these advances in molecular cytology in rice and discusses future applications in plant studies using visualization techniques.
Collapse
Affiliation(s)
- Nobuko Ohmido
- Graduate School of Human Development and Environment, Kobe University, Kobe, Japan.
| | | | | |
Collapse
|
21
|
Trubacheeva NV, Efremova TT, Badaeva ED, Kravtsova LA, Belova LI, Devyatkina EP, Pershina LA. Production of alloplasmic and euplasmic wheat-barley ditelosomic substitution lines 7H1Lmar(7D) and analysis of the 18S/5S mitochondrial repeat in these lines. RUSS J GENET+ 2009. [DOI: 10.1134/s1022795409120059] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
|
23
|
|
24
|
Komeda N, Chaudhary HK, Suzuki G, Mukai Y. Cytological evidence for chromosome elimination in wheat x Imperata cylindrica hybrids. Genes Genet Syst 2007; 82:241-8. [PMID: 17660694 DOI: 10.1266/ggs.82.241] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Haploid induction of wheat by crossing with Imperata cylindrica pollen is an efficient method for doubled haploid breeding. We investigated the process of wheat haploid formation after crossing with I. cylindrica. Our cytological observations of zygotes showed the successful fertilization of parental gametes. Wheat haploids were formed by complete elimination of I. cylindrica chromosomes. Missegregation of I. cylindrica chromosomes was observed in the first cell division of zygote. At metaphase I. cylindrica chromosomes did not congress onto the equatorial plate. The sister chromosomes did not move toward the poles during anaphase, though their cohesion was released normally. I. cylindrica chromosomes were still in the cytoplasm at telophase and eliminated from daughter nuclei. After two-celled stage, we could find no I. cylindrica chromosome in the nuclei but micronuclei containing I. cylindrica chromatin in the cytoplasm. These observations indicate that I. cylindrica chromosomes are completely eliminated from nuclei in the first cell division probably due to lack of functional kinetochores.
Collapse
Affiliation(s)
- Norio Komeda
- Laboratory of Plant Molecular Genetics, Division of Natural Science, Osaka Kyoiku University, Asahigaoka, Kashiwara, Osaka, Japan
| | | | | | | |
Collapse
|
25
|
Gupta PK, Kulwal PL, Rustgi S. Wheat cytogenetics in the genomics era and its relevance to breeding. Cytogenet Genome Res 2005; 109:315-27. [PMID: 15753592 DOI: 10.1159/000082415] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2004] [Accepted: 05/11/2004] [Indexed: 01/26/2023] Open
Abstract
Hexaploid wheat is a species that has been subjected to most extensive cytogenetic studies. This has contributed to understanding the mechanism of the evolution of polyploids involving diploidization through genetic restriction of chromosome pairing to only homologous chromosomes. The availability of a variety of aneuploids and the ph mutants (Ph1 and Ph2) in bread wheat also allowed chromosome manipulations leading to the development of alien addition/substitution lines and the introgression of alien chromosome segments into the wheat genome. More recently in the genomics era, molecular tools have been used extensively not only for the construction of molecular maps, but also for identification/isolation of genes/QTLs (including epistatic QTLs, eQTLs and PQLs) for several agronomic traits. It has also been possible to identify gene-rich regions and recombination hot spots in the wheat genome, which are now being subjected to sequencing at the genome level, through development of BAC libraries. In the EST database also, among all plants wheat ESTs are the highest in number, and are only next to those for human, mouse, Ciona intestinalis (a chordate), rat and zebrafish genomes. These ESTs and sequences of several genomic regions have been subjected to a variety of applications including development of perfect markers and establishment of microcollinearity. The technique of in situ hybridization (including FISH, GISH and McFISH) and the development of deletion stocks also facilitated the preparation of physical maps. Molecular markers are also used for marker-assisted selection in wheat breeding programs in several countries. Construction of a wheat DNA chip, which will also become available soon, may further facilitate wheat genomics research. These enormous resources, knowledge base and the fast development of additional molecular tools and high throughput approaches for genotyping will prove extremely useful in future wheat research and will lead to development of improved wheat cultivars.
Collapse
Affiliation(s)
- P K Gupta
- Department of Genetics & Plant Breeding, Ch. Charan Singh University, Meerut, India.
| | | | | |
Collapse
|
26
|
Nakao Y, Taira T, Horiuchi S, Kawase K, Mukai Y. Chromosomal Difference between Male and Female Trees of Ginkgo biloba Examined by Karyotype Analysis and Mapping of rDNA on the Chromosomes by Fluorescence in situ Hybridization. ACTA ACUST UNITED AC 2005. [DOI: 10.2503/jjshs.74.275] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
27
|
Li HY, Chen Q, Conner RL, Li HJ, Shi YZ, Laroche A, Graf RJ. Inheritance of Blue Grain Colour and Its Association with J and J s Translocation Chromosomes in Wheat-Agrotana Hybrid Lines. CYTOLOGIA 2003. [DOI: 10.1508/cytologia.68.307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Hai Yan Li
- Agriculture and Agri-Food Canada, Lethbridge Research Centre
| | - Qin Chen
- Agriculture and Agri-Food Canada, Lethbridge Research Centre
| | | | - Hong Jie Li
- Department of Plant Pathology, Washington State University
| | - Yong Zhong Shi
- Agriculture and Agri-Food Canada, Lethbridge Research Centre
| | - André Laroche
- Agriculture and Agri-Food Canada, Lethbridge Research Centre
| | - Robert J. Graf
- Agriculture and Agri-Food Canada, Lethbridge Research Centre
| |
Collapse
|
28
|
Taketa S, Linde-Laursen I, Künzel G. Cytogenetic diversity. DEVELOPMENTS IN PLANT GENETICS AND BREEDING 2003. [DOI: 10.1016/s0168-7972(03)80008-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
29
|
Prieto P, Ramírez MC, Ballesteros J, Cabrera A. Identification of intergenomic translocations involving wheat, Hordeum vulgare and Hordeum chilense chromosomes by FISH. Hereditas 2002; 135:171-4. [PMID: 12152330 DOI: 10.1111/j.1601-5223.2001.t01-1-00171.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Intergenomic translocations between wheat, Hordeum chilense and Hordeum vulgare have been obtained in tritordeum background. Advanced lines from the crosses between three disomic chromosome addition lines for chromosome 2Hv, 3Hv, and 4Hv of barley (Hordeum vulgare) in Triticum aestivum cv. Chinese Spring (CS) and hexaploid tritordeum (2n = 6x = 42, AABBHchHch) were analyzed. Multicolor FISH using both genomic DNA from H. chilense and H. vulgare were used to establish the presence and numbers of H. vulgare introgressions into tritordeum. Interspecific H. vulgare/H. chilense and intergeneric wheat/H. vulgare and wheat/H. chilense translocations were identified. Frequencies of plants containing different kinds of intergenomic translocations between chromosome arms are presented. These lines can be useful for introgressing into tritordeum characters of interest from H. vulgare.
Collapse
Affiliation(s)
- P Prieto
- Instituto de Agricultura Sostenible (CSIC), Apdo. 4084, 14080 Córdoba, Spain.
| | | | | | | |
Collapse
|
30
|
Wang ZN, Hang A, Hansen J, Burton C, Mallory-Smith CA, Zemetra RS. Visualization of A- and B-genome chromosomes in wheat (Triticum aestivum L.) x jointed goatgrass (Aegilops cylindrica Host) backcross progenies. Genome 2000; 43:1038-44. [PMID: 11195336 DOI: 10.1139/g00-080] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Wheat (Triticum aestivum) and jointed goatgrass (Aegilops cylindrica) can cross with each other, and their self-fertile backcross progenies frequently have extra chromosomes and chromosome segments, presumably retained from wheat, raising the possibility that a herbicide resistance gene might transfer from wheat to jointed goatgrass. Genomic in situ hybridization (GISH) was used to clarify the origin of these extra chromosomes. By using T. durum DNA (AABB genome) as a probe and jointed goatgrass DNA (CCDD genome) as blocking DNA, one, two, and three A- or B-genome chromosomes were identified in three BC2S2 individuals where 2n = 29, 30, and 31 chromosomes, respectively. A translocation between wheat and jointed goatgrass chromosomes was also detected in an individual with 30 chromosomes. In pollen mother cells with meiotic configuration of 14 II + 2 I, the two univalents were identified as being retained from the A or B genome of wheat. By using Ae. markgrafii DNA (CC genome) as a probe and wheat DNA (AABBDD genome) as blocking DNA. 14 C-genome chromosomes were visualized in all BC2S2 individuals. The GISH procedure provides a powerful tool to detect the A or B-genome chromatin in a jointed goatgrass background, making it possible to assess the risk of transfer of herbicide resistance genes located on the A or B genome of wheat to jointed goatgrass.
Collapse
Affiliation(s)
- Z N Wang
- Department of Plant, Soil, and Entomological Sciences, University of Idaho, Moscow 83844-2339, USA.
| | | | | | | | | | | |
Collapse
|
31
|
Leitch AR. Higher levels of organization in the interphase nucleus of cycling and differentiated cells. Microbiol Mol Biol Rev 2000; 64:138-52. [PMID: 10704477 PMCID: PMC98989 DOI: 10.1128/mmbr.64.1.138-152.2000] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The review examines the structured organization of interphase nuclei using a range of examples from the plants, animals, and fungi. Nuclear organization is shown to be an important phenomenon in cell differentiation and development. The review commences by examining nuclei in dividing cells and shows that the organization patterns can be dynamic within the time frame of the cell cycle. When cells stop dividing, derived differentiated cells often show quite different nuclear organizations. The developmental fate of nuclei is divided into three categories. (i) The first includes nuclei that undergo one of several forms of polyploidy and can themselves change in structure during the course of development. Possible function roles of polyploidy is given. (ii) The second is nuclear reorganization without polyploidy, where nuclei reorganize their structure to form novel arrangements of proteins and chromosomes. (iii) The third is nuclear disintegration linked to programmed cell death. The role of the nucleus in this process is described. The review demonstrates that recent methods to probe nuclei for nucleic acids and proteins, as well as to examine their intranuclear distribution in vivo, has revealed much about nuclear structure. It is clear that nuclear organization can influence or be influenced by cell activity and development. However, the full functional role of many of the observed phenomena has still to be fully realized.
Collapse
Affiliation(s)
- A R Leitch
- Queen Mary and Westfield College, University of London, London, United Kingdom.
| |
Collapse
|
32
|
Wetzel JB, Rayburn AL. Use of fluorescence genomic in situ hybridization (GISH) to detect the presence of alien chromatin in wheat lines differing in nuclear DNA content. ACTA ACUST UNITED AC 2000. [DOI: 10.1002/1097-0320(20000901)41:1<36::aid-cyto5>3.0.co;2-o] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
33
|
Taketa S, Ando H, Takeda K. Detection of Hordeum marinum genome in three polyploid Hordeum species and cytotypes by genomic in situ hybridization. Hereditas 1999; 130:185-8. [PMID: 10479999 DOI: 10.1111/j.1601-5223.1999.00185.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
- S Taketa
- Research Institute for Bioresources, Okayama University, Japan.
| | | | | |
Collapse
|
34
|
Shigyo M, Imamura K, Iino M, Yamashita KI, Tashiro Y. Identification of alien chromosomes in a series of Allium fistulosum. A. cepa monosomic addition lines by means of genomic in situ hybridization. Genes Genet Syst 1998. [DOI: 10.1266/ggs.73.311] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
- Masayoshi Shigyo
- Department of Biotechnology and Plant Breeding, Faculty of Agriculture, Saga University
| | - Kenzi Imamura
- Department of Biotechnology and Plant Breeding, Faculty of Agriculture, Saga University
| | - Mitsuyasu Iino
- Department of Biotechnology and Plant Breeding, Faculty of Agriculture, Saga University
| | - Ken-ichiro Yamashita
- Department of Biotechnology and Plant Breeding, Faculty of Agriculture, Saga University
| | - Yosuke Tashiro
- Department of Biotechnology and Plant Breeding, Faculty of Agriculture, Saga University
| |
Collapse
|
35
|
Tang S, Zhuang J, Wen Y, Ai SA, Li H, Xu J. Identification of introgressed segments conferring disease resistance in a tetrageneric hybrid of Triticum, Secale, Thinopyrum, and Avena. Genome 1997; 40:99-103. [DOI: 10.1139/g97-013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Using genomic in situ hybridization to chromosomes, we identified introgressed segments in a tetrageneric hybrid of Triticum, Avena, Thinopyrum, and Secale, which conferred high resistance to leaf rust, stem rust, stripe rust, powdery mildew, and root rot to wheat. The disease-resistance traits of the hybrid originated from three wild related genera of Triticum, namely Avena, Thinopyrum, and Secale. The new breeding system that combined traditional wide hybridization with anther culture was efficient and rapid in creating wheat germplasms resistant to major diseases.Key words: Triticum aestivum, Avena fatua, Thinopyrum intermedium, Secale cereale, wide hybridization, anther culture, genomic in situ hybridization, GISH.
Collapse
|
36
|
Shi F, Endo TR. Production of wheat-barley disomic addition lines possessing an Aegilops cylindrica gametocidal chromosome. Genes Genet Syst 1997. [DOI: 10.1266/ggs.72.243] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
- Fang Shi
- Laboratory of Plant Genetics, Graduate School of Agriculture, Kyoto University
| | - Takashi R. Endo
- Laboratory of Plant Genetics, Graduate School of Agriculture, Kyoto University
| |
Collapse
|
37
|
Chen Q, Conner RL, Laroche A. Identification of the parental chromosomes of the wheat–alien amphiploid Agrotana by genomic in situ hybridization. Genome 1995; 38:1163-9. [DOI: 10.1139/g95-154] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Labelled total genomic DNA from four alien species, Thinopyrum ponticum (Host) Beauv. (2n = 70, genomes J1J1J1J2J2), Th. bessarabicum (Savul. &Rayss) Love (2n = 14, genome J), Th. elongatum (Host) Beauv. (2n = 14, genome E), and Haynaldia villosa (L.) Schur. (2n = 14, genome V), were used as probes in combination with blocking wheat DNA for in situ hybridization of the chromosomes of Agrotana, a wheat–alien hybrid (2n = 56) of unknown origin. The results showed that genomic DNA probes from Th. ponticum and Th. bessarabicum both clearly revealed 16 alien and 40 wheat chromosomes in Agrotana, indicating that the J genome present in these two species has a high degree of homology with the alien chromosomes in Agrotana. Biotinylated genomic DNA probe from Th. elongatum identified 10 chromosomes from Agrotana, while some regions of six other chromosomes yielded a weak or no signal. The probe from H. villosa produced no differential labelling of the chromosomes of Agrotana. The genomic formula of Agrotana was designated as AABBDDJJ. We suggest that the alien parent donor species of Agrotana is Th. ponticum rather than Th. bessarabicum. Genomic relationships of the three Thinopyrum species are discussed in relation to the distribution of GISH signals in the chromosomes of Agrotana.Key words: Thinopyrum species, wheat–alien amphiploid, genomic DNA probing, in situ hybridization, molecular cytogenetics.
Collapse
|
38
|
Chen PD, Qi LL, Zhou B, Zhang SZ, Liu DJ. Development and molecular cytogenetic analysis of wheat-Haynaldia villosa 6VS/6AL translocation lines specifying resistance to powdery mildew. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 1995; 91:1125-8. [PMID: 24170007 DOI: 10.1007/bf00223930] [Citation(s) in RCA: 141] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/1995] [Accepted: 04/21/1995] [Indexed: 05/18/2023]
Abstract
Several Triticum aestivum L.-Haynaldia villosa disomic 6VS/6AL translocation lines with powdery mildew resistance were developed from the hybridization between common wheat cultivar Yangmai 5 and alien substitution line 6V(6A). Mitotic and meiotic C-banding analysis, aneuploid analysis with double ditelosomic stocks, in situ hybridization, as well as the phenotypic assessment of powdery mildew resistance, were used to characterize these lines. The same translocated chromosome, with breakpoints near the centromere, appears to be present in all the lines, despite variation among the lines in their morphology and agronomic characteristics. The resistance gene, conferred by H. villosa and designated as Pm21, is a new and promising source of powdery mildew resistance in wheat breeding.
Collapse
Affiliation(s)
- P D Chen
- Cytogenetics Institute, Nanjing Agricultural University, 210095, Nanjing, Jiangsu, China
| | | | | | | | | |
Collapse
|
39
|
Cuadrado A, Jouve N. Fluorescent in situ hybridization and C-banding analyses of highly repetitive DNA sequences in the heterochromatin of rye (Secale montanum Guss.) and wheat incorporating S. montanum chromosome segments. Genome 1995; 38:795-802. [PMID: 7672610 DOI: 10.1139/g95-101] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The molecular characterization of C-banded regions of Secale montanum Guss. by means of in situ hybridization was performed in order to provide new information about their chromosome structure relative to cultivated rye, Secale cereale L. Accurate identification of individual chromosomes was achieved using simultaneous and (or) successive fluorescent in situ hybridization (FISH) and C-banding. FISH identification was performed using total rye DNA, three highly repetitive rye DNA sequences (pSc119.2, pSc74, and pSc34), and the ribosomal RNA probes pTa71 (18S, 5.8S, and 26S rDNA) and pTa794 (5S rDNA). FISH was also used to identify the chromosome segment involved in two spontaneous translocation lines recovered from a 'Chinese Spring'--S. montanum wheat-rye addition line. FISH analysis revealed the exact translocation breakpoints and allowed the identification of the transferred rye segments. The value of this type of analysis is discussed.
Collapse
Affiliation(s)
- A Cuadrado
- Department of Cell Biology and Genetics, University of Alcalá de Henares, Madrid, Spain
| | | |
Collapse
|
40
|
Miller TE, Reader SM, Purdie KA, King IP. Determination of the frequency of wheat-rye chromosome pairing in wheat x rye hybrids with and without chromosome 5B. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 1994; 89:255-258. [PMID: 24177837 DOI: 10.1007/bf00225150] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/1994] [Accepted: 04/18/1994] [Indexed: 06/02/2023]
Abstract
Genomic in-situ hybridization (GISH) was used to determine the amount of wheat-rye chromosome pairing in wheat (Triticum aestivum) x rye (Secale cereale) hybrids having chromosome 5B present, absent, or replaced by an extra dose of chromosome 5D. The levels of overall chromosome pairing were similar to those reported earlier but the levels of wheat-rye pairing were higher than earlier determinations using C-banding. Significant differences in chromosome pairing were found between the three genotypes studied. Both of the chromosome-5B-deficient hybrid genotypes showed much higher pairing than the euploid wheat hybrid. However, the 5B-deficient hybrid carrying an extra chromosome 5D had significantly less wheat-rye pairing than the simple 5B-deficient genotype, indicating the presence of a suppressing factor on chromosome 5D. Non-homologous/non-homoeologous chromosome pairing was observed in all three hybrid genotypes. The value of GISH for assessing the level of wheat-alien chromosome pairing in wheat/alien hybrids and the effectiveness of wheat genotypes that affect homoeologous chromosome pairing is demonstrated.
Collapse
Affiliation(s)
- T E Miller
- John Innes Centre, NR4 7UJ, Colney, Norwich, UK
| | | | | | | |
Collapse
|
41
|
Leitch AR, Schwarzacher T, Leitch IJ. The use of fluorochromes in the cytogenetics of the small-grained cereals (Triticeae). THE HISTOCHEMICAL JOURNAL 1994; 26:471-9. [PMID: 7928400 DOI: 10.1007/bf00157892] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
This paper describes some of the major advances that have been made in the cytogenetics of the small-grained cereals (Triticeae) using fluorochromes to detect nucleic acids in situ. The method, widely known as fluorescence in situ hybridization, has made a contribution in several areas including (i) chromosome mapping programmes, and (ii) cereal breeding programmes. Flow cytometry of cereal chromosomes has now been developed for the generation of chromosome enriched libraries; these libraries will ultimately be of use in both the cereal mapping and breeding programmes. Fluorescence in situ hybridization has also made a major contribution to the understanding of cereal genome structure by elucidating the distribution of different classes of DNA sequence. By using suitable nucleic acid probes whole chromosomes can now be identified in interphase nuclei. The labelling patterns have revealed a structured arrangement of chromosomes at interphase. Not only are chromosomes organized but the ribosomal RNA genes also show structured patterns of condensation and expression. Progress in each of these areas has been rapid in recent years and this progress is described.
Collapse
Affiliation(s)
- A R Leitch
- School of Biological Sciences, Queen Mary and Westfield College, London, UK
| | | | | |
Collapse
|
42
|
Chen PD, Tsujimoto H, Gill BS. Transfer of Ph (I) genes promoting homoeologous pairing from Triticum speltoides to common wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 1994; 88:97-101. [PMID: 24185888 DOI: 10.1007/bf00222400] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/1993] [Accepted: 07/23/1993] [Indexed: 05/06/2023]
Abstract
Diploid-like chromosome pairing in polyploid wheat is controlled by several Ph (pairing homoeologous) genes with major and minor effects. Homoeologous pairing occurs in either the absence of these genes or their inhibition by genes from other species (Ph (I) genes). We transferred Ph (I) genes from Triticum speltoides (syn Aegilops speltoides) to T. aestivum, and on the basis of further analysis it appears that two duplicate and independent Ph (I) genes were transferred. Since Ph (I) genes are epistatic to the Ph genes of wheat, homoeologous pairing between the wheat and alien chromosomes occurs in the F1 hybrids. Using the Ph (I) gene stock, we could demonstrate homoeologous pairing between the wheat and Haynaldia villosa chromosomes. Since homoeologous pairing occurs in F1 hybrids and no cytogenetic manipulation is needed, the Ph (I) gene stock may be a versatile tool for effecting rapid and efficient alien genetic transfers to wheat.
Collapse
Affiliation(s)
- P D Chen
- Wheat Genetics Resource Center, Department of Plant Pathology, Throckmorton Hall, Kansas State University, 66506-5502, Manhattan, KS, USA
| | | | | |
Collapse
|
43
|
Jiang J, Gill BS. A 'zebra' chromosome arising from multiple translocations involving non-homologous chromosomes. Chromosoma 1993; 102:612-7. [PMID: 8306822 DOI: 10.1007/bf00352308] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
An alloplasmic wheat line carrying a 'zebra' chromosome z5A was isolated from the derivatives of an Elymus trachycaulus x Triticum aestivum cv Chinese Spring hybrid. Chromosome z5A was named zebra because of its striped genomic in situ hybridization pattern. z5A consists of four chromosome segments derived from E. trachycaulus and four chromosome segments, including the centromere, from wheat. The short arm of z5A paired with the telocentric chromosome 1H(t)S of E. trachycaulus and the long arm with the long arm of normal 5A. z5A also carried several genetic markers derived from 1H(t)S. Chromosome 1H(t) was the only E. trachycaulus chromosome found in the sib plants of a previous generation from which z5A was derived. Monosomic 5A and telocentric chromosome 5AL were also found in most of the sib plants. The zebra chromosome most probably originated from spontaneous multiple translocations between chromosomes 5A and 1H(t)S or 5A and 1H(t).
Collapse
Affiliation(s)
- J Jiang
- Wheat Genetics Resource Center, Kansas State University, Manhattan 66506-5502
| | | |
Collapse
|
44
|
Bashir A, Auger JA, Rayburn AL. Flow cytometric DNA analysis of wheat-rye addition lines. CYTOMETRY 1993; 14:843-7. [PMID: 8287730 DOI: 10.1002/cyto.990140802] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The nuclear DNA content of the 7 wheat-rye chromosome addition lines were determined by flow cytometry. The nuclear DNA content of each line was compared to the original wheat parental line. From this information, the amount of DNA per rye chromosome was calculated. The DNA per chromosome ranged from 0.8 picograms (pg) in chromosome 3R to 1.4 pg in chromosome 7R. Flow cytometry was proven to be a rapid and reliable technique for the evaluation of aneuploid plant populations. Flow cytometry has the potential to allow for more rapid screening of aneuploid and euploid cytological stocks than conventional cytogenetic techniques.
Collapse
Affiliation(s)
- A Bashir
- Department of Agronomy, University of Illinois, Urbana 61801
| | | | | |
Collapse
|
45
|
Bailey JP, Bennett ST, Bennett MD, Stace CA. Genomic in situ hybridization identifies parental chromosomes in the wild grass hybrid × Festulpia hubbardii. Heredity (Edinb) 1993. [DOI: 10.1038/hdy.1993.156] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
46
|
Laurie DA, Pratchett N, Devos KM, Leitch IJ, Gale MD. The distribution of RFLP markers on chromosome 2(2H) of barley in relation to the physical and genetic location of 5S rDNA. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 1993; 87:177-183. [PMID: 24190210 DOI: 10.1007/bf00223762] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/1992] [Accepted: 03/01/1993] [Indexed: 06/02/2023]
Abstract
The 5S rDNA locus on the long arm of barley chromosome 2(2H) was genetically mapped in two crosses in relation to 30 other RFLP loci. Comparison of the genetic maps with the previously published physical position of the 5S rDNA, determined by in-situ hybridization, showed that there was a marked discrepancy between physical and genetic distance in both crosses, with recombination being less frequent in the proximal part of the arm. Pooled information from the present study and other published genetic maps showed that at least 26 of the 44 (59%) RFLPs that have been mapped on 2(2H)L lie distal to the 5S rDNA locus even though this region is only 27% of the physical length of the arm. The distribution of RFLP markers is significantly different from expected (P < 0.01), implying that the low-copy sequences used for RFLP analysis occur more frequently in distal regions of the arm and, or, that sequences in distal regions are more polymorphic.
Collapse
Affiliation(s)
- D A Laurie
- Cambridge Laboratory, JI Centre for Plant Science Research, Colney Lane, NR4 7UJ, Norwich, UK
| | | | | | | | | |
Collapse
|
47
|
Friebe B, Jiang J, Gill BS, Dyck PL. Radiation-induced nonhomoeologous wheat-Agropyron intermedium chromosomal translocations conferring resistance to leaf rust. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 1993; 86:141-9. [PMID: 24193453 DOI: 10.1007/bf00222072] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/1992] [Accepted: 09/19/1992] [Indexed: 05/09/2023]
Abstract
The Agropyron intermedium chromosome 7Ai #2 is the source of the leaf rust resistance gene Lr38 which was transferred to wheat by irradiation. The chromosomal constitutions of eight radiation-induced rust-resistant wheat-Agropyron intermedium derivatives were analyzed by C-banding and genomic in-situ hybridization (GISH). Five lines were identified as wheat Ag. intermedium chromosome translocation lines with the translocation chromosomes T2AS·2AL-7Ai#2L, T5AL · 5AS-7Ai # 2L, T1DS · 1DL-7Ai # 2L, T3DL · 3DS-7Ai#2L, and T6DS · 6DL-7Ai#2L. The sizes of the 7Ai#2L segments in mitotic metaphases of these translocations are 2.42 μm, 4.20 μm, 2.55 μm, 2.78 μm, and 4.19 μm, respectively. One line was identified as a wheat-Ag. intermedium chromosome addition line. The added Ag. intermedium chromosome in this line is different from 7Ai # 2. This line has resistance to leaf rust and stem rust. Based on the rust reactions, and the C-banding and GISH results, the remaining two lines do not contain any Ag. intermedium-derived chromatin.
Collapse
Affiliation(s)
- B Friebe
- Department of Plant Pathology, Throckmorton Hall, Kansas State University, 66506-5501, Manhattan, KS, USA
| | | | | | | |
Collapse
|
48
|
Jiang J, Friebe B, Dhaliwal HS, Martin TJ, Gill BS. Molecular cytogenetic analysis of Agropyron elongatum chromatin in wheat germplasm specifying resistance to wheat streak mosaic virus. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 1993; 86:41-48. [PMID: 24193381 DOI: 10.1007/bf00223806] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/1992] [Accepted: 09/03/1992] [Indexed: 06/02/2023]
Abstract
Three lines derived from wheat (6x) x Agropyron elongatum (10x) that are resistant to wheat streak mosaic virus (WSMV) were analyzed by chromosome pairing, banding, and in situ hybridization. Line CI15321 was identified as a disomic substitution line where wheat chromosome 1D is replaced by Ag. elongatum chromosome 1Ae-1. Line 87-94-1 is a wheat-Ag. elongatum ditelosomic addition 1Ae-1L. Line CI15322 contains an Ag. elongatum chromosome, 1Ae-2, that substitutes for chromosome 1D. The short arm of 1Ae-2 paired with the short arm of 1Ae-1 at metaphase I (MI) in 82% of the pollen mother cells (PMCs). However, the long arms of these two chromosomes did not pair with each other. In CI15322, the long arm of chromosome 4D has an Agropyron chromosome segment which was derived from the distal part of 1Ae-1L. This translocation chromosome is designated as T4DS·4DL-1L. T4DS·4DL-1Ae-1L has a 0.73 μm distal part of the long arm of 4D replaced by a 1.31 μm distal segment from 1Ae-1L. The major WSMV resistance gene(s) in these lines is located on the distal part of 1Ae-1L.
Collapse
Affiliation(s)
- J Jiang
- Department of Plant Pathology, Wheat Genetics Resource Center, Kansas State University, 66506-5502, Manhattan, KS, USA
| | | | | | | | | |
Collapse
|
49
|
Mukai Y, Friebe B, Hatchett JH, Yamamoto M, Gill BS. Molecular cytogenetic analysis of radiation-induced wheat-rye terminal and intercalary chromosomal translocations and the detection of rye chromatin specifying resistance to Hessian fly. Chromosoma 1993. [DOI: 10.1007/bf00356025] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
50
|
Schwarzacher T, Anamthawat-Jónsson K, Harrison GE, Islam AK, Jia JZ, King IP, Leitch AR, Miller TE, Reader SM, Rogers WJ, Shi M, Heslop-Harrison JS. Genomic in situ hybridization to identify alien chromosomes and chromosome segments in wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 1992; 84:778-86. [PMID: 24201474 DOI: 10.1007/bf00227384] [Citation(s) in RCA: 126] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/1991] [Accepted: 02/26/1992] [Indexed: 05/24/2023]
Abstract
Genomic in situ hybridization was used to identify alien chromatin in chromosome spreads of wheat, Triticum aestivum L., lines incorporating chromosomes from Leymus multicaulis (Kar. and Kir.) Tzvelev and Thinopyrum bessarabicum (Savul. and Rayss) Löve, and chromosome arms from Hordeum chilense Roem. and Schult, H. vulgare L. and Secale cereale L. Total genomic DNA from the introgressed alien species was used as a probe, together with excess amounts of unlabelled blocking DNA from wheat, for DNA:DNA in-situ hybridization. The method labelled the alien chromatin yellow-green, while the wheat chromosomes showed only the orange-red fluorescence of the DNA counterstain. Nuclei were screened from seedling root-tips (including those from half-grains) and anther wall tissue. The genomic probing method identified alien chromosomes and chromosome arms and allowed counting in nuclei at all stages of the cell cycle, so complete metaphases were not needed. At prophase or interphase, two labelled domains were visible in most nuclei from disomic lines, while only one labelled domain was visible in monosomic lines. At metaphase, direct visualization of the morphology of the alien chromosome or chromosome segment was possible and allowed identification of the relationship of the alien chromatin to the wheat chromosomes. The genomic in-situ hybridization method is fast, sensitive, accurate and informative. Hence it is likely to be of great value for both cytogenetic analysis and in plant breeding programmes.
Collapse
Affiliation(s)
- T Schwarzacher
- John Innes Centre for Plant Science Research, Colney Lane, NR4 7UJ, Norwich, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|