1
|
Ebrahimzadegan R, Fuchs J, Chen J, Schubert V, Meister A, Houben A, Mirzaghaderi G. Meiotic segregation and post-meiotic drive of the Festuca pratensis B chromosome. Chromosome Res 2023; 31:26. [PMID: 37658970 PMCID: PMC10474989 DOI: 10.1007/s10577-023-09728-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/13/2023] [Accepted: 07/19/2023] [Indexed: 09/05/2023]
Abstract
In many species, the transmission of B chromosomes (Bs) does not follow the Mendelian laws of equal segregation and independent assortment. This deviation results in transmission rates of Bs higher than 0.5, a process known as "chromosome drive". Here, we studied the behavior of the 103 Mbp-large B chromosome of Festuca pratensis during all meiotic and mitotic stages of microsporogenesis. Mostly, the B chromosome of F. pratensis segregates during meiosis like standard A chromosomes (As). In some cases, the B passes through meiosis in a non-Mendelian segregation leading to their accumulation already in meiosis. However, a true drive of the B happens during the first pollen mitosis, by which the B preferentially migrates to the generative nucleus. During second pollen mitosis, B divides equally between the two sperms. Despite some differences in the frequency of drive between individuals with different numbers of Bs, at least 82% of drive was observed. Flow cytometry-based quantification of B-containing sperm nuclei agrees with the FISH data.
Collapse
Affiliation(s)
- Rahman Ebrahimzadegan
- Department of Plant Production and Genetics, Faculty of Agriculture, University of Kurdistan, Sanandaj, 66177-15175, Iran
| | - Jörg Fuchs
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466, Seeland, Germany
| | - Jianyong Chen
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466, Seeland, Germany
| | - Veit Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466, Seeland, Germany
| | - Armin Meister
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466, Seeland, Germany
| | - Andreas Houben
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466, Seeland, Germany.
| | - Ghader Mirzaghaderi
- Department of Plant Production and Genetics, Faculty of Agriculture, University of Kurdistan, Sanandaj, 66177-15175, Iran.
| |
Collapse
|
2
|
Rajpal VR, Sharma S, Sehgal D, Sharma P, Wadhwa N, Dhakate P, Chandra A, Thakur RK, Deb S, Rama Rao S, Mir BA, Raina SN. Comprehending the dynamism of B chromosomes in their journey towards becoming unselfish. Front Cell Dev Biol 2023; 10:1072716. [PMID: 36684438 PMCID: PMC9846793 DOI: 10.3389/fcell.2022.1072716] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/13/2022] [Indexed: 01/06/2023] Open
Abstract
Investigated for more than a century now, B chromosomes (Bs) research has come a long way from Bs being considered parasitic or neutral to becoming unselfish and bringing benefits to their hosts. B chromosomes exist as accessory chromosomes along with the standard A chromosomes (As) across eukaryotic taxa. Represented singly or in multiple copies, B chromosomes are largely heterochromatic but also contain euchromatic and organellar segments. Although B chromosomes are derived entities, they follow their species-specific evolutionary pattern. B chromosomes fail to pair with the standard chromosomes during meiosis and vary in their number, size, composition and structure across taxa and ensure their successful transmission through non-mendelian mechanisms like mitotic, pre-meiotic, meiotic or post-meiotic drives, unique non-disjunction, self-pairing or even imparting benefits to the host when they lack drive. B chromosomes have been associated with cellular processes like sex determination, pathogenicity, resistance to pathogens, phenotypic effects, and differential gene expression. With the advancements in B-omics research, novel insights have been gleaned on their functions, some of which have been associated with the regulation of gene expression of A chromosomes through increased expression of miRNAs or differential expression of transposable elements located on them. The next-generation sequencing and emerging technologies will further likely unravel the cellular, molecular and functional behaviour of these enigmatic entities. Amidst the extensive fluidity shown by B chromosomes in their structural and functional attributes, we perceive that the existence and survival of B chromosomes in the populations most likely seem to be a trade-off between the drive efficiency and adaptive significance versus their adverse effects on reproduction.
Collapse
Affiliation(s)
- Vijay Rani Rajpal
- Department of Botany, Hansraj College, University of Delhi, Delhi, India,*Correspondence: Vijay Rani Rajpal, , ; Soom Nath Raina,
| | - Suman Sharma
- Department of Botany, Ramjas College, University of Delhi, Delhi, India
| | - Deepmala Sehgal
- Syngenta, International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | - Prashansa Sharma
- Department of Botany, Hansraj College, University of Delhi, Delhi, India
| | - Nikita Wadhwa
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, New Delhi, India
| | | | - Atika Chandra
- Department of Botany, Maitreyi College, University of Delhi, New Delhi, India
| | - Rakesh Kr. Thakur
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Sohini Deb
- Department of Biotechnology and Bioinformatics, North Eastern Hill University, Shillong, Meghalaya, India
| | - Satyawada Rama Rao
- Department of Biotechnology and Bioinformatics, North Eastern Hill University, Shillong, Meghalaya, India
| | - Bilal Ahmad Mir
- Department of Botany, University of Kashmir, Srinagar, India
| | - Soom Nath Raina
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India,*Correspondence: Vijay Rani Rajpal, , ; Soom Nath Raina,
| |
Collapse
|
3
|
Isolation and Sequencing of Chromosome Arm 7RS of Rye, Secale cereale. Int J Mol Sci 2022; 23:ijms231911106. [PMID: 36232406 PMCID: PMC9569962 DOI: 10.3390/ijms231911106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/12/2022] [Accepted: 09/19/2022] [Indexed: 11/24/2022] Open
Abstract
Rye (Secale cereale) is a climate-resilient cereal grown extensively as grain or forage crop in Northern and Eastern Europe. In addition to being an important crop, it has been used to improve wheat through introgression of genomic regions for improved yield and disease resistance. Understanding the genomic diversity of rye will assist both the improvement of this crop and facilitate the introgression of more valuable traits into wheat. Here, we isolated and sequenced the short arm of rye chromosome 7 (7RS) from Triticale 380SD using flow cytometry and compared it to the public Lo7 rye whole genome reference assembly. We identify 2747 Lo7 genes present on the isolated chromosome arm and two clusters containing seven and sixty-five genes that are present on Triticale 380SD 7RS, but absent from Lo7 7RS. We identified 29 genes that are not assigned to chromosomal locations in the Lo7 assembly but are present on Triticale 380SD 7RS, suggesting a chromosome arm location for these genes. Our study supports the Lo7 reference assembly and provides a repertoire of genes on Triticale 7RS.
Collapse
|
4
|
Chen J, Birchler JA, Houben A. The non-Mendelian behavior of plant B chromosomes. Chromosome Res 2022; 30:229-239. [PMID: 35412169 PMCID: PMC9508019 DOI: 10.1007/s10577-022-09687-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 11/25/2022]
Abstract
B chromosomes, also known as supernumerary chromosomes, are dispensable elements in the genome of many plants, animals, and fungi. Many B chromosomes have evolved one or more drive mechanisms to transmit themselves at a higher frequency than predicted by Mendelian genetics, and these mechanisms counteract the tendency of non-essential genetic elements to be lost over time. The frequency of Bs in a population results from a balance between their effect on host fitness and their transmission rate. Here, we will summarize the findings of the drive process of plant B chromosomes, focusing on maize and rye.
Collapse
Affiliation(s)
- Jianyong Chen
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstrasse 3, 06466, Seeland, Germany
| | - James A Birchler
- Division of Biological Sciences, University of Missouri, Columbia, MO, 65211, USA.
| | - Andreas Houben
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstrasse 3, 06466, Seeland, Germany.
| |
Collapse
|
5
|
Boudichevskaia A, Fiebig A, Kumke K, Himmelbach A, Houben A. Rye B chromosomes differently influence the expression of A chromosome-encoded genes depending on the host species. Chromosome Res 2022; 30:335-349. [PMID: 35781770 PMCID: PMC9771852 DOI: 10.1007/s10577-022-09704-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 06/16/2022] [Accepted: 06/16/2022] [Indexed: 01/25/2023]
Abstract
The B chromosome (B) is a dispensable component of the genome in many species. To evaluate the impact of Bs on the transcriptome of the standard A chromosomes (A), comparative RNA-seq analyses of rye and wheat anthers with and without additional rye Bs were conducted. In both species, 5-6% of the A-derived transcripts across the entire genomes were differentially expressed in the presence of 2Bs. The GO term enrichment analysis revealed that Bs influence A chromosome encoded processes like "gene silencing"; "DNA methylation or demethylation"; "chromatin silencing"; "negative regulation of gene expression, epigenetic"; "post-embryonic development"; and "chromosome organization." 244 B chromosome responsive A-located genes in + 2B rye and + B wheat shared the same biological function. Positively correlated with the number of Bs, 939 and 1391 B-specific transcripts were identified in + 2B and + 4B wheat samples, respectively. 85% of B-transcripts in + 2B were also found in + 4B transcriptomes. 297 B-specific transcripts were identified in + 2B rye, and 27% were common to the B-derived transcripts identified in + B wheat. Bs encode mobile elements and housekeeping genes, but most B-transcripts were without detectable similarity to known genes. Some of these genes are involved in cell division-related functions like Nuf2 and might indicate their importance in maintaining Bs. The transcriptome analysis provides new insights into the complex interrelationship between standard A chromosomes and supernumerary B chromosomes.
Collapse
Affiliation(s)
- Anastassia Boudichevskaia
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466, Seeland, Germany.
- KWS SAAT SE & Co. KGaA, 37574, Einbeck, Germany.
| | - Anne Fiebig
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466, Seeland, Germany
| | - Katrin Kumke
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466, Seeland, Germany
| | - Axel Himmelbach
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466, Seeland, Germany
| | - Andreas Houben
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466, Seeland, Germany.
| |
Collapse
|
6
|
Lee SI, Nguyen TX, Kim JH, Kim NS. Cytological variations and long terminal repeat (LTR) retrotransposon diversities among diploids and B-chromosome aneuploids in Lilium amabile Palibin. Genes Genomics 2019; 41:941-950. [PMID: 31054075 DOI: 10.1007/s13258-019-00825-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 04/22/2019] [Indexed: 11/24/2022]
Abstract
BACKGROUND B chromosomes are supernumerary chromosomes found in numerous plant species, including in the genus Lilium. Lilium amabile, an endemic Korean Lilium species, carries B chromosomes which are highly variable in terms of numbers and shape among the accessions collected throughout the Korea. Class 1 retrotransposons are highly abundant in the genome of Lilium species, but their biological functions are still obscure. Lilium species were known to hold high diversities derived from retrotransposons. OBJECTIVE In this study, genetic diversities among the L. amabile accessions were analyzed to better understand relationships between genetic variations and cytological diversities. METHODS Chromosomes were prepared from 95 L. amabile accessions for cytological identification. Genetic variations were analyzed by inter-retrotransposon amplified polymorphism (IRAP), and genetic differentiation was evaluated via Tajima's D neutrality and FST analyses. Population structure and phylogenetic analyses were also carried out. RESULTS The L. amabile accessions were classified into 11 cytotypes by the chromosome constitutions. Genetic diversity measured by IRAP analysis revealed high genetic diversity among the accessions. In the joint analysis of cytological variation with genetical variation, IRAP diversity was not related to the cytological diversities of diploid and aneuploids among L. amabile accessions, and genetic differentiation was not obvious. Moreover, the geographical distribution of L. amabile was not related to either IRAP diversity or cytological diversity. CONCLUSION The B chromosome-carrying aneuploids occurred randomly among diploids throughout Korea, and IRAP diversification predated L. amabile dispersion in Korea without genetic differentiation.
Collapse
Affiliation(s)
- Sung-Il Lee
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Korea
| | - Truong Xuan Nguyen
- Institute of Agro-Biology, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Jong-Hwa Kim
- Department of Horticulture, Kangwon National University, Chuncheon, 200-701, Korea.
| | - Nam-Soo Kim
- Department of Molecular Biosciences, Kangwon National University, Chuncheon, 24341, Korea. .,Institute of Bioscience and Biomedical Sciences, Kangwon National University, Chuncheon, 24341, Korea.
| |
Collapse
|
7
|
Pereira HS, Delgado M, Viegas W, Rato JM, Barão A, Caperta AD. Rye (Secale cereale) supernumerary (B) chromosomes associated with heat tolerance during early stages of male sporogenesis. ANNALS OF BOTANY 2017; 119:325-337. [PMID: 27818381 PMCID: PMC5314639 DOI: 10.1093/aob/mcw206] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 06/03/2016] [Accepted: 08/23/2016] [Indexed: 05/11/2023]
Abstract
BACKGROUND AND AIMS Rye supernumerary (B) chromosomes have an accumulation mechanism involving the B subtelomeric domain highly enriched in D1100- and E3900-related sequences. In this work, the effects of heat stress during the early stages of male meiosis in 0B and +B plants were studied. METHODS In-depth cytological analyses of chromatin structure and behaviour were performed on staged rye meiocytes utilizing DAPI, fluorescence in situ hybridization and 5-methylcytosine immune labelling. Quantitative real-time PCR was used to measure heat effects on the expression of the Hsp101 gene as well as the 3·9- and 2·7-kb E3900 forms in various tissues and meiotic stages. KEY RESULTS AND CONCLUSIONS Quantitative real-time PCR established that heat induced equal up-regulation of the Hsp101 gene in 0B and 2B plants, with a marked peak in anthers with meiocytes staged at pachytene. Heat also resulted in significant up-regulation of E3900-related transcripts, especially at pachytene and for the truncated 2·7-kb form of E3900. Cytological heat-induced anomalies in prophase I, measured as the frequency of anomalous meiocytes, were significantly greater in 0B plants. Whereas telomeric sequences were widely distributed in a manner close to normal in the majority of 2B pachytene cells, most 0B meiocytes displayed abnormally clustered telomeres after chromosome pairing had occurred. Relevantly, bioinformatic analysis revealed a significantly high-density heat responsive cis regulatory sequence on E3900, clearly supporting stress-induced response of transcription for the truncated variant. Taken together, these results are the first indication that rye B chromosomes have implications on heat tolerance and may protect meiocytes against heat stress-induced damage.
Collapse
Affiliation(s)
- H Sofia Pereira
- Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia (ISA), Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Margarida Delgado
- Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia (ISA), Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Wanda Viegas
- Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia (ISA), Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - João M Rato
- Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia (ISA), Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Augusta Barão
- Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia (ISA), Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Ana D Caperta
- Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia (ISA), Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| |
Collapse
|
8
|
Houben A, Banaei-Moghaddam AM, Klemme S, Timmis JN. Evolution and biology of supernumerary B chromosomes. Cell Mol Life Sci 2014; 71:467-78. [PMID: 23912901 PMCID: PMC11113615 DOI: 10.1007/s00018-013-1437-7] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 07/02/2013] [Accepted: 07/24/2013] [Indexed: 12/23/2022]
Abstract
B chromosomes (Bs) are dispensable components of the genome exhibiting non-Mendelian inheritance and have been widely reported on over several thousand eukaryotes, but still remain an evolutionary mystery ever since their first discovery over a century ago [1]. Recent advances in genome analysis have significantly improved our knowledge on the origin and composition of Bs in the last few years. In contrast to the prevalent view that Bs do not harbor genes, recent analysis revealed that Bs of sequenced species are rich in gene-derived sequences. We summarize the latest findings on supernumerary chromosomes with a special focus on the origin, DNA composition, and the non-Mendelian accumulation mechanism of Bs.
Collapse
Affiliation(s)
- Andreas Houben
- Chromosome Structure and Function Laboratory, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466, Gatersleben, Germany,
| | | | | | | |
Collapse
|
9
|
Marques A, Banaei-Moghaddam AM, Klemme S, Blattner FR, Niwa K, Guerra M, Houben A. B chromosomes of rye are highly conserved and accompanied the development of early agriculture. ANNALS OF BOTANY 2013; 112:527-34. [PMID: 23739836 PMCID: PMC3718213 DOI: 10.1093/aob/mct121] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 04/16/2013] [Indexed: 05/02/2023]
Abstract
BACKGROUND AND AIMS Supernumerary B chromosomes (Bs) represent a specific type of selfish genetic element. As Bs are dispensable for normal growth, it is expected to observe B polymorphisms among populations. To address whether Bs maintained in geographically distinct populations of cultivated and weedy rye are polymorphic, the distribution patterns and the transcriptional activity of different B-located repeats were analysed. METHODS Bs of cultivated and weedy rye from seven origins were analysed by fluorescence in situ hybridization (FISH) with probes specific for the pericentromeric and interstitial regions as well as the B-specific non-disjunction control region. The DNA replication, chromatin composition and transcription behaviour of the non-disjunction regions were determined. To address whether the B-marker repeats E3900 and D1100 have diverged genotypes of different origin at the sequence level, the genomic sequences of both repeats were compared between cultivated rye and weedy rye from five different origins. KEY RESULTS B chromosomes in cultivated and weedy rye have maintained a similar molecular structure at the level of subspecies. The high degree of conservation of the non-disjunction control region regarding its transcription activity, histone composition and replication underlines the functional importance of this chromosome region for the maintenance of Bs. The conserved chromosome structure suggests a monophyletic origin of the rye B. As Bs were found in different countries, it is likely that Bs were frequently present in the seed material used in early agriculture. CONCLUSIONS The surprisingly conserved chromosome structure suggests that although the rye Bs experienced rapid evolution including multiple rearrangements at the early evolutionary stages, this process has slowed significantly and may have even ceased during its recent evolution.
Collapse
Affiliation(s)
- André Marques
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, D-06466 Gatersleben, Germany
- Laboratory of Plant Cytogenetics and Evolution, Department of Botany, UFPE, Brazil
| | - Ali M. Banaei-Moghaddam
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, D-06466 Gatersleben, Germany
| | - Sonja Klemme
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, D-06466 Gatersleben, Germany
| | - Frank R. Blattner
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, D-06466 Gatersleben, Germany
| | - Katsumasa Niwa
- Laboratory of Plant Breeding, Faculty of Agriculture, Tokyo University of Agriculture, Japan
| | - Marcelo Guerra
- Laboratory of Plant Cytogenetics and Evolution, Department of Botany, UFPE, Brazil
| | - Andreas Houben
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, D-06466 Gatersleben, Germany
| |
Collapse
|
10
|
Klemme S, Banaei-Moghaddam AM, Macas J, Wicker T, Novák P, Houben A. High-copy sequences reveal distinct evolution of the rye B chromosome. THE NEW PHYTOLOGIST 2013; 199:550-558. [PMID: 23614816 DOI: 10.1111/nph.12289] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 03/16/2013] [Indexed: 05/02/2023]
Abstract
B chromosomes (Bs) are supernumerary chromosomes that vary in number among individuals of the same species. Because of their dispensable nature, their non-Mendelian inheritance and their origin from A chromosomes (As), one might assume that Bs followed a different evolutionary pathway from As, this being reflected in differences in their high-copy DNA constitution. We provide detailed insight into the composition and distribution of rye (Secale cereale) B-located high-copy sequences. A- and B-specific high-copy sequences were identified in silico. Mobile elements and satellite sequences were verified by fluorescence in situ hybridization (FISH). Replication was analyzed via EdU incorporation. Although most repeats are similarly distributed along As and Bs, several transposons are either amplified or depleted on the B. An accumulation of B-enriched satellites was found mostly in the nondisjunction control region of the B, which is transcriptionally active and late-replicating. All B-enriched sequences are not unique to the B but are also present in other Secale species, suggesting the origin of the B from As of the same genus. Our findings highlight the differences between As and Bs. Although Bs originated from As, they have since taken a separate evolutionary pathway.
Collapse
Affiliation(s)
- Sonja Klemme
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, Gatersleben, 06466, Germany
| | | | - Jiri Macas
- Biology Centre ASCR, Institute of Plant Molecular Biology, Branišovská 31/1160, České Budějovice, 370 05, Czech Republic
| | - Thomas Wicker
- University of Zurich, Institute of Plant Biology, Zurich, 8008, Switzerland
| | - Petr Novák
- Biology Centre ASCR, Institute of Plant Molecular Biology, Branišovská 31/1160, České Budějovice, 370 05, Czech Republic
| | - Andreas Houben
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, Gatersleben, 06466, Germany
| |
Collapse
|
11
|
Selfish supernumerary chromosome reveals its origin as a mosaic of host genome and organellar sequences. Proc Natl Acad Sci U S A 2012; 109:13343-6. [PMID: 22847450 DOI: 10.1073/pnas.1204237109] [Citation(s) in RCA: 142] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Supernumerary B chromosomes are optional additions to the basic set of A chromosomes, and occur in all eukaryotic groups. They differ from the basic complement in morphology, pairing behavior, and inheritance and are not required for normal growth and development. The current view is that B chromosomes are parasitic elements comparable to selfish DNA, like transposons. In contrast to transposons, they are autonomously inherited independent of the host genome and have their own mechanisms of mitotic or meiotic drive. Although B chromosomes were first described a century ago, little is known about their origin and molecular makeup. The widely accepted view is that they are derived from fragments of A chromosomes and/or generated in response to interspecific hybridization. Through next-generation sequencing of sorted A and B chromosomes, we show that B chromosomes of rye are rich in gene-derived sequences, allowing us to trace their origin to fragments of A chromosomes, with the largest parts corresponding to rye chromosomes 3R and 7R. Compared with A chromosomes, B chromosomes were also found to accumulate large amounts of specific repeats and insertions of organellar DNA. The origin of rye B chromosomes occurred an estimated ∼1.1-1.3 Mya, overlapping in time with the onset of the genus Secale (1.7 Mya). We propose a comprehensive model of B chromosome evolution, including its origin by recombination of several A chromosomes followed by capturing of additional A-derived and organellar sequences and amplification of B-specific repeats.
Collapse
|
12
|
Tian B, Li H. Variation of B chromosome associated with tissue culture in wheat-rye cross. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2009; 51:834-839. [PMID: 19723242 DOI: 10.1111/j.1744-7909.2009.00864.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
In vitro variation of B chromosomes was studied by examining the callus cells derived from the immature embryos from a cross of Chinese Spring wheat (Triticum aestivum L.) and Fin 7416 rye (Secale cereale L.) carrying two B chromosomes. In 40-d-old callus cells, the numbers of B chromosomes ranged from one to four in 65.6% of the cells observed. The distribution of B chromosome numbers was associated with the ploidy levels of the normal chromosomes (A chromosomes). The frequency of the cells with high numbers of B chromosomes (i.e., three or four B chromosomes) in the amphiploid cells with 56 A chromosomes was greater than those in the haploid cells with 28 A chromosomes. Although structural changes in the rye A chromosomes were observed, cytological observation and genomic in situ hybridization demonstrated that the rye B chromosomes were conserved in morphological appearance following tissue culture.
Collapse
Affiliation(s)
- Bohong Tian
- Cangzhou Academy of Agricultural and Forestry Sciences, Cangzhou 061001, China
| | | |
Collapse
|
13
|
Pereira HS, Barão A, Caperta A, Rocha J, Viegas W, Delgado M. Rye Bs disclose ancestral sequences in cereal genomes with a potential role in gametophyte chromatid segregation. Mol Biol Evol 2009; 26:1683-97. [PMID: 19395587 DOI: 10.1093/molbev/msp082] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Two sequence families, E3900 and D1100, are amplified on the subtelomeric domain of the long arm of rye B chromosomes, the region that controls its drive mechanism. In this work, polymerase chain reaction (PCR) with a number of primers spanning E3900 shows that the organization and nucleotide sequence of E3900-related portions are present and highly conserved on rye A chromosomes as well as in other cereals. Quantitative Real-Time PCR estimates two E3900 sequences to be represented in 100-150 copies on Bs and at least as single copies on As. A novel E3900-related sequence, with a deletion that results in a frameshift and subsequently an open reading frame with putative DNA binding motifs, is identified. Expression analysis of E3900 indicates identical transcription levels in leaves from plants with and without Bs, showing that the expression of these sequences must be silenced on Bs and tightly regulated on As in leaves. In contrast, E3900 transcription is upregulated during meiosis exclusively in plants with Bs, maintaining a high level of transcription in the gametophyte. Interestingly, Bs not only influence their own chromatid segregation but also that of the regular chromosome complement of both rye and wheat. There is a drastic increase in frequency of disrupted metaphase and anaphase cells in the first mitosis of pollen grains carrying Bs, which appears to be due to anomalous adherences between sister chromatids. Taken together, this work provides insight into how E3900 sequences are potentially associated with important evolutionary mechanisms involved in basic cellular processes.
Collapse
Affiliation(s)
- H Sofia Pereira
- Secção de Genética, Centro de Botânica Aplicada à Agricultura, Technical University of Lisbon, Lisbon, Portugal.
| | | | | | | | | | | |
Collapse
|
14
|
|
15
|
Niwa K, Horiuchi G, Hirai Y. Production and Characterization of Common Wheat with B Chromosomes of Rye from Korea. Hereditas 2004. [DOI: 10.1111/j.1601-5223.1997.00139.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
16
|
Ohta S, Saruhashi Y. Geographical Distribution of B Chromosomes in Aegilops Mutica Boiss., A Wild Relative of Wheat. Hereditas 2004. [DOI: 10.1111/j.1601-5223.1999.00177.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
17
|
Houben A, Kynast RG, Heim U, Hermann H, Jones RN, Forster JW. Molecular cytogenetic characterisation of the terminal heterochromatic segment of the B-chromosome of rye (Secale cereale). Chromosoma 1996; 105:97-103. [PMID: 8753699 DOI: 10.1007/bf02509519] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The terminal heterochromatic segments of the long arms of 20 rye B-chromosomes were isolated by means of laser microdissection technology. Also the remaining portions of the long arms, along with the short arms of the same chromosomes were isolated. Each sample was used for degenerate oligonucleotide primer-polymerase chain reaction (DOP-PCR) amplification reactions. The resulting products were used as probes for chromosome in situ hybridisation experiments, and in Southern hybridisation to digests of 0B and +B DNA. Competition hybridisation of these probes with 0B DNA allowed the detection of B-specific sequences. The terminal heterochromatin of the rye B-chromosome contains both B-specific sequences and sequences also present on the A-chromosomes of rye. The B-specific D1100 family is the major repeat species located in the terminal heterochromatin. Primers designed to the cloned sequence (E1100) were used to search for related low copy sequences in 0B DNA. The sequences of the PCR products revealed no similarities to that of the clone E1100 except for the primer sequences. The possible origin of this sequence is discussed in the context of models for the evolution of the rye B-chromosome.
Collapse
Affiliation(s)
- A Houben
- Institut fur Pflanzengenetik und Kulturpflanzenforschung, D-06466 Gatersleben, Germany
| | | | | | | | | | | |
Collapse
|