1
|
Borowska-Zuchowska N, Senderowicz M, Trunova D, Kolano B. Tracing the Evolution of the Angiosperm Genome from the Cytogenetic Point of View. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11060784. [PMID: 35336666 PMCID: PMC8953110 DOI: 10.3390/plants11060784] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/14/2022] [Accepted: 03/14/2022] [Indexed: 05/05/2023]
Abstract
Cytogenetics constitutes a branch of genetics that is focused on the cellular components, especially chromosomes, in relation to heredity and genome structure, function and evolution. The use of modern cytogenetic approaches and the latest microscopes with image acquisition and processing systems enables the simultaneous two- or three-dimensional, multicolour visualisation of both single-copy and highly-repetitive sequences in the plant genome. The data that is gathered using the cytogenetic methods in the phylogenetic background enable tracing the evolution of the plant genome that involve changes in: (i) genome sizes; (ii) chromosome numbers and morphology; (iii) the content of repetitive sequences and (iv) ploidy level. Modern cytogenetic approaches such as FISH using chromosome- and genome-specific probes have been widely used in studies of the evolution of diploids and the consequences of polyploidy. Nowadays, modern cytogenetics complements analyses in other fields of cell biology and constitutes the linkage between genetics, molecular biology and genomics.
Collapse
|
2
|
Qiu T, Liu Z, Liu B. The effects of hybridization and genome doubling in plant evolution via allopolyploidy. Mol Biol Rep 2020; 47:5549-5558. [PMID: 32572735 DOI: 10.1007/s11033-020-05597-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 06/17/2020] [Indexed: 12/19/2022]
Abstract
Polyploidy is a pervasive and recurring phenomenon across the tree of life, which occurred at variable time scales, ecological amplitudes and cell types, and is especially prominent in the evolutionary histories of plants. Importantly, many of the world's most important crops and noxious invasive weeds are recent polyploids. Polyploidy includes two major types, autopolyploidy, referring to doubling of a single species genome, and allopolyploidy referring to doubling of two or more merged genomes via biological hybridization of distinct but related species. The prevalence of both types of polyploidy implies that both genome doubling alone and doubling coupled with hybridization confer selective advantages over their diploid progenitors under specific circumstances. In cases of allopolyploidy, the two events, genome doubling and hybridization, have both advantages and disadvantages. Accumulated studies have established that, in allopolyploidy, some advantage(s) of doubling may compensate for the disadvantage(s) of hybridity and vice versa, although further study is required to validate generality of this trend. Some studies have also revealed a variety of non-Mendelian genetic and genomic consequences induced by doubling and hybridization separately or concertedly in nascent allopolyploidy; however, the significance of which to the immediate establishment and longer-term evolutionary success of allopolyploid species remain to be empirically demonstrated and ecologically investigated. This review aims to summarize recent advances in our understanding of the roles of hybridization and genome doubling, in separation and combination, in the evolution of allopolyploid genomes, as well as fruitful future research directions that are emerging from these studies.
Collapse
Affiliation(s)
- Tian Qiu
- School of Life Sciences, Changchun Normal University, Changchun, 130032, China.,Key Laboratory of Molecular Epigenetics, Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Zhiyuan Liu
- College of Computer Science and Technology, Changchun University, Changchun, 130022, China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics, Ministry of Education, Northeast Normal University, Changchun, 130024, China.
| |
Collapse
|
3
|
Jighly A, Joukhadar R, Sehgal D, Singh S, Ogbonnaya FC, Daetwyler HD. Population-dependent reproducible deviation from natural bread wheat genome in synthetic hexaploid wheat. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:801-812. [PMID: 31355965 DOI: 10.1111/tpj.14480] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 06/26/2019] [Accepted: 07/17/2019] [Indexed: 05/15/2023]
Abstract
Sequence elimination is one of the main mechanisms that increases the divergence among homoeologous chromosomes after allopolyploidization to enhance the stability of recently established lineages, but it can cause a loss of some economically important genes. Synthetic hexaploid wheat (SHW) is an important source of genetic variation to the natural hexaploid wheat (NHW) genepool that has low genetic diversity. Here, we investigated the change between SHW and NHW genomes by utilizing a large germplasm set of primary synthetics and synthetic derivatives. Reproducible segment elimination (RSE) was declared if a large chromosomal chunk (>5 cM) produced no aligned reads in more than five SHWs. RSE in five genomic regions was the major source of variation between SHW and NHW. One RSE eliminated almost the complete short arm of chromosome 1B, which contains major genes for flour quality, disease resistance and different enzymes. The occurrence of RSE was highly dependent on the choice of diploid and tetraploid parental lines, their ancestral subpopulation and admixture, e.g. SHWs derived from Triticum dicoccon or from one of two Aegilops tauschii subpopulations were almost free of RSE, while highly admixed parents had higher RSE rates. The rate of RSE in synthetic derivatives was almost double that in primary synthetics. Genome-wide association analysis detected four loci with minor effects on the occurrence of RSE, indicating that both parental lines and genetic factors were affecting the occurrence of RSE. Therefore, pre-pre-breeding strategies should be applied before introducing SHW into pre-breeding programs to ensure genomic stability and avoid undesirable gene loss.
Collapse
Affiliation(s)
- Abdulqader Jighly
- Agriculture Victoria, AgriBio, Centre for AgriBiosciences, Bundoora, VIC, Australia
| | - Reem Joukhadar
- Agriculture Victoria, AgriBio, Centre for AgriBiosciences, Bundoora, VIC, Australia
- Department of Animal, Plant and Soil Sciences, La Trobe University, Bundoora, VIC, Australia
| | - Deepmala Sehgal
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | - Sukhwinder Singh
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | | | - Hans D Daetwyler
- Agriculture Victoria, AgriBio, Centre for AgriBiosciences, Bundoora, VIC, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, Australia
| |
Collapse
|
4
|
Zhu T, Wang L, You FM, Rodriguez JC, Deal KR, Chen L, Li J, Chakraborty S, Balan B, Jiang CZ, Brown PJ, Leslie CA, Aradhya MK, Dandekar AM, McGuire PE, Kluepfel D, Dvorak J, Luo MC. Sequencing a Juglans regia × J. microcarpa hybrid yields high-quality genome assemblies of parental species. HORTICULTURE RESEARCH 2019; 6:55. [PMID: 30937174 PMCID: PMC6431679 DOI: 10.1038/s41438-019-0139-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/09/2019] [Accepted: 03/10/2019] [Indexed: 05/22/2023]
Abstract
Members of the genus Juglans are monecious wind-pollinated trees in the family Juglandaceae with highly heterozygous genomes, which greatly complicates genome sequence assembly. The genomes of interspecific hybrids are usually comprised of haploid genomes of parental species. We exploited this attribute of interspecific hybrids to avoid heterozygosity and sequenced an interspecific hybrid Juglans microcarpa × J. regia using a novel combination of single-molecule sequencing and optical genome mapping technologies. The resulting assemblies of both genomes were remarkably complete including chromosome termini and centromere regions. Chromosome termini consisted of arrays of telomeric repeats about 8 kb long and heterochromatic subtelomeric regions about 10 kb long. The centromeres consisted of arrays of a centromere-specific Gypsy retrotransposon and most contained genes, many of them transcribed. Juglans genomes evolved by a whole-genome-duplication dating back to the Cretaceous-Paleogene boundary and consist of two subgenomes, which were fractionated by numerous short gene deletions evenly distributed along the length of the chromosomes. Fractionation was shown to be asymmetric with one subgenome exhibiting greater gene loss than the other. The asymmetry of the process is ongoing and mirrors an asymmetry in gene expression between the subgenomes. Given the importance of J. microcarpa × J. regia hybrids as potential walnut rootstocks, we catalogued disease resistance genes in the parental genomes and studied their chromosomal distribution. We also estimated the molecular clock rates for woody perennials and deployed them in estimating divergence times of Juglans genomes and those of other woody perennials.
Collapse
Affiliation(s)
- Tingting Zhu
- Department of Plant Sciences, University of California, Davis, CA 95616 USA
| | - Le Wang
- Department of Plant Sciences, University of California, Davis, CA 95616 USA
| | - Frank M. You
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6 Canada
| | - Juan C. Rodriguez
- Department of Plant Sciences, University of California, Davis, CA 95616 USA
| | - Karin R. Deal
- Department of Plant Sciences, University of California, Davis, CA 95616 USA
| | - Limin Chen
- Department of Plant Sciences, University of California, Davis, CA 95616 USA
| | - Jie Li
- Genome Center, University of California, Davis, CA 95616 USA
| | | | - Bipin Balan
- Department of Plant Sciences, University of California, Davis, CA 95616 USA
| | - Cai-Zhong Jiang
- Department of Plant Sciences, University of California, Davis, CA 95616 USA
- Crops Pathology and Genetics Research Unit, USDA-ARS, Davis, CA 95616 USA
| | - Patrick J. Brown
- Department of Plant Sciences, University of California, Davis, CA 95616 USA
| | - Charles A. Leslie
- Department of Plant Sciences, University of California, Davis, CA 95616 USA
| | | | - Abhaya M. Dandekar
- Department of Plant Sciences, University of California, Davis, CA 95616 USA
| | - Patrick E. McGuire
- Department of Plant Sciences, University of California, Davis, CA 95616 USA
| | - Daniel Kluepfel
- Crops Pathology and Genetics Research Unit, USDA-ARS, Davis, CA 95616 USA
| | - Jan Dvorak
- Department of Plant Sciences, University of California, Davis, CA 95616 USA
| | - Ming-Cheng Luo
- Department of Plant Sciences, University of California, Davis, CA 95616 USA
| |
Collapse
|
5
|
Kalinka A, Achrem M. Reorganization of wheat and rye genomes in octoploid triticale (× Triticosecale). PLANTA 2018; 247:807-829. [PMID: 29234880 PMCID: PMC5856900 DOI: 10.1007/s00425-017-2827-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 12/03/2017] [Indexed: 06/01/2023]
Abstract
The analysis of early generations of triticale showed numerous rearrangements of the genome. Complexed transformation included loss of chromosomes, t-heterochromatin content changes and the emergence of retrotransposons in new locations. This study investigated certain aspects of genomic transformations in the early generations (F5 and F8) of the primary octoploid triticale derived from the cross of hexaploid wheat with the diploid rye. Most of the plants tested were hypoploid; among eliminated chromosomes were rye chromosomes 4R and 5R and variable number of wheat chromosomes. Wheat chromosomes were eliminated to a higher extent. The lower content of telomeric heterochromatin was also found in rye chromosomes in comparison with parental rye. Studying the location of selected retrotransposons from Ty1-copia and Ty3-gypsy families using fluorescence in situ hybridization revealed additional locations of these retrotransposons that were not present in chromosomes of parental species. ISSR, IRAP and REMAP analyses showed significant changes at the level of specific DNA nucleotide sequences. In most cases, the disappearance of certain types of bands was observed, less frequently new types of bands appeared, not present in parental species. This demonstrates the scale of genome rearrangement and, above all, the elimination of wheat and rye sequences, largely due to the reduction of chromosome number. With regard to the proportion of wheat to rye genome, the rye genome was more affected by the changes, thus this study was focused more on the rye genome. Observations suggest that genome reorganization is not finished in the F5 generation but is still ongoing in the F8 generation.
Collapse
Affiliation(s)
- Anna Kalinka
- Department of Cell Biology, Faculty of Biology, Institute for Research on Biodiversity, University of Szczecin, Wąska 13, 71-415, Szczecin, Poland
- Faculty of Biology, Molecular Biology and Biotechnology Center, University of Szczecin, Wąska 13, 71-415, Szczecin, Poland
| | - Magdalena Achrem
- Department of Cell Biology, Faculty of Biology, Institute for Research on Biodiversity, University of Szczecin, Wąska 13, 71-415, Szczecin, Poland.
- Faculty of Biology, Molecular Biology and Biotechnology Center, University of Szczecin, Wąska 13, 71-415, Szczecin, Poland.
| |
Collapse
|
6
|
Delgado A, Carvalho A, Martín AC, Martín A, Lima-Brito J. Genomic restructuring in F1 Hordeum chilense × durum wheat hybrids and corresponding hexaploid tritordeum lines revealed by DNA fingerprinting analyses. J Genet 2017; 96:e13-e23. [PMID: 28674217 DOI: 10.1007/s12041-017-0772-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Andreia Delgado
- University of Tras-os-Montes and Alto Douro, 5001-801Vila Real, Portugal.
| | | | | | | | | |
Collapse
|
7
|
Chromosomal structural changes and microsatellite variations in newly synthesized hexaploid wheat mediated by unreduced gametes. J Genet 2017; 95:819-830. [PMID: 27994180 DOI: 10.1007/s12041-016-0704-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Allohexaploid wheat was derived from interspecific hybridization, followed by spontaneous chromosome doubling. Newly synthesized hexaploid wheat by crossing Triticum turgidum and Aegilops tauschii provides a classical model to understand the mechanisms of allohexaploidization in wheat. However, immediate chromosome level variation and microsatellite level variation of newly synthesized hexaploid wheat have been rarely reported. Here, unreduced gametes were applied to develop synthesized hexaploid wheat, NA0928, population by crossing T. turgidum ssp. dicoccum MY3478 and Ae. tauschii SY41, and further S0-S3 generations of NA0928 were assayed by sequential cytological and microsatellite techniques. We demonstrated that plentiful chromosomal structural changes and microsatellite variations emerged in the early generations of newly synthesized hexaploid wheat population NA0928, including aneuploidy with whole-chromosome loss or gain, aneuploidy with telosome formation, chromosome-specific repeated sequence elimination (indicated by fluorescence in situ hybridization) and microsatellite sequence elimination (indicated by sequencing), and many kinds of variations have not been previously reported. Additionally, we reported a new germplasm, T. turgidum accession MY3478 with excellent unreduced gametes trait, and then succeeded to transfer powdery mildew resistance from Ae. tauschii SY41 to synthesized allohexaploid wheat population NA0928, which would be valuable resistance resources for wheat improvement.
Collapse
|
8
|
Kwiatek MT, Majka J, Majka M, Belter J, Wisniewska H. Adaptation of the Pivotal-Differential Genome Pattern for the Induction of Intergenomic Chromosome Recombination in Hybrids of Synthetic Amphidiploids within Triticeae Tribe. FRONTIERS IN PLANT SCIENCE 2017; 8:1300. [PMID: 28791037 PMCID: PMC5524833 DOI: 10.3389/fpls.2017.01300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 07/10/2017] [Indexed: 05/12/2023]
Abstract
A pivotal-differential evolution pattern is when two allopolyploids share a common genome, which is called pivotal, and differ with respect to the other genome or genomes, called differential. This feature induces the intergenomic recombination between chromosomes of differential genomes, which can lead to speciation. Our study is a cytomolecular insight into this mechanism which was adapted for the induction of intergenomic chromosome recombination in hybrids of synthetic amphidiploids Aegilops biuncialis × S. cereale (UUMMRR) and triticale (AABBRR) where R-genome was pivotal. We observed chromosome recombination events which were induced by both: (1) random chromosome fragmentation and non-homologous chromosome end joining at mitosis of root meristem cells and (2) intergenomic chromosome associations at meiosis of pollen mother cells (PMCs) of F1 hybrids. Reciprocal chromosome translocations were identified in six F1 plants and 15 plants of F2 generation using fluorescence in situ hybridization (FISH) with DNA clones (pTa-86, pTa-k374, pTa-465, pTa-535, pTa-k566, and pTa-713). We observed signals of pTa-86, pTa-535, and pTa-k566 probes in several chromosome breakpoints. The comparison of the DNA clone sequences distinguished a number of common motifs, which can be considered as characteristics of chromosome breakpoint loci. Immunodetection of synaptonemal complex proteins and genomic in situ hybridization analysis at meiosis of PMCs of F1 hybrids showed, that the homologous pairing of pivotal R-genome chromosomes is crucial for the fertility of F1 hybrids, however, these chromosomes can be also involved in the intergeneric recombination.
Collapse
Affiliation(s)
- Michal T. Kwiatek
- Cereal Genomics Team, Department of Genomics, Institute of Plant Genetics, Polish Academy of SciencesPoznan, Poland
- *Correspondence: Michal T. Kwiatek
| | - Joanna Majka
- Cytogenetics and Molecular Physiology of Plants Team, Department of Environmental Stress Biology, Institute of Plant Genetics, Polish Academy of SciencesPoznan, Poland
| | - Maciej Majka
- Cereal Genomics Team, Department of Genomics, Institute of Plant Genetics, Polish Academy of SciencesPoznan, Poland
| | - Jolanta Belter
- Cereal Genomics Team, Department of Genomics, Institute of Plant Genetics, Polish Academy of SciencesPoznan, Poland
| | - Halina Wisniewska
- Cereal Genomics Team, Department of Genomics, Institute of Plant Genetics, Polish Academy of SciencesPoznan, Poland
| |
Collapse
|
9
|
Soltis DE, Visger CJ, Marchant DB, Soltis PS. Polyploidy: Pitfalls and paths to a paradigm. AMERICAN JOURNAL OF BOTANY 2016; 103:1146-66. [PMID: 27234228 DOI: 10.3732/ajb.1500501] [Citation(s) in RCA: 175] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Accepted: 02/25/2016] [Indexed: 05/22/2023]
Abstract
Investigators have long searched for a polyploidy paradigm-rules or principles that might be common following polyploidization (whole-genome duplication, WGD). Here we attempt to integrate what is known across the more thoroughly investigated polyploid systems on topics ranging from genetics to ecology. We found that while certain rules may govern gene retention and loss, systems vary in the prevalence of gene silencing vs. homeolog loss, chromosomal change, the presence of a dominant genome (in allopolyploids), and the relative importance of hybridization vs. genome doubling per se. In some lineages, aspects of polyploidization are repeated across multiple origins, but in other species multiple origins behave more stochastically in terms of genetic and phenotypic change. Our investigation also reveals that the path to synthesis is hindered by numerous gaps in our knowledge of even the best-known systems. Particularly concerning is the absence of linkage between genotype and phenotype. Moreover, most recent studies have focused on the genetic and genomic attributes of polyploidy, but rarely is there an ecological or physiological context. To promote a path to a polyploidy paradigm (or paradigms), we propose a major community goal over the next 10-20 yr to fill the gaps in our knowledge of well-studied polyploids. Before a meaningful synthesis is possible, more complete data sets are needed for comparison-systems that include comparable genetic, genomic, chromosomal, proteomic, as well as morphological, physiological, and ecological data. Also needed are more natural evolutionary model systems, as most of what we know about polyploidy continues to come from a few crop and genetic models, systems that often lack the ecological context inherent in natural systems and necessary for understanding the drivers of biodiversity.
Collapse
Affiliation(s)
- Douglas E Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, Florida 32611 USA Department of Biology, University of Florida, Gainesville, Florida 32611 USA Genetics Institute, University of Florida, Gainesville, Florida 32608 USA
| | - Clayton J Visger
- Florida Museum of Natural History, University of Florida, Gainesville, Florida 32611 USA Department of Biology, University of Florida, Gainesville, Florida 32611 USA
| | - D Blaine Marchant
- Florida Museum of Natural History, University of Florida, Gainesville, Florida 32611 USA Department of Biology, University of Florida, Gainesville, Florida 32611 USA
| | - Pamela S Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, Florida 32611 USA Genetics Institute, University of Florida, Gainesville, Florida 32608 USA
| |
Collapse
|
10
|
Wu Y, Sun Y, Wang X, Lin X, Sun S, Shen K, Wang J, Jiang T, Zhong S, Xu C, Liu B. Transcriptome shock in an interspecific F1 triploid hybrid of Oryza revealed by RNA sequencing. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2016; 58:150-164. [PMID: 25828709 DOI: 10.1111/jipb.12357] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Accepted: 03/30/2015] [Indexed: 06/04/2023]
Abstract
Interspecific hybridization is a driving force in evolution and speciation of higher plants. Interspecific hybridization often induces immediate and saltational changes in gene expression, a phenomenon collectively termed "transcriptome shock". Although transcriptome shock has been reported in various plant and animal taxa, the extent and pattern of shock-induced expression changes are often highly idiosyncratic, and hence entails additional investigations. Here, we produced a set of interspecific F1 triploid hybrid plants between Oryza sativa, ssp. japonica (2n = 2x = 24, genome AA) and the tetraploid form of O. punctata (2n = 4x = 48, genome, BBCC), and conducted RNA-seq transcriptome profiling of the hybrids and their exact parental plants. We analyzed both homeolog expression bias and overall gene expression level difference in the hybrids relative to the in silico "hybrids" (parental mixtures). We found that approximately 16% (2,541) of the 16,112 expressed genes in leaf tissue of the F1 hybrids showed nonadditive expression, which were specifically enriched in photosynthesis-related pathways. Interestingly, changes in the maternal homeolog expression, including non-stochastic silencing, were the major causes for altered homeolog expression partitioning in the F1 hybrids. Our findings have provided further insights into the transcriptome response to interspecific hybridization and heterosis.
Collapse
Affiliation(s)
- Ying Wu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Yue Sun
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Xutong Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Xiuyun Lin
- Jilin Academy of Agricultural Sciences, Changchun, 130032, China
| | - Shuai Sun
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Kun Shen
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Jie Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Tingting Jiang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Silin Zhong
- State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Chunming Xu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| |
Collapse
|
11
|
Wang M, Liu C, Xing T, Wang Y, Xia G. Asymmetric somatic hybridization induces point mutations and indels in wheat. BMC Genomics 2015; 16:807. [PMID: 26476565 PMCID: PMC4609470 DOI: 10.1186/s12864-015-1974-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 10/03/2015] [Indexed: 01/06/2023] Open
Abstract
Background Allopolyploid genome needs wide structural variation to deal with genomic shock. The introgression line, generated via asymmetric somatic hybridization, is introgressed with a minimum of exogenous chromatin, which also leads to genomic shock to induce genetic variation. However, the extent of its genomic variation and its difference from allopolyploidies remains unknown. Methods Here, we explored this issue using the bread wheat cultivar SR3, a derivative of an asymmetric somatic hybrid between the cultivar JN177 and an accession of tall wheatgrass (Thinopyrum elongatum). The ESTs (expressed sequence taqs) were large-scale sequenced using the cDNA library constructed in each of SR3 and JN177. Point mutations and indels (insertions and deletions) of SR3 were calculated, and their difference from the genetic variation of bread wheat and its ancestors were compared, with aim to analyze the extent and pattern of sequence variation induced by somatic hybridization. Results Both point mutations and indels (insertions and deletions) were frequently induced by somatic hybridization in the coding sequences. While the genomic shock caused by allopolyploidization tends to favor deletion over insertion, there was no evidence for such a preference following asymmetric somatic hybridization. The GC content of sequence adjacent to indel sites was also distinct from what has been observed in allopolyploids. Conclusions This study demonstrates that asymmetric somatic hybridization induces high frequency of genetic variation in a manner partially different from allopolipoidization. Asymmetric somatic hybridization provides appropriate material to comprehensively explore the nature of the genetic variation induced by genomic shock. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1974-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mengcheng Wang
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, 27 Shandanan Road, Jinan, 250100, Shandong, P. R. China.
| | - Chun Liu
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, 27 Shandanan Road, Jinan, 250100, Shandong, P. R. China.
| | - Tian Xing
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, 27 Shandanan Road, Jinan, 250100, Shandong, P. R. China
| | - Yanxia Wang
- Shijiazhuang Academy of Agriculture and Forestry Sciences, 479 Shengli North Avenue, Shijiazhuang, 050041, Hebei, China
| | - Guangmin Xia
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, 27 Shandanan Road, Jinan, 250100, Shandong, P. R. China.
| |
Collapse
|
12
|
Liu C, Yang X, Zhang H, Wang X, Zhang Z, Bian Y, Zhu B, Dong Y, Liu B. Genetic and epigenetic modifications to the BBAA component of common wheat during its evolutionary history at the hexaploid level. PLANT MOLECULAR BIOLOGY 2015; 88:53-64. [PMID: 25809554 DOI: 10.1007/s11103-015-0307-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 03/12/2015] [Indexed: 05/11/2023]
Abstract
The formation and evolution of common wheat (Triticum aestivum L., genome BBAADD) involves allopolyploidization events at two ploidy levels. Whether the two ploidy levels (tetraploidy and hexaploidy) have impacted the BBAA subgenomes differentially remains largely unknown. We have reported recently that extensive and distinct modifications of transcriptome expression occurred to the BBAA component of common wheat relative to the evolution of gene expression at the tetraploid level in Triticum turgidum. As a step further, here we analyzed the genetic and cytosine DNA methylation differences between an extracted tetraploid wheat (ETW) harboring genome BBAA that is highly similar to the BBAA subgenomes of common wheat, and a set of diverse T. turgidum collections, including both wild and cultivated genotypes. We found that while ETW had no significantly altered karyotype from T. turgidum, it diverged substantially from the later at both the nucleotide sequence level and in DNA methylation based on molecular marker assay of randomly sampled loci across the genome. In particular, ETW is globally less cytosine-methylated than T. turgidum, consistent with earlier observations of a generally higher transcriptome expression level in ETW than in T. turgidum. Together, our results suggest that genome evolution at the allohexaploid level has caused extensive genetic and DNA methylation modifications to the BBAA subgenomes of common wheat, which are distinctive from those accumulated at the tetraploid level in both wild and cultivated T. turgidum genotypes.
Collapse
Affiliation(s)
- Chang Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Roy T, Cole LW, Chang TH, Lindqvist C. Untangling reticulate evolutionary relationships among New World and Hawaiian mints (Stachydeae, Lamiaceae). Mol Phylogenet Evol 2015; 89:46-62. [PMID: 25888973 DOI: 10.1016/j.ympev.2015.03.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 03/24/2015] [Accepted: 03/26/2015] [Indexed: 02/05/2023]
Abstract
The phenomenon of polyploidy and hybridization usually results in novel genetic combinations, leading to complex, reticulate evolution and incongruence among gene trees, which in turn may show different phylogenetic histories than the inherent species tree. The largest tribe within the subfamily Lamioideae (Lamiaceae), Stachydeae, which includes the globally distributed Stachys, and one of the largest Hawaiian angiosperm radiations, the endemic mints, is a widespread and taxonomically challenging lineage displaying a wide spectrum of morphological and chromosomal diversity. Previous molecular phylogenetic studies have showed that while the Hawaiian mints group with Mexican-South American Stachys based on chloroplast DNA sequence data, nuclear ribosomal DNA (nrDNA) sequences suggest that they are most closely related to temperate North American Stachys. Here, we have utilized five independently inherited, low-copy nuclear loci, and a variety of phylogenetic methods, including multi-locus coalescence-based tree reconstructions, to provide insight into the complex origins and evolutionary relationships between the New World Stachys and the Hawaiian mints. Our results demonstrate incongruence between individual gene trees, grouping the Hawaiian mints with both temperate North American and Meso-South American Stachys clades. However, our multi-locus coalescence tree is concurrent with previous nrDNA results placing them within the temperate North American Stachys clade. Our results point toward a possible allopolyploid hybrid origin of the Hawaiian mints arising from temperate North American and Meso-South American ancestors, as well as a reticulate origin for South American Stachys. As such, our study is another significant step toward further understanding the putative parentage and the potential influence of hybridization and incomplete lineage sorting in giving rise to this insular plant lineage, which following colonization underwent rapid morphological and ecological diversification.
Collapse
Affiliation(s)
- Tilottama Roy
- Department of Biological Sciences, University at Buffalo (SUNY), Buffalo, NY 14260, USA.
| | - Logan W Cole
- Department of Biological Sciences, University at Buffalo (SUNY), Buffalo, NY 14260, USA; Department of Biology, Indiana University, Bloomington, IN 47405, USA.
| | - Tien-Hao Chang
- Department of Biological Sciences, University at Buffalo (SUNY), Buffalo, NY 14260, USA.
| | - Charlotte Lindqvist
- Department of Biological Sciences, University at Buffalo (SUNY), Buffalo, NY 14260, USA.
| |
Collapse
|
14
|
Liu S, Li F, Kong L, Sun Y, Qin L, Chen S, Cui H, Huang Y, Xia G. Genetic and epigenetic changes in somatic hybrid introgression lines between wheat and tall wheatgrass. Genetics 2015; 199:1035-45. [PMID: 25670745 PMCID: PMC4391570 DOI: 10.1534/genetics.114.174094] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Accepted: 02/05/2015] [Indexed: 12/27/2022] Open
Abstract
Broad phenotypic variations were induced in derivatives of an asymmetric somatic hybridization of bread wheat (Triticum aestivum) and tall wheatgrass (Thinopyrum ponticum Podp); however, how these variations occurred was unknown. We explored the nature of these variations by cytogenetic assays and DNA profiling techniques to characterize six genetically stable somatic introgression lines. Karyotyping results show the six lines similar to their wheat parent, but GISH analysis identified the presence of a number of short introgressed tall wheatgrass chromatin segments. DNA profiling revealed many genetic and epigenetic differences, including sequences deletions, altered regulation of gene expression, changed patterns of cytosine methylation, and the reactivation of retrotransposons. Phenotypic variations appear to result from altered repetitive sequences combined with the epigenetic regulation of gene expression and/or retrotransposon transposition. The extent of genetic and epigenetic variation due to the maintenance of parent wheat cells in tissue culture was assessed and shown to be considerably lower than had been induced in the introgression lines. Asymmetric somatic hybridization provides appropriate material to explore the nature of the genetic and epigenetic variations induced by genomic shock.
Collapse
Affiliation(s)
- Shuwei Liu
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan 250100, Peoples' Republic of China
| | - Fei Li
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan 250100, Peoples' Republic of China
| | - Lina Kong
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan 250100, Peoples' Republic of China
| | - Yang Sun
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan 250100, Peoples' Republic of China
| | - Lumin Qin
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan 250100, Peoples' Republic of China
| | - Suiyun Chen
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan 250100, Peoples' Republic of China
| | - Haifeng Cui
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan 250100, Peoples' Republic of China
| | - Yinghua Huang
- U.S. Department of Agriculture/Agricultural Research Service Plant Science Research Laboratory, Stillwater, Oklahoma 74075
| | - Guangmin Xia
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan 250100, Peoples' Republic of China
| |
Collapse
|
15
|
CABO SANDRA, CARVALHO ANA, MARTÍN ANTÓNIO, LIMA-BRITO JOSÉ. Structural rearrangements detected in newly-formed hexaploid tritordeum after three sequential FISH experiments with repetitive DNA sequences. J Genet 2014; 93:183-8. [DOI: 10.1007/s12041-014-0328-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
16
|
Sui Y, Li B, Shi J, Chen M. Genomic, regulatory and epigenetic mechanisms underlying duplicated gene evolution in the natural allotetraploid Oryza minuta. BMC Genomics 2014; 15:11. [PMID: 24393121 PMCID: PMC3890553 DOI: 10.1186/1471-2164-15-11] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Accepted: 12/30/2013] [Indexed: 11/27/2022] Open
Abstract
Background Polyploid species contribute to Oryza diversity. However, the mechanisms underlying gene and genome evolution in Oryza polyploids remain largely unknown. The allotetraploid Oryza minuta, which is estimated to have formed less than one million years ago, along with its putative diploid progenitors (O. punctata and O. officinalis), are quite suitable for the study of polyploid genome evolution using a comparative genomics approach. Results Here, we performed a comparative study of a large genomic region surrounding the Shattering4 locus in O. minuta, as well as in O. punctata and O. officinalis. Duplicated genomes in O. minuta have maintained the diploid genome organization, except for several structural variations mediated by transposon movement. Tandem duplicated gene clusters are prevalent in the Sh4 region, and segmental duplication followed by random deletion is illustrated to explain the gene gain-and-loss process. Both copies of most duplicated genes still persist in O. minuta. Molecular evolution analysis suggested that these duplicated genes are equally evolved and mostly manipulated by purifying selection. However, cDNA-SSCP analysis revealed that the expression patterns were dramatically altered between duplicated genes: nine of 29 duplicated genes exhibited expression divergence in O. minuta. We further detected one gene silencing event that was attributed to gene structural variation, but most gene silencing could not be related to sequence changes. We identified one case in which DNA methylation differences within promoter regions that were associated with the insertion of one hAT element were probably responsible for gene silencing, suggesting a potential epigenetic gene silencing pathway triggered by TE movement. Conclusions Our study revealed both genetic and epigenetic mechanisms involved in duplicated gene silencing in the allotetraploid O. minuta.
Collapse
Affiliation(s)
| | | | | | - Mingsheng Chen
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
17
|
Fu SL, Yang MY, Ren ZL, Yan BJ, Tang ZX. Abnormal mitosis induced by wheat-rye 1R monosomic addition lines. Genome 2013; 57:21-8. [PMID: 24564212 DOI: 10.1139/gen-2013-0115] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Octoploid triticale were derived from common wheat (Triticum aestivum L. 'Mianyang11') × rye (Secale cereale L. 'Kustro'), and some progeny were obtained by the backcrossing of triticale with 'Mianyang11' followed by self-fertilization. In situ hybridization using rye genomic DNA and repetitive sequences pAs1 and pSc119.2 as probes was used to analyze the mitotic chromosomes of these progeny. Three wheat-rye 1R monosomic addition lines and a wheat line (12FT-1685) containing a 1R and a 1BL.1RS translocation chromosome were identified. Abnormal mitosis was observed in the two lines. During mitosis of a 1R monosomic addition line (3-8-20-1R-2), lagging chromosomes, micronuclei, chromosomal bridges, and the one pole segregation of 1R chromosome were observed. Abnormal mitotic behaviour of chromosomes was also observed in some of the self-progeny plants of lines 12FT-1685 and 3-8-20-1R-2. These progeny contained 1R chromosome or 1R chromosome arm. In addition, 4B chromosomes were absent from one of the progeny of 3-8-20-1R-2. This abnormal mitotic behaviour of chromosomes was not observed in two other 1R monosomic addition lines. These results indicate that a single 1R chromosome added to wheat might cause abnormal mitotic behaviour of both wheat and rye chromosomes and different genetic variations might occurr among the sibling 1R monosomic addition lines.
Collapse
Affiliation(s)
- Shu-Lan Fu
- State Key Laboratory of Plant Breeding and Genetics, Sichuan Agriculture University, Wenjiang, Chengdu, Sichuan 611130, China
| | | | | | | | | |
Collapse
|
18
|
Dar TH, Raina SN, Goel S. Molecular analysis of genomic changes in synthetic autotetraploidPhlox drummondii Hook. Biol J Linn Soc Lond 2013. [DOI: 10.1111/bij.12154] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Tanvir H. Dar
- Department of Botany; University of Delhi; Delhi; 110007; India
| | - Soom N. Raina
- Amity Institute of Biotechnology; Amity University; Sector 125; Noida; 201303; UP; India
| | - Shailendra Goel
- Department of Botany; University of Delhi; Delhi; 110007; India
| |
Collapse
|
19
|
Wang ZH, Zhang D, Bai Y, Zhang YH, Liu Y, Wu Y, Lin XY, Wen JW, Xu CM, Li LF, Liu B. Genomewide variation in an introgression line of rice-Zizania revealed by whole-genome re-sequencing. PLoS One 2013; 8:e74479. [PMID: 24058573 PMCID: PMC3776793 DOI: 10.1371/journal.pone.0074479] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Accepted: 07/31/2013] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Hybridization between genetically diverged organisms is known as an important avenue that drives plant genome evolution. The possible outcomes of hybridization would be the occurrences of genetic instabilities in the resultant hybrids. It remained under-investigated however whether pollination by alien pollens of a closely related but sexually "incompatible" species could evoke genomic changes and to what extent it may result in phenotypic novelties in the derived progenies. METHODOLOGY/PRINCIPAL FINDINGS In this study, we have re-sequenced the genomes of Oryza sativa ssp. japonica cv. Matsumae and one of its derived introgressant RZ35 that was obtained from an introgressive hybridization between Matsumae and Zizanialatifolia Griseb. in general, 131 millions 90 base pair (bp) paired-end reads were generated which covered 13.2 and 21.9 folds of the Matsumae and RZ35 genomes, respectively. Relative to Matsumae, a total of 41,724 homozygous single nucleotide polymorphisms (SNPs) and 17,839 homozygous insertions/deletions (indels) were identified in RZ35, of which 3,797 SNPs were nonsynonymous mutations. Furthermore, rampant mobilization of transposable elements (TEs) was found in the RZ35 genome. The results of pathogen inoculation revealed that RZ35 exhibited enhanced resistance to blast relative to Matsumae. Notably, one nonsynonymous mutation was found in the known blast resistance gene Pid3/Pi25 and real-time quantitative (q) RT-PCR analysis revealed constitutive up-regulation of its expression, suggesting both altered function and expression of Pid3/Pi25 may be responsible for the enhanced resistance to rice blast by RZ35. CONCLUSIONS/SIGNIFICANCE Our results demonstrate that introgressive hybridization by Zizania has provoked genomewide, extensive genomic changes in the rice genome, and some of which have resulted in important phenotypic novelties. These findings suggest that introgressive hybridization by alien pollens of even a sexually incompatible species may represent a potent means to generate novel genetic diversities, and which may have played relevant roles in plant evolution and can be manipulated for crop improvements.
Collapse
Affiliation(s)
- Zhen-Hui Wang
- Key Laboratory of Molecular Epigenetics of Ministry of Education (MOE) and Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
- Faculty of Agronomy, Jilin Agricultural University, Changchun, China
| | - Di Zhang
- Key Laboratory of Molecular Epigenetics of Ministry of Education (MOE) and Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Yan Bai
- Key Laboratory of Molecular Epigenetics of Ministry of Education (MOE) and Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Yun-Hong Zhang
- Key Laboratory of Molecular Epigenetics of Ministry of Education (MOE) and Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Ying Liu
- Key Laboratory of Molecular Epigenetics of Ministry of Education (MOE) and Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Ying Wu
- Key Laboratory of Molecular Epigenetics of Ministry of Education (MOE) and Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Xiu-Yun Lin
- Jilin Academy of Agricultural Sciences, Changchun, China
| | - Jia-Wei Wen
- Jilin Academy of Agricultural Sciences, Changchun, China
| | - Chun-Ming Xu
- Key Laboratory of Molecular Epigenetics of Ministry of Education (MOE) and Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Lin-Feng Li
- Key Laboratory of Molecular Epigenetics of Ministry of Education (MOE) and Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
- * E-mail: (LL); (BL)
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of Ministry of Education (MOE) and Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
- * E-mail: (LL); (BL)
| |
Collapse
|
20
|
Fu S, Yang M, Fei Y, Tan F, Ren Z, Yan B, Zhang H, Tang Z. Alterations and abnormal mitosis of wheat chromosomes induced by wheat-rye monosomic addition lines. PLoS One 2013; 8:e70483. [PMID: 23936213 PMCID: PMC3728071 DOI: 10.1371/journal.pone.0070483] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 06/19/2013] [Indexed: 11/18/2022] Open
Abstract
Background Wheat-rye addition lines are an old topic. However, the alterations and abnormal mitotic behaviours of wheat chromosomes caused by wheat-rye monosomic addition lines are seldom reported. Methodology/Principal Findings Octoploid triticale was derived from common wheat T. aestivum L. ‘Mianyang11’×rye S. cereale L. ‘Kustro’ and some progeny were obtained by the controlled backcrossing of triticale with ‘Mianyang11’ followed by self-fertilization. Genomic in situ hybridization (GISH) using rye genomic DNA and fluorescence in situ hybridization (FISH) using repetitive sequences pAs1 and pSc119.2 as probes were used to analyze the mitotic chromosomes of these progeny. Strong pSc119.2 FISH signals could be observed at the telomeric regions of 3DS arms in ‘Mianyang11’. However, the pSc119.2 FISH signals were disappeared from the selfed progeny of 4R monosomic addition line and the changed 3D chromosomes could be transmitted to next generation stably. In one of the selfed progeny of 7R monosomic addition line, one 2D chromosome was broken and three 4A chromosomes were observed. In the selfed progeny of 6R monosomic addition line, structural variation and abnormal mitotic behaviour of 3D chromosome were detected. Additionally, 1A and 4B chromosomes were eliminated from some of the progeny of 6R monosomic addition line. Conclusions/Significance These results indicated that single rye chromosome added to wheat might cause alterations and abnormal mitotic behaviours of wheat chromosomes and it is possible that the stress caused by single alien chromosome might be one of the factors that induced karyotype alteration of wheat.
Collapse
Affiliation(s)
- Shulan Fu
- State Key Laboratory of Plant Breeding and Genetics, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, People’s Republic of China
- * E-mail: (SLF); (ZXT)
| | - Manyu Yang
- State Key Laboratory of Plant Breeding and Genetics, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, People’s Republic of China
| | - Yunyan Fei
- State Key Laboratory of Plant Breeding and Genetics, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, People’s Republic of China
| | - Feiquan Tan
- State Key Laboratory of Plant Breeding and Genetics, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, People’s Republic of China
| | - Zhenglong Ren
- State Key Laboratory of Plant Breeding and Genetics, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, People’s Republic of China
| | - Benju Yan
- State Key Laboratory of Plant Breeding and Genetics, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, People’s Republic of China
| | - Huaiyu Zhang
- State Key Laboratory of Plant Breeding and Genetics, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, People’s Republic of China
| | - Zongxiang Tang
- State Key Laboratory of Plant Breeding and Genetics, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, People’s Republic of China
- * E-mail: (SLF); (ZXT)
| |
Collapse
|
21
|
Tayalé A, Parisod C. Natural pathways to polyploidy in plants and consequences for genome reorganization. Cytogenet Genome Res 2013; 140:79-96. [PMID: 23751271 DOI: 10.1159/000351318] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The last decade highlighted polyploidy as a rampant evolutionary process that triggers drastic genome reorganization, but much remains to be understood about their causes and consequences in both autopolyploids and allopolyploids. Here, we provide an overview of the current knowledge on the pathways leading to different types of polyploids and patterns of polyploidy-induced genome restructuring and functional changes in plants. Available evidence leads to a tentative 'diverge, merge and diverge' model supporting polyploid speciation and stressing patterns of divergence between diploid progenitors as a suitable predictor of polyploid genome reorganization. The merging of genomes at the origin of a polyploid lineage may indeed reveal different kinds of incompatibilities (chromosomal, genic and transposable elements) that have accumulated in diverging progenitors and reduce the fitness of nascent polyploids. Accordingly, successful polyploids have to overcome these incompatibilities through non-Mendelian mechanisms, fostering polyploid genome reorganization in association with the establishment of new lineages. See also sister article focusing on animals by Collares-Pereira et al., in this themed issue.
Collapse
Affiliation(s)
- A Tayalé
- Laboratory of Evolutionary Botany, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | | |
Collapse
|
22
|
Abstract
The wheat group has evolved through allopolyploidization, namely, through hybridization among species from the plant genera Aegilops and Triticum followed by genome doubling. This speciation process has been associated with ecogeographical expansion and with domestication. In the past few decades, we have searched for explanations for this impressive success. Our studies attempted to probe the bases for the wide genetic variation characterizing these species, which accounts for their great adaptability and colonizing ability. Central to our work was the investigation of how allopolyploidization alters genome structure and expression. We found in wheat that allopolyploidy accelerated genome evolution in two ways: (1) it triggered rapid genome alterations through the instantaneous generation of a variety of cardinal genetic and epigenetic changes (which we termed "revolutionary" changes), and (2) it facilitated sporadic genomic changes throughout the species' evolution (i.e., evolutionary changes), which are not attainable at the diploid level. Our major findings in natural and synthetic allopolyploid wheat indicate that these alterations have led to the cytological and genetic diploidization of the allopolyploids. These genetic and epigenetic changes reflect the dynamic structural and functional plasticity of the allopolyploid wheat genome. The significance of this plasticity for the successful establishment of wheat allopolyploids, in nature and under domestication, is discussed.
Collapse
|
23
|
Fu S, Sun C, Yang M, Fei Y, Tan F, Yan B, Ren Z, Tang Z. Genetic and epigenetic variations induced by wheat-rye 2R and 5R monosomic addition lines. PLoS One 2013; 8:e54057. [PMID: 23342073 PMCID: PMC3544662 DOI: 10.1371/journal.pone.0054057] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 12/05/2012] [Indexed: 11/19/2022] Open
Abstract
Background Monosomic alien addition lines (MAALs) can easily induce structural variation of chromosomes and have been used in crop breeding; however, it is unclear whether MAALs will induce drastic genetic and epigenetic alterations. Methodology/Principal Findings In the present study, wheat-rye 2R and 5R MAALs together with their selfed progeny and parental common wheat were investigated through amplified fragment length polymorphism (AFLP) and methylation-sensitive amplification polymorphism (MSAP) analyses. The MAALs in different generations displayed different genetic variations. Some progeny that only contained 42 wheat chromosomes showed great genetic/epigenetic alterations. Cryptic rye chromatin has introgressed into the wheat genome. However, one of the progeny that contained cryptic rye chromatin did not display outstanding genetic/epigenetic variation. 78 and 49 sequences were cloned from changed AFLP and MSAP bands, respectively. Blastn search indicated that almost half of them showed no significant similarity to known sequences. Retrotransposons were mainly involved in genetic and epigenetic variations. Genetic variations basically affected Gypsy-like retrotransposons, whereas epigenetic alterations affected Copia-like and Gypsy-like retrotransposons equally. Genetic and epigenetic variations seldom affected low-copy coding DNA sequences. Conclusions/Significance The results in the present study provided direct evidence to illustrate that monosomic wheat-rye addition lines could induce different and drastic genetic/epigenetic variations and these variations might not be caused by introgression of rye chromatins into wheat. Therefore, MAALs may be directly used as an effective means to broaden the genetic diversity of common wheat.
Collapse
Affiliation(s)
- Shulan Fu
- State Key Laboratory of Plant Breeding and Genetics, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, People’s Republic of China
- * E-mail: (SLF); (ZLR)
| | - Chuanfei Sun
- State Key Laboratory of Plant Breeding and Genetics, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, People’s Republic of China
| | - Manyu Yang
- State Key Laboratory of Plant Breeding and Genetics, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, People’s Republic of China
| | - Yunyan Fei
- State Key Laboratory of Plant Breeding and Genetics, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, People’s Republic of China
| | - Feiqun Tan
- State Key Laboratory of Plant Breeding and Genetics, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, People’s Republic of China
| | - Benju Yan
- State Key Laboratory of Plant Breeding and Genetics, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, People’s Republic of China
| | - Zhenglong Ren
- State Key Laboratory of Plant Breeding and Genetics, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, People’s Republic of China
- * E-mail: (SLF); (ZLR)
| | - Zongxiang Tang
- State Key Laboratory of Plant Breeding and Genetics, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, People’s Republic of China
| |
Collapse
|
24
|
Feldman M, Levy AA, Fahima T, Korol A. Genomic asymmetry in allopolyploid plants: wheat as a model. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:5045-59. [PMID: 22859676 DOI: 10.1093/jxb/ers192] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The evolvement of duplicated gene loci in allopolyploid plants has become the subject of intensive studies. Most duplicated genes remain active in neoallopolyploids contributing either to a favourable effect of an extra gene dosage or to the build-up of positive inter-genomic interactions when genes or regulation factors on homoeologous chromosomes are divergent. However, in a small number of loci (about 10%), genes of only one genome are active, while the homoeoalleles on the other genome(s) are either eliminated or partially or completely suppressed by genetic or epigenetic means. For several traits, the retention of controlling genes is not random, favouring one genome over the other(s). Such genomic asymmetry is manifested in allopolyploid wheat by the control of various morphological and agronomical traits, in the production of rRNA and storage proteins, and in interaction with pathogens. It is suggested that the process of cytological diploidization leading to exclusive intra-genomic meiotic pairing and, consequently, to complete avoidance of inter-genomic recombination, has two contrasting effects. Firstly, it provides a means for the fixation of positive heterotic inter-genomic interactions and also maintains genomic asymmetry resulting from loss or silencing of genes. The possible mechanisms and evolutionary advantages of genomic asymmetry are discussed.
Collapse
Affiliation(s)
- Moshe Feldman
- Department of Plant Sciences, The Weizmann Institute of Science, Rehovot 76100, Israel.
| | | | | | | |
Collapse
|
25
|
Triplett JK, Wang Y, Zhong J, Kellogg EA. Five nuclear loci resolve the polyploid history of switchgrass (Panicum virgatum L.) and relatives. PLoS One 2012; 7:e38702. [PMID: 22719924 PMCID: PMC3377691 DOI: 10.1371/journal.pone.0038702] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 05/11/2012] [Indexed: 11/18/2022] Open
Abstract
Polyploidy poses challenges for phylogenetic reconstruction because of the need to identify and distinguish between homoeologous loci. This can be addressed by use of low copy nuclear markers. Panicum s.s. is a genus of about 100 species in the grass tribe Paniceae, subfamily Panicoideae, and is divided into five sections. Many of the species are known to be polyploids. The most well-known of the Panicum polyploids are switchgrass (Panicum virgatum) and common or Proso millet (P. miliaceum). Switchgrass is in section Virgata, along with P. tricholaenoides, P. amarum, and P. amarulum, whereas P. miliaceum is in sect. Panicum. We have generated sequence data from five low copy nuclear loci and two chloroplast loci and have clarified the origin of P. virgatum. We find that all members of sects. Virgata and Urvilleana are the result of diversification after a single allopolyploidy event. The closest diploid relatives of switchgrass are in sect. Rudgeana, native to Central and South America. Within sections Virgata and Urvilleana, P. tricholaenoides is sister to the remaining species. Panicum racemosum and P. urvilleanum form a clade, which may be sister to P. chloroleucum. Panicum amarum, P. amarulum, and the lowland and upland ecotypes of P. virgatum together form a clade, within which relationships are complex. Hexaploid and octoploid plants are likely allopolyploids, with P. amarum and P. amarulum sharing genomes with P. virgatum. Octoploid P. virgatum plants are formed via hybridization between disparate tetraploids. We show that polyploidy precedes diversification in a complex set of polyploids; our data thus suggest that polyploidy could provide the raw material for diversification. In addition, we show two rounds of allopolyploidization in the ancestry of switchgrass, and identify additional species that may be part of its broader gene pool. This may be relevant for development of the crop for biofuels.
Collapse
Affiliation(s)
- Jimmy K. Triplett
- Department of Biology, University of Missouri-Saint Louis, Saint Louis, Missouri, United States of America
| | - Yunjing Wang
- Department of Biology, University of Missouri-Saint Louis, Saint Louis, Missouri, United States of America
| | - Jinshun Zhong
- Department of Biology, University of Missouri-Saint Louis, Saint Louis, Missouri, United States of America
| | - Elizabeth A. Kellogg
- Department of Biology, University of Missouri-Saint Louis, Saint Louis, Missouri, United States of America
| |
Collapse
|
26
|
Dou QW, Lei Y, Li X, Mott IW, Wang RRC. Characterization of alien chromosomes in backcross derivatives of Triticum aestivum × Elymus rectisetus hybrids by using molecular markers and sequential multicolor FISH/GISH. Genome 2012; 55:337-47. [DOI: 10.1139/g2012-018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Wild Triticeae grasses serve as important gene pools for forage and cereal crops. Based on DNA sequences of genome-specific RAPD markers, sequence-tagged site (STS) markers specific for W and Y genomes have been obtained. Coupling with the use of genomic in situ hybridization, these STS markers enabled the identification of the W- and Y-genome chromosomes in backcross derivatives from hybrids of bread wheat Triticum aestivum L. (2n = 42; AABBDD) and Elymus rectisetus (Nees in Lehm.) Á. Löve & Connor (2n = 42; StStWWYY). The detection of six different alien chromosomes in five of these derivatives was ascertained by quantitative PCR of STS markers, simple sequence repeat markers, rDNA genes, and (or) multicolor florescence in situ hybridization. Disomic addition line 4687 (2n = 44) has the full complement of 42 wheat chromosomes and a pair of 1Y chromosomes that carry genes for resistance to tan spot (caused by Pyrenophora tritici-repentis (Died.) Drechs.) and Stagonospora nodorum blotch (caused by Stagonospora nodorum (Berk.) Castellani and Germano). The disomic addition line 4162 has a pair of 1St chromosomes and 21 pairs of wheat chromosomes. Lines 4319 and 5899 are two triple substitution lines (2n = 42) having the same chromosome composition, with 2A, 4B, and 6D of wheat substituted by one pair of W- and two pairs of St-genome chromosomes. Line 4434 is a substitution–addition line (2n = 44) that has the same W- and St-genome chromosomes substituting 2A, 4B, and 6D of wheat as in lines 4319 and 5899 but differs by having an additional pair of Y-genome chromosome, which is not the 1Y as in line 4687. The production and identification of these alien cytogenetic stocks may help locate and isolate genes for useful agronomic traits.
Collapse
Affiliation(s)
- Quan-Wen Dou
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Plateau Institute of Biology, Chinese Academy of Sciences, Xining, 810008, China
| | - Yunting Lei
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Plateau Institute of Biology, Chinese Academy of Sciences, Xining, 810008, China
| | - Xiaomei Li
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Ivan W. Mott
- United States Department of Agriculture, Agricultural Research Service, Forage and Range Research Laboratory, Utah State University, Logan, UT 84322-6300, USA
| | - Richard R.-C. Wang
- United States Department of Agriculture, Agricultural Research Service, Forage and Range Research Laboratory, Utah State University, Logan, UT 84322-6300, USA
| |
Collapse
|
27
|
Qi B, Huang W, Zhu B, Zhong X, Guo J, Zhao N, Xu C, Zhang H, Pang J, Han F, Liu B. Global transgenerational gene expression dynamics in two newly synthesized allohexaploid wheat (Triticum aestivum) lines. BMC Biol 2012; 10:3. [PMID: 22277161 PMCID: PMC3313882 DOI: 10.1186/1741-7007-10-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 01/26/2012] [Indexed: 12/30/2022] Open
Abstract
Background Alteration in gene expression resulting from allopolyploidization is a prominent feature in plants, but its spectrum and extent are not fully known. Common wheat (Triticum aestivum) was formed via allohexaploidization about 10,000 years ago, and became the most important crop plant. To gain further insights into the genome-wide transcriptional dynamics associated with the onset of common wheat formation, we conducted microarray-based genome-wide gene expression analysis on two newly synthesized allohexaploid wheat lines with chromosomal stability and a genome constitution analogous to that of the present-day common wheat. Results Multi-color GISH (genomic in situ hybridization) was used to identify individual plants from two nascent allohexaploid wheat lines between Triticum turgidum (2n = 4x = 28; genome BBAA) and Aegilops tauschii (2n = 2x = 14; genome DD), which had a stable chromosomal constitution analogous to that of common wheat (2n = 6x = 42; genome BBAADD). Genome-wide analysis of gene expression was performed for these allohexaploid lines along with their parental plants from T. turgidum and Ae. tauschii, using the Affymetrix Gene Chip Wheat Genome-Array. Comparison with the parental plants coupled with inclusion of empirical mid-parent values (MPVs) revealed that whereas the great majority of genes showed the expected parental additivity, two major patterns of alteration in gene expression in the allohexaploid lines were identified: parental dominance expression and non-additive expression. Genes involved in each of the two altered expression patterns could be classified into three distinct groups, stochastic, heritable and persistent, based on their transgenerational heritability and inter-line conservation. Strikingly, whereas both altered patterns of gene expression showed a propensity of inheritance, identity of the involved genes was highly stochastic, consistent with the involvement of diverse Gene Ontology (GO) terms. Nonetheless, those genes showing non-additive expression exhibited a significant enrichment for vesicle-function. Conclusions Our results show that two patterns of global alteration in gene expression are conditioned by allohexaploidization in wheat, that is, parental dominance expression and non-additive expression. Both altered patterns of gene expression but not the identity of the genes involved are likely to play functional roles in stabilization and establishment of the newly formed allohexaploid plants, and hence, relevant to speciation and evolution of T. aestivum.
Collapse
Affiliation(s)
- Bao Qi
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Marques I, Nieto Feliner G, Martins-Loução MA, Fuertes Aguilar J. Genome size and base composition variation in natural and experimental Narcissus (Amaryllidaceae) hybrids. ANNALS OF BOTANY 2012; 109:257-64. [PMID: 22080093 PMCID: PMC3241596 DOI: 10.1093/aob/mcr282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
BACKGROUND AND AIMS Although there is evidence that both allopolyploid and homoploid hybridization lead to rapid genomic changes, much less is known about hybrids from parents with different basic numbers without further chromosome doubling. Two natural hybrids, Narcissus × alentejanus (2n = 19) and N. × perezlarae (2n = 29), originated by one progenitor (N. cavanillesii, 2n = 28) and two others (N. serotinus, 2n = 10 and N. miniatus, 2n = 30, respectively) allow us to study how DNA content and composition varies in such hybrids. METHODS Flow cytometry measurements with two staining techniques, PI and DAPI, were used to estimate 2C values and base composition (AT/GC ratio) in 390 samples from 54 wild populations of the two natural hybrids and their parental species. In addition, 20 synthetic F(1) hybrid individuals were also studied for comparison. KEY RESULTS Natural hybrids presented 2C values intermediate between those found in their parental species, although intra-population variance was very high in both hybrids, particularly for PI. Genome size estimated from DAPI was higher in synthetic hybrids than in hybrids from natural populations. In addition, differences for PI 2C values were detected between synthetic reciprocal crosses, attributable to maternal effects, as well as between natural hybrids and those synthetic F(1) hybrids in which N. cavanillesii acted as a mother. CONCLUSIONS Our results suggest that natural hybrid populations are composed of a mixture of markedly different hybrid genotypes produced either by structural chromosome changes, consistent with classic cytogenetic studies in Narcissus, or by transposon-mediated events.
Collapse
Affiliation(s)
- Isabel Marques
- Universidade de Lisboa, Museu Nacional de História Natural, Jardim Botânico, Lisbon, Portugal.
| | | | | | | |
Collapse
|
29
|
Okuyama Y, Tanabe AS, Kato M. Entangling ancient allotetraploidization in Asian Mitella: an integrated approach for multilocus combinations. Mol Biol Evol 2011; 29:429-39. [PMID: 21940642 DOI: 10.1093/molbev/msr236] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The reconstruction of an ancient polyploidization history is often challenging, although it is a crucial step in clarifying the mechanisms underlying the contemporary success and diversity of polyploids. Phylogenetic relationships of duplicated gene pairs of polyploids, with respect to their orthologs in related diploids, have been used to address this problem, but they often result in conflicting topologies among different genes. Asimitellaria is an East Asian endemic tetraploid lineage of perennials (genus Mitella; Saxifragaceae) that has diversified in riparian habitats. Phylogenetic analyses of four nuclear-encoded, single-copy (per haploid) genes GBSSI-A, GBSSI-B, GS-II, and PepCK all supported a single allopolyploid origin of Asimitellaria, but they did not lead to a consensus about which diploid lineage gave rise to each of the Asimitellaria subgenomes. To address this issue, we used an integrated approach, whereby the four gene data sets and an additional nuclear ribosomal external transcribed spacer and internal transcribed spacer (including a 5.8S ribosomal DNA) data set were concatenated in all possible combinations, and the most probable data combination was determined together with the phylogenetic inference. This resulted in relatively robust support for the two closely related North American diploid species as the ancestral lineages of the Asimitellaria subgenomes, suggesting ancient intercontinental migration of the diploid or tetraploid lineages and subsequent tetraploid diversification in the Japanese Archipelago. The present approach enabled sorting out the duplicated genes into their original combinations in their preduplication ancestors under a maximum-likelihood framework, and its extension toward genome sequencing data may help in the reconstruction of ancestral, preduplicated, whole-genome structures.
Collapse
Affiliation(s)
- Yudai Okuyama
- Tsukuba Botanical Garden, National Museum of Nature and Science, Tsukuba, Ibaraki, Japan.
| | | | | |
Collapse
|
30
|
Zhao N, Xu L, Zhu B, Li M, Zhang H, Qi B, Xu C, Han F, Liu B. Chromosomal and genome-wide molecular changes associated with initial stages of allohexaploidization in wheat can be transit and incidental. Genome 2011; 54:692-9. [DOI: 10.1139/g11-028] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Genomic instability can be induced by nascent allopolyploidization in plants. However, most previous studies have not defined to what extent the allopolyploidy-induced rapid genomic instability represents a general response, and hence important to evolution, or merely incidental events occurring stochastically in a limited number of individuals. We report here that in a newly formed allohexaploid wheat line between tetraploid wheat Triticum turgidum subsp. durum (genome BBAA) and Aegilops tauschii (genome DD) a great majority of individual plants showed chromosomal stability and exhibited a genomic constitution similar to that of the present-day Triticum aestivum (genome BBAADD). In contrast, a single individual plant was identified at S2, which exhibited chromosomal instability in both number and structure based on multicolor genomic in situ hybridization (mc-GISH) analysis. Accordingly, this plant also manifested extensive changes at the molecular level including loss and gain of DNA segments and DNA methylation repatterning. Remarkably, the chromosomal and molecular instabilities that presumably occurred at S0 to S1 and (or) in the F1 hybrid were rapidly quenched by S2 and followed by stable transgenerational inheritance. Our results suggest that these stochastic and individual-specific rapid genomic changes, albeit interesting, probably have not played a major role in the speciation and evolution of common wheat, T. aestivum.
Collapse
Affiliation(s)
- Na Zhao
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Institute of Genetics & Cytology, Northeast Normal University, Changchun 130024, China
| | - Liying Xu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Institute of Genetics & Cytology, Northeast Normal University, Changchun 130024, China
| | - Bo Zhu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Institute of Genetics & Cytology, Northeast Normal University, Changchun 130024, China
| | - Mingjiu Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Institute of Genetics & Cytology, Northeast Normal University, Changchun 130024, China
| | - Huakun Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Institute of Genetics & Cytology, Northeast Normal University, Changchun 130024, China
| | - Bao Qi
- State Key Laboratory of Plant Chromosome & Cell Engineering, Institute of Genetics & Developmental Biology, Chinese Academy of Sciences, Beijing 101110, China
| | - Chunming Xu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Institute of Genetics & Cytology, Northeast Normal University, Changchun 130024, China
| | - Fangpu Han
- State Key Laboratory of Plant Chromosome & Cell Engineering, Institute of Genetics & Developmental Biology, Chinese Academy of Sciences, Beijing 101110, China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Institute of Genetics & Cytology, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
31
|
Zhao N, Zhu B, Li M, Wang L, Xu L, Zhang H, Zheng S, Qi B, Han F, Liu B. Extensive and heritable epigenetic remodeling and genetic stability accompany allohexaploidization of wheat. Genetics 2011; 188:499-510. [PMID: 21515577 PMCID: PMC3176545 DOI: 10.1534/genetics.111.127688] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Accepted: 04/04/2011] [Indexed: 01/06/2023] Open
Abstract
Allopolyploidy has played a prominent role in organismal evolution, particularly in angiosperms. Allohexaploidization is a critical step leading to the formation of common wheat as a new species, Triticum aestivum, as well as for bestowing its remarkable adaptability. A recent study documented that the initial stages of wheat allohexaploidization was associated with rampant genetic and epigenetic instabilities at genomic regions flanking a retrotransposon family named Veju. Although this finding is in line with the prevailing opinion of rapid genomic instability associated with nascent plant allopolyploidy, its relevance to speciation of T. aestivum remains unclear. Here, we show that genetic instability at genomic regions flanking the Veju, flanking a more abundant retroelement BARE-1, as well as at a large number of randomly sampled genomic loci, is all extremely rare or nonexistent in preselected individuals representing three sets of independently formed nascent allohexaploid wheat lines, which had a transgenerationally stable genomic constitution analogous to that of T. aestivum. In contrast, extensive and transgenerationally heritable repatterning of DNA methylation at all three kinds of genomic loci were reproducibly detected. Thus, our results suggest that rampant genetic instability associated with nascent allohexaploidization in wheat likely represents incidental and anomalous phenomena that are confined to by-product individuals inconsequential to the establishment of the newly formed plants toward speciation of T. aestivum; instead, extensive and heritable epigenetic remodeling coupled with preponderant genetic stability is generally associated with nascent wheat allohexaploidy, and therefore, more likely a contributory factor to the speciation event(s).
Collapse
Affiliation(s)
- Na Zhao
- Key Laboratory of Molecular Epigenetics of Ministry of Education and Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China
- Department of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Bo Zhu
- Key Laboratory of Molecular Epigenetics of Ministry of Education and Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China
| | - Mingjiu Li
- Key Laboratory of Molecular Epigenetics of Ministry of Education and Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China
| | - Li Wang
- Key Laboratory of Molecular Epigenetics of Ministry of Education and Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China
| | - Liying Xu
- Key Laboratory of Molecular Epigenetics of Ministry of Education and Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China
| | - Huakun Zhang
- Key Laboratory of Molecular Epigenetics of Ministry of Education and Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China
| | - Shuangshuang Zheng
- Key Laboratory of Molecular Epigenetics of Ministry of Education and Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China
| | - Bao Qi
- State Key Laboratory of Plant Chromosome and Cell Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 101110, China
| | - Fangpu Han
- State Key Laboratory of Plant Chromosome and Cell Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 101110, China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of Ministry of Education and Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
32
|
Yaakov B, Kashkush K. Methylation, transcription, and rearrangements of transposable elements in synthetic allopolyploids. INTERNATIONAL JOURNAL OF PLANT GENOMICS 2011; 2011:569826. [PMID: 21760771 PMCID: PMC3134107 DOI: 10.1155/2011/569826] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Accepted: 03/15/2011] [Indexed: 05/18/2023]
Abstract
Transposable elements (TEs) constitute over 90% of the wheat genome. It was suggested that "genomic stress" such as hybridity or polyploidy might activate transposons. Intensive investigations of various polyploid systems revealed that allopolyploidization event is associated with widespread changes in genome structure, methylation, and expression involving low- and high-copy, coding and noncoding sequences. Massive demethylation and transcriptional activation of TEs were also observed in newly formed allopolyploids. Massive proliferation, however, was reported for very limited number of TE families in various polyploidy systems. The aim of this review is to summarize the accumulated data on genetic and epigenetic dynamics of TEs, particularly in synthetic allotetraploid and allohexaploid wheat species. In addition, the underlying mechanisms and the potential biological significance of TE dynamics following allopolyploidization are discussed.
Collapse
Affiliation(s)
- Beery Yaakov
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Khalil Kashkush
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| |
Collapse
|
33
|
Tian E, Jiang Y, Chen L, Zou J, Liu F, Meng J. Synthesis of a Brassica trigenomic allohexaploid (B. carinata × B. rapa) de novo and its stability in subsequent generations. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2010; 121:1431-40. [PMID: 20607208 DOI: 10.1007/s00122-010-1399-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Accepted: 06/19/2010] [Indexed: 05/11/2023]
Abstract
Allopolyploidy plays an important role in plant evolution and confers obvious advantages on crop growth and breeding compared to low ploidy levels. The present investigation was aimed at synthesising the first known chromosomally stable hexaploid Brassica with the genome constitution AABBCC. More than 2,000 putative hexaploid plants were obtained through large-scale hybridisation from various combinations of crosses between different cultivars of Brassica carinata (BBCC) and B. rapa (AA). The majority of plants after two generations of selfing within selected hexaploid plants (H(2)) were aneuploid, and only 80 plants (4.6%) had the expected hexaploid chromosome number (2n = 54). The hexaploid ratio increased to an average of 23.0 and 26.3% in the H(3) and H(4) generations, respectively, and was accompanied by an increase in pollen fertility. The appearance of aneuploid plants in each generation could be detected having various chromosomal abnormalities at meiosis. The frequency of hexaploid plants varied significantly among different cultivar combinations, from 0 to 56% in the H(4) generation, and it showed a positive correlation with pollen fertility. The frequency of SSR allelic fragments lost or novel alleles gained was significantly lower in H(4) than in H(2) and H(3), which reflects increasing genome stability in H(4). The A and C genomes were significantly less stable than the B genome, which may mainly result from frequent homoeologous pairing and rearrangements between the A and C genomes. Methods to establish a stable hexaploid Brassica crop by intercrossing these lines followed by intensive selection are also discussed.
Collapse
Affiliation(s)
- Entang Tian
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 1 Shizishan, 430070, Wuhan, China
| | | | | | | | | | | |
Collapse
|
34
|
Generality and characteristics of genetic and epigenetic changes in newly synthesized allotetraploid wheat lines. J Genet Genomics 2010; 37:737-48. [DOI: 10.1016/s1673-8527(09)60091-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Revised: 09/22/2010] [Accepted: 09/24/2010] [Indexed: 01/25/2023]
|
35
|
Li X, Guo W, Wang B, Li X, Chen H, Wei L, Wang Y, Wu J, Long H. Instability of chromosome number and DNA methylation variation induced by hybridization and amphidiploid formation between Raphanus sativus L. and Brassica alboglabra Bailey. BMC PLANT BIOLOGY 2010; 10:207. [PMID: 20849584 PMCID: PMC2956556 DOI: 10.1186/1471-2229-10-207] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Accepted: 09/17/2010] [Indexed: 05/29/2023]
Abstract
BACKGROUND Distant hybridization can result genome duplication and allopolyploid formation which may play a significant role in the origin and evolution of many plant species. It is unclear how the two or more divergent genomes coordinate in one nucleus with a single parental cytoplasm within allopolyploids. We used cytological and molecular methods to investigate the genetic and epigenetic instabilities associated with the process of distant hybridization and allopolyploid formation, measuring changes in chromosome number and DNA methylation across multiple generations. RESULTS F1 plants from intergeneric hybridization between Raphanus sativus L. (2n = 18, RR) and Brassica alboglabra Bailey (2n = 18, CC) were obtained by hand crosses and subsequent embryo rescue. Random amplification of polymorphic DNA (RAPD) markers were used to identify the F1 hybrid plants. The RAPD data indicated that the hybrids produced specific bands similar to those of parents and new bands that were not present in either parent. Chromosome number variation of somatic cells from allotetraploids in the F4 to F10 generations showed that intensive genetic changes occurred in the early generations of distant hybridization, leading to the formation of mixopolyploids with different chromosome numbers. DNA methylation variation was revealed using MSAP (methylation-sensitive amplification polymorphism), which showed that cytosine methylation patterns changed markedly in the process of hybridization and amphidiploid formation. Differences in cytosine methylation levels demonstrated an epigenetic instability of the allopolyploid of Raphanobrassica between the genetically stable and unstable generations. CONCLUSIONS Our results showed that chromosome instability occurred in the early generations of allopolyploidy and then the plants were reverted to largely euploidy in later generations. During this process, DNA methylation changed markedly. These results suggest that, epigenetic mechanisms play an important role in intergeneric distant hybridization, probably by maintaining a genetic balance through the modification of existing genetic materials.
Collapse
Affiliation(s)
- Xuanli Li
- College of Life Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Weiwei Guo
- College of Life Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bing Wang
- College of Life Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiangsong Li
- College of Life Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Honggao Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lihua Wei
- College of Life Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yanjie Wang
- College of Life Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jiangsheng Wu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hong Long
- College of Life Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
36
|
Genetic and epigenetic dynamics of a retrotransposon after allopolyploidization of wheat. Genetics 2010; 186:801-12. [PMID: 20823338 DOI: 10.1534/genetics.110.120790] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Allopolyploidy, or the combination of two or more distinct genomes in one nucleus, is usually accompanied by radical genomic changes involving transposable elements (TEs). The dynamics of TEs after an allopolyploidization event are poorly understood. In this study, we analyzed the methylation state and genetic rearrangements of a high copied, newly amplified terminal-repeat retrotransposon in miniature (TRIM) family in wheat termed Veju. We found that Veju insertion sites underwent massive methylation changes in the first four generations of a newly formed wheat allohexaploid. Hypomethylation or hypermethylation occurred in ∼43% of the tested insertion sites; while hypomethylation was significantly predominant in the first three generations of the newly formed allohexaploid, hypermethylation became predominant in the subsequent generation. In addition, we determined that the methylation state of Veju long terminal repeats (LTRs) might be correlated with the deletion and/or insertion of the TE. While most of the methylation changes and deletions of Veju occurred in the first generation of the newly formed allohexaploid, most Veju insertions were seen in the second generation. Finally, using quantitative PCR, we quantitatively assessed the genome composition of Veju in the newly formed allohexaploid and found that up to 50% of Veju LTRs were deleted in the first generation. Retrotransposition bursts in subsequent generations, however, led to increases in Veju elements. In light of these findings, the underlying mechanisms of TRIM rearrangements are discussed.
Collapse
|
37
|
Ammiraju JSS, Fan C, Yu Y, Song X, Cranston KA, Pontaroli AC, Lu F, Sanyal A, Jiang N, Rambo T, Currie J, Collura K, Talag J, Bennetzen JL, Chen M, Jackson S, Wing RA. Spatio-temporal patterns of genome evolution in allotetraploid species of the genus Oryza. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 63:430-42. [PMID: 20487382 DOI: 10.1111/j.1365-313x.2010.04251.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Despite knowledge that polyploidy is widespread and a major evolutionary force in flowering plant diversification, detailed comparative molecular studies on polyploidy have been confined to only a few species and families. The genus Oryza is composed of 23 species that are classified into ten distinct 'genome types' (six diploid and four polyploid), and is emerging as a powerful new model system to study polyploidy. Here we report the identification, sequence and comprehensive comparative annotation of eight homoeologous genomes from a single orthologous region (Adh1-Adh2) from four allopolyploid species representing each of the known Oryza genome types (BC, CD, HJ and KL). Detailed comparative phylogenomic analyses of these regions within and across species and ploidy levels provided several insights into the spatio-temporal dynamics of genome organization and evolution of this region in 'natural' polyploids of Oryza. The major findings of this study are that: (i) homoeologous genomic regions within the same nucleus experience both independent and parallel evolution, (ii) differential lineage-specific selection pressures do not occur between polyploids and their diploid progenitors, (iii) there have been no dramatic structural changes relative to the diploid ancestors, (iv) a variation in the molecular evolutionary rate exists between the two genomes in the BC complex species even though the BC and CD polyploid species appear to have arisen <2 million years ago, and (v) there are no clear distinctions in the patterns of genome evolution in the diploid versus polyploid species.
Collapse
Affiliation(s)
- Jetty S S Ammiraju
- Arizona Genomics Institute, School of Plant Sciences, BIO5 Institute, University of Arizona, Tucson, AZ 85721, USABiodiversity Synthesis Center, Field Museum of Natural History, 1400 South Lake Shore Drive, Chicago, IL 60605, USADepartment of Genetics, University of Georgia, Athens, GA 30602-7223, USAState Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, ChinaDepartment of Agronomy, Purdue University, West Lafayette, IN 47907-2054, USADepartment of Horticulture, Michigan State University, East Lansing, MI 48823, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Bento M, Gustafson P, Viegas W, Silva M. Genome merger: from sequence rearrangements in triticale to their elimination in wheat-rye addition lines. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2010; 121:489-497. [PMID: 20383487 DOI: 10.1007/s00122-010-1325-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Accepted: 03/12/2010] [Indexed: 05/29/2023]
Abstract
Genetic and epigenetic modifications resulting from different genomes adjusting to a common nuclear environment have been observed in polyploids. Sequence restructuring within genomes involving retrotransposon/microsatellite-rich regions has been reported in triticale. The present study uses inter-retrotransposon amplified polymorphisms (IRAP) and retrotransposon microsatellite amplified polymorphisms (REMAP) to assess genome rearrangements in wheat-rye addition lines obtained by the controlled backcrossing of octoploid triticale to hexaploid wheat followed by self-fertilization. The comparative analysis of IRAP and REMAP banding profiles, involving a complete set of wheat-rye addition lines, and their parental species revealed in those lines the presence of wheat-origin bands absent in triticale, and the absence of rye-origin and triticale-specific bands. The presence in triticale x wheat backcrosses (BC) of rye-origin bands that were absent in the addition lines demonstrated that genomic rearrangement events were not a direct consequence of backcrossing, but resulted from further genome structural rearrangements in the BC plant progeny. PCR experiments using primers designed from different rye-origin sequences showed that the absence of a rye-origin band in wheat-rye addition lines results from sequence elimination rather than restrict changes on primer annealing sites, as noted in triticale. The level of genome restructuring events evaluated in all seven wheat-rye addition lines, compared to triticale, indicated that the unbalanced genome merger situation observed in the addition lines induced a new round of genome rearrangement, suggesting that the lesser the amount of rye chromatin introgressed into wheat the larger the outcome of genome reshuffling.
Collapse
Affiliation(s)
- Miguel Bento
- Centro de Botânica Aplicada à Agricultura, Secção de Genética, Instituto Superior de Agronomia, Technical University of Lisbon, Tapada da Ajuda, 1349-017, Lisbon, Portugal
| | | | | | | |
Collapse
|
39
|
Application of food and feed safety assessment principles to evaluate transgenic approaches to gene modulation in crops. Food Chem Toxicol 2010; 48:1773-90. [DOI: 10.1016/j.fct.2010.04.017] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Revised: 04/03/2010] [Accepted: 04/12/2010] [Indexed: 11/15/2022]
|
40
|
Genome Size in Diploids, Allopolyploids, and Autopolyploids of Mediterranean Triticeae. ACTA ACUST UNITED AC 2010. [DOI: 10.1155/2010/341380] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Nuclear DNA amount, determined by the flow cytometry method, in diploids, natural and synthetic allopolyploids, and natural and synthetic autopolyploids of the tribe Triticeae (Poaceae) is reviewed here and discussed. In contrast to the very small and nonsignificant variation in nuclear DNA amount that was found at the intraspecific level, the variation at the interspecific level is very large. Evidently changes in genome size are either the cause or the result of speciation. Typical autopolyploids had the expected additive DNA amount of their diploid parents, whereas natural and synthetic cytologically diploidized autopolyploids and natural and synthetic allopolyploids had significantly less DNA than the sum of their parents. Thus, genome downsizing, occurring during or immediately after the formation of these polyploids, provides the physical basis for their cytological diploidization, that is, diploid-like meiotic behavior. Possible mechanisms that are involved in genome downsizing and the biological significance of this phenomenon are discussed.
Collapse
|
41
|
Mestiri I, Chagué V, Tanguy AM, Huneau C, Huteau V, Belcram H, Coriton O, Chalhoub B, Jahier J. Newly synthesized wheat allohexaploids display progenitor-dependent meiotic stability and aneuploidy but structural genomic additivity. THE NEW PHYTOLOGIST 2010; 186:86-101. [PMID: 20149116 DOI: 10.1111/j.1469-8137.2010.03186.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
To understand key mechanisms leading to stabilized allopolyploid species, we characterized the meiotic behaviour of wheat allohexaploids in relation to structural and genetic changes. For that purpose, we analysed first generations of synthetic allohexaploids obtained through interspecific hybridization, followed by spontaneous chromosome doubling, between several genotypes of Triticum turgidum and Aegilops tauschii wheat species, donors of AB and D genomes, respectively. As expected for these Ph1 (Pairing homoeologous 1) gene-carrying allopolyploids, chromosome pairing at metaphase I of meiosis essentially occurs between homologous chromosomes. However, the different synthetic allohexaploids exhibited progenitor-dependent meiotic irregularities, such as incomplete homologous pairing, resulting in univalent formation and leading to aneuploidy in the subsequent generation. Stability of the synthetic allohexaploids was shown to depend on the considered genotypes of both AB and D genome progenitors, where few combinations compare to the natural wheat allohexaploid in terms of regularity of meiosis and euploidy. Aneuploidy represents the only structural change observed in these synthetic allohexaploids, as no apparent DNA sequence elimination or rearrangement was observed when analysing euploid plants with molecular markers, developed from expressed sequence tags (ESTs) as well as simple sequence repeat (SSR) and transposable element sequences.
Collapse
Affiliation(s)
- Imen Mestiri
- Organization and Evolution of Plant Genomes, Unité de Recherche en Génomique Végétale, 91057 Evry Cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
The elimination of DNA sequences following allopolyploidization is a well-known phenomenon. Yet, nothing is known about the biological significance, the mechanism, or the precise developmental timing of this event. In this study, we have observed reproducible elimination of an Aegilops tauschii allele in the genome of the second generation (S2) of a newly synthesized allohexaploid derived from a cross between Triticum turgidum and Ae. tauschii. We show that elimination of the Ae. tauschii allele did not occur in germ cells but instead occurred during S2 embryo development. This work shows that deletion of DNA sequences following allopolyploidization might occur also in a tissue-specific manner.
Collapse
|
43
|
Genome evolution in allopolyploid wheat--a revolutionary reprogramming followed by gradual changes. J Genet Genomics 2009; 36:511-8. [PMID: 19782952 DOI: 10.1016/s1673-8527(08)60142-3] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2009] [Revised: 07/15/2009] [Accepted: 07/16/2009] [Indexed: 11/22/2022]
Abstract
Allopolyploidy accelerates genome evolution in wheat in two ways: 1) allopolyploidization triggers rapid genome alterations (revolutionary changes) through the instantaneous generation of a variety of cardinal genetic and epigenetic changes, and 2) the allopolyploid condition facilitates sporadic genomic changes during the life of the species (evolutionary changes) that are not attainable at the diploid level. The revolutionary alterations, occurring during the formation of the allopolyploid and leading to rapid cytological and genetic diploidization, facilitate the successful establishment of the newly formed allopolyploid in nature. On the other hand, the evolutionary changes, occurring during the life of the allopolyploids, increase the intra-specific genetic diversity, and consequently, increased fitness, adaptability and competitiveness. These phenomena, emphasizing the dynamic plasticity of the allopolyploid wheat genome with regards to both structure and function, are described and discussed in this review.
Collapse
|
44
|
Liu B, Xu C, Zhao N, Qi B, Kimatu JN, Pang J, Han F. Rapid genomic changes in polyploid wheat and related species: implications for genome evolution and genetic improvement. J Genet Genomics 2009; 36:519-28. [PMID: 19782953 DOI: 10.1016/s1673-8527(08)60143-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Revised: 07/15/2009] [Accepted: 07/20/2009] [Indexed: 01/06/2023]
Affiliation(s)
- Bao Liu
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun 130024, China.
| | | | | | | | | | | | | |
Collapse
|
45
|
Amosova AV, Badaeva ED, Muravenko OV, Zelenin AV. An improved method of genomic in situ hybridization (GISH) for distinguishing closely related genomes of tetraploid and hexaploid wheat species. Russ J Dev Biol 2009. [DOI: 10.1134/s1062360409020040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
46
|
Jin H, Hu W, Wei Z, Wan L, Li G, Tan G, Zhu L, He G. Alterations in cytosine methylation and species-specific transcription induced by interspecific hybridization between Oryza sativa and O. officinalis. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2008; 117:1271-1279. [PMID: 18719877 DOI: 10.1007/s00122-008-0861-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2008] [Accepted: 07/30/2008] [Indexed: 05/26/2023]
Abstract
Interspecific hybridization and polyploidization may involve programmed genetic and epigenetic changes. In this study, we used the methylation-sensitive amplified polymorphism (MSAP) method to survey cytosine methylation alterations that occurred in F(1) hybrid and BC(1) progeny following interspecific hybridization between Oryza sativa and O. officinalis. Across all 316 parental methylated sites, 25 (7.9%) cytosine methylation alterations were detected in the F(1) and/or BC(1) progeny. Thirty additional cytosine methylation alterations were detected at parental non-methylated or novel sites. In total, 55 cytosine methylation alterations (90.9% of all alterations) were detected in the F(1) hybrid, which were maintained in the BC(1) progeny. The alterations in cytosine methylation were biased toward the O. officinalis parent and were in some cases repeatable in independent hybridizations between O. sativa and O. officinalis. Twelve fragments showing cytosine methylation alterations were isolated, sequenced and subsequently validated by methylation-sensitive Southern blot analysis. Where possible, we designed species-specific primers to amplify the polymorphic transcripts from either the O. sativa or the O. officinalis parent using reverse transcription (RT)-PCR in combination with single-strand conformation polymorphism (SSCP) analysis. In four of five cases, modified gene expression could be correlated with the altered cytosine methylation pattern. Our results demonstrated cytosine methylation alterations induced by interspecific hybridization between a rice cultivar and its wild relative, and indicated a direct relationship between cytosine methylation alteration and gene expression variation.
Collapse
Affiliation(s)
- Huajun Jin
- Key Laboratory of Ministry of Education for Plant Development Biology, College of Life Sciences, Wuhan University, 430072, Wuhan, China
| | | | | | | | | | | | | | | |
Collapse
|
47
|
|
48
|
Koo DH, Jiang J. Extraordinary tertiary constrictions of Tripsacum dactyloides chromosomes: implications for karyotype evolution of polyploids driven by segmental chromosome losses. Genetics 2008; 179:1119-23. [PMID: 18558656 PMCID: PMC2429865 DOI: 10.1534/genetics.108.087726] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Accepted: 04/02/2008] [Indexed: 11/18/2022] Open
Abstract
Tripsacum dactyloides (2n = 2x = 36) is an ancient tetraploid species. Here we report that T. dactyloides chromosomes contain an extraordinary tertiary constriction, which causes a radical and distant separation of a terminal segment from the chromosome. The relationships between extraordinary tertiary constriction and segmental chromosome loss as well as karyotype evolution of polyploid species are discussed.
Collapse
Affiliation(s)
- Dal-Hoe Koo
- Department of Horticulture, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
49
|
Bento M, Pereira HS, Rocheta M, Gustafson P, Viegas W, Silva M. Polyploidization as a retraction force in plant genome evolution: sequence rearrangements in triticale. PLoS One 2008; 3:e1402. [PMID: 18167561 PMCID: PMC2151762 DOI: 10.1371/journal.pone.0001402] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2007] [Accepted: 12/03/2007] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Polyploidization is a major evolutionary process in plants where hybridization and chromosome doubling induce enormous genomic stress and can generate genetic and epigenetic modifications. However, proper evaluation of DNA sequence restructuring events and the precise characterization of sequences involved are still sparse. METHODOLOGY/PRINCIPAL FINDINGS Inter Retrotransposons Amplified Polymorphism (IRAP), Retrotransposons Microsatellite Amplified Polymorphism (REMAP) and Inter Simple Sequence Repeat (ISSR) largely confirmed the absence of any intraspecific variation in wheat, rye and triticale. The comparative analysis of banding profiles between wheat and rye inbred lines revealed 34% of monomorphic (common to both parental species) bands for the ten different primer combinations used. The analysis of triticale plants uncovered nearly 51% of rearranged bands in the polyploid, being the majority of these modifications, due to the loss of rye bands (83%). Sequence analysis of rye fragments absent in triticale revealed for instance homology with hydroxyproline-rich glycoproteins (HRGP), a protein that belongs to a major family of inducible defence response proteins. Conversely, a wheat-specific band absent in triticale comprises a nested structure of copia-like retrotransposons elements, namely Claudia and Barbara. Sequencing of a polyploid-specific band (absent in both parents) revealed a microsatellite related sequence. Cytological studies using Fluorescent In Situ Hybridization (FISH) with REMAP products revealed a widespread distribution of retrotransposon and/or microsatellite flanking sequences on rye chromosomes, with a preferential accumulation in heterochromatic sub-telomeric domains. CONCLUSIONS/SIGNIFICANCE Here, we used PCR-based molecular marker techniques involving retrotransposons and microsatellites to uncover polyploidization induced genetic restructuring in triticale. Sequence analysis of rearranged genomic fragments either from rye or wheat origin showed these to be retrotransposon-related as well as coding sequences. Further FISH analysis revealed possible chromosome hotspots for sequence rearrangements. The role of chromatin condensation on the origin of genomic rearrangements mediated by polyploidization in triticale is also discussed.
Collapse
Affiliation(s)
- Miguel Bento
- Centro de Botânica Aplicada à Agricultura, Secção de Genética, Instituto Superior de Agronomia, Technical University of Lisbon, Tapada da Ajuda, Lisboa, Portugal
| | - H. Sofia Pereira
- Centro de Botânica Aplicada à Agricultura, Secção de Genética, Instituto Superior de Agronomia, Technical University of Lisbon, Tapada da Ajuda, Lisboa, Portugal
| | - Margarida Rocheta
- Centro de Botânica Aplicada à Agricultura, Secção de Genética, Instituto Superior de Agronomia, Technical University of Lisbon, Tapada da Ajuda, Lisboa, Portugal
| | - Perry Gustafson
- Curtis Hall, University of Missouri, Columbia, Missouri, United States of America
| | - Wanda Viegas
- Centro de Botânica Aplicada à Agricultura, Secção de Genética, Instituto Superior de Agronomia, Technical University of Lisbon, Tapada da Ajuda, Lisboa, Portugal
| | - Manuela Silva
- Centro de Botânica Aplicada à Agricultura, Secção de Genética, Instituto Superior de Agronomia, Technical University of Lisbon, Tapada da Ajuda, Lisboa, Portugal
| |
Collapse
|
50
|
Halloran GM, Ogbonnaya FC, Lagudah ES. Triticum (Aegilops) tauschii in the natural and artificial synthesis of hexaploid wheat. ACTA ACUST UNITED AC 2008. [DOI: 10.1071/ar07352] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
An account is given of the possible time(s) and place(s) of the origin of hexaploid wheat from natural hybridisation between Triticum tauschii (Ae. tauschii) and both wild and cultivated forms of tetraploid wheat. A recapitulation is presented of the likely genotypic and phenotypic status of the newly arisen natural hexaploid and the likely path of hybridisation from whence it arose. Recent substantial contributions of T. tauschii to wheat improvement indicate the likelihood that introgession en masse from T. tauschii has not occurred throughout its natural and agricultural associations with wheat. This has been substantiated in comparative studies revealing higher levels of genetic variation in T. tauschii compared with the D genome of hexaploid wheat. A case is made for a widening of the concept of the gene pool of T. tauschii for wheat improvement and the notion of a secondary gene pool is proposed to include variation in T. tauschii as it occurs in several polyploid forms of ‘grass Triticum’. The likely differentiation of growth habit forms, conditioned by vernalisation (i.e. vrn) genes, in hexaploid wheat synthesis, including the interaction of these genes in hexaploid wheat, is discussed. It is speculated that growth habit differentiation was of significance to the hexaploid’s yield contribution and survival in tetraploid-hexaploid mixtures (likely to be a common constitution of wheat crops of early agriculture), and in the Neolithic spread of agriculture to the higher latitude, and colder environments of NW Europe and central Asia. The significance of the contribution of T. tauschii to the unique milling and bread-making properties of hexaploid wheat is discussed in the light of Roman discernment of its closer fulfilment of the requirements of leavened bread-making compared with tetraploid wheat. The significance of the contribution of T. tauschii to the evolution of wheat appears to have been much delayed (by ~6500 years) in that hexaploid wheat did not receive singular attention and cultivation until during the Roman era, from whence it gradually rose in popularity to eventually achieve its current pre-eminent status. Continuing systematic evaluation of genetic variation in both the primary and secondary gene pools of T. tauschii for wheat improvement, using both conventional and genetic analysis and contemporary genomic tools, is advocated. The latter approach is particularly important for quantitative traits in the light of wide divergence in plant phenotype of their representatives from that of hexaploid wheat.
Collapse
|