1
|
Müller B. Iron transport mechanisms and their evolution focusing on chloroplasts. JOURNAL OF PLANT PHYSIOLOGY 2023; 288:154059. [PMID: 37586271 DOI: 10.1016/j.jplph.2023.154059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/18/2023]
Abstract
Iron (Fe) is an essential element for photosynthetic organisms, required for several vital biological functions. Photosynthesis, which takes place in the chloroplasts of higher plants, is the major Fe consumer. Although the components of the root Fe uptake system in dicotyledonous and monocotyledonous plants have been extensively studied, the Fe transport mechanisms of chloroplasts in these two groups of plants have received little attention. This review focuses on the comparative analysis of Fe transport processes in the evolutionary ancestors of chloroplasts (cyanobacteria) with the processes in embryophytes and green algae (Viridiplantae). The aim is to summarize how chloroplasts are integrated into cellular Fe homeostasis and how Fe transporters and Fe transport mechanisms have been modified by evolution.
Collapse
Affiliation(s)
- Brigitta Müller
- Department of Plant Physiology and Molecular Biology, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, H-1117, Hungary.
| |
Collapse
|
2
|
Ren C, Luo G, Li X, Yao A, Liu W, Zhang L, Wang Y, Li W, Han D. MxFRO4 confers iron and salt tolerance through up-regulating antioxidant capacity associated with the ROS scavenging. JOURNAL OF PLANT PHYSIOLOGY 2023; 285:154001. [PMID: 37187152 DOI: 10.1016/j.jplph.2023.154001] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/19/2023] [Accepted: 05/01/2023] [Indexed: 05/17/2023]
Abstract
Iron is involved in various metabolic pathways of plants. Stress from iron deficiency and toxicity in the soil adversely affects plant growth. Therefore, studying the mechanism of iron absorption and transport by plants is of important for resistance to iron stress and to increase crop yield. In this study, Malus xiaojinensis (a Fe-efficient Malus plant) was used as research material. A ferric reduction oxidase (FRO) family gene member was cloned and named MxFRO4. The MxFRO4 encoded a protein of 697 amino acid residues with a predicted molecular weight of 78.54 kDa and a theoretical isoelectric point of 4.90. A subcellular localization assay showed that the MxFRO4 protein was localized on the cell membrane. The expression of MxFRO4 was enriched in immature leaves and roots of M. xiaojinensis, and was strongly affected by low-iron, high-iron, and salt treatments. After introduction of MxFRO4 into Arabidopsis thaliana, the iron and salt stress tolerance of transgenic A. thaliana was greatly improved. Under exposure to low-iron and high-iron stresses, the primary root length, seedling fresh weight, contents of proline, chlorophyll, and iron, and iron(III) chelation activity of the transgenic lines were significantly increased compared with the wild type. The contents of chlorophyll and proline, and the activities of the antioxidant enzymes superoxide dismutase, peroxidase, and catalase were significantly higher in transgenic A. thaliana overexpressing MxFRO4 under salt stress compared with the wild type, whereas the malondialdehyde content was decreased. These results suggest that MxFRO4 contributes to alleviating the effects of low-iron, high-iron, and salinity stresses in transgenic A. thaliana.
Collapse
Affiliation(s)
- Chuankun Ren
- National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin, 150030, PR China
| | - Guijie Luo
- Suqian Institute of Agricultural Sciences, Jiangsu Academy of Agricultural Sciences, Suqian, 223800, PR China
| | - Xingguo Li
- National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin, 150030, PR China
| | - Anqi Yao
- National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin, 150030, PR China
| | - Wanda Liu
- Horticulture Branch of Heilongjiang Academy of Agricultural Sciences, Harbin, 150040, PR China
| | - Lihua Zhang
- National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yu Wang
- Horticulture Branch of Heilongjiang Academy of Agricultural Sciences, Harbin, 150040, PR China
| | - Wenhui Li
- National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin, 150030, PR China.
| | - Deguo Han
- National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
3
|
Genome-wide understanding of evolutionary and functional relationships of rice Yellow Stripe-Like (YSL) transporter family in comparison with other plant species. Biologia (Bratisl) 2021. [DOI: 10.1007/s11756-021-00924-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
4
|
Wu Q, Lan Y, Cao X, Yao H, Qiao D, Xu H, Cao Y. Characterization and diverse evolution patterns of glycerol-3-phosphate dehydrogenase family genes in Dunaliella salina. Gene 2019; 710:161-169. [DOI: 10.1016/j.gene.2019.05.056] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 05/15/2019] [Accepted: 05/29/2019] [Indexed: 12/29/2022]
|
5
|
Vigani G, Solti ÏDM, Thomine SB, Philippar K. Essential and Detrimental - an Update on Intracellular Iron Trafficking and Homeostasis. PLANT & CELL PHYSIOLOGY 2019; 60:1420-1439. [PMID: 31093670 DOI: 10.1093/pcp/pcz091] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 05/06/2019] [Indexed: 05/22/2023]
Abstract
Chloroplasts, mitochondria and vacuoles represent characteristic organelles of the plant cell, with a predominant function in cellular metabolism. Chloroplasts are the site of photosynthesis and therefore basic and essential for photoautotrophic growth of plants. Mitochondria produce energy during respiration and vacuoles act as internal waste and storage compartments. Moreover, chloroplasts and mitochondria are sites for the biosynthesis of various compounds of primary and secondary metabolism. For photosynthesis and energy generation, the internal membranes of chloroplasts and mitochondria are equipped with electron transport chains. To perform proper electron transfer and several biosynthetic functions, both organelles contain transition metals and here iron is by far the most abundant. Although iron is thus essential for plant growth and development, it becomes toxic when present in excess and/or in its free, ionic form. The harmful effect of the latter is caused by the generation of oxidative stress. As a consequence, iron transport and homeostasis have to be tightly controlled during plant growth and development. In addition to the corresponding transport and homeostasis proteins, the vacuole plays an important role as an intracellular iron storage and release compartment at certain developmental stages. In this review, we will summarize current knowledge on iron transport and homeostasis in chloroplasts, mitochondria and vacuoles. In addition, we aim to integrate the physiological impact of intracellular iron homeostasis on cellular and developmental processes.
Collapse
Affiliation(s)
- Gianpiero Vigani
- Plant Physiology Unit, Department of Life Sciences and Systems Biology, University of Turin, via Quarello 15/A, Turin I, Italy
| | - Ï Dï M Solti
- Department of Plant Physiology and Molecular Plant Biology, E�tv�s Lor�nd University, Budapest H, Hungary
| | - Sï Bastien Thomine
- Institut de Biologie Int�grative de la Cellule, CNRS, Avenue de la Terrasse, Gif-sur-Yvette, France
| | - Katrin Philippar
- Plant Biology, Center for Human- and Molecular Biology (ZHMB), Saarland University, Campus A2.4, Saarbr�cken D, Germany
| |
Collapse
|
6
|
de Menezes GCA, Alves RP, de Carvalho Victoria F, Putzke J, Pereira AB, de Albuquerque MP. Study of physiological and enzymatic properties and characterization of pathogenic activity of a fungus isolated from moss Sanionia uncinata (Hedw.) Loeske in Antarctica. Polar Biol 2019. [DOI: 10.1007/s00300-019-02473-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Jia W, Ma C, White JC, Yin M, Cao H, Wang J, Wang C, Sun H, Xing B. Effects of biochar on 2, 2', 4, 4', 5, 5'-hexabrominated diphenyl ether (BDE-153) fate in Amaranthus mangostanus L.: Accumulation, metabolite formation, and physiological response. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 651:1154-1165. [PMID: 30360247 DOI: 10.1016/j.scitotenv.2018.09.229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/08/2018] [Accepted: 09/17/2018] [Indexed: 06/08/2023]
Abstract
The accumulation and metabolism of 2, 2', 4, 4', 5, 5'-hexabrominated diphenyl ether (BDE-153) in Amaranthus mangostanus L. (amaranth) as affected by different concentrations of biochar (1.3 to 26.6 g/L) under hydroponic conditions exposed to 10 μg/L BDE-153 after 10 days were investigated. Biochar significantly reduced BDE-153 shoot and root content by 27.5-61.6% and 73-95.3%, respectively. In general, BDE-153 migration from solution to amaranth decreased with increasing the doses of biochar. BDE-153 metabolites altered with doses of biochar. The ratio of de-BDEs to BDE-153 in root was polynomial correlated to biochar dose (R2 = 0.9356**). Root and shoot Fe content was positively correlated with the BDE-153 amounts (R2 = 0.948** and 0.822*, respectively). Though the higher biochar dose could obviously control BDE-153 uptake by the vegetable, the toxicity was caused more significantly. For instances, the high concentration of biochar at 26.6 g/L reduced pigment content, increased total ROS, and elevated antioxidant enzyme activity. At the same time, the O2- intensity was linearly positively correlated with de-BDEs in root (R2 = 0.7324*) while photosynthetic parameter Fv/fm intensity was polynomial correlated to BDEs in shoot (R2 = 0.9366*). Transmission electron microscopy (TEM) confirmed that exposure to BDE-153 and high concentration biochar at 26.6 g/L severely altered the chloroplasts in terms of the organelle shape and the presence of starch granules in the chloroplast. Taken together, biochar as a soil amendment could significantly control BDE-153 uptake and enhance BDE-153 metabolism in vegetables, but considering the dose of biochar to avoid its toxicity with higher dose.
Collapse
Affiliation(s)
- Weili Jia
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Chuanxin Ma
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, New Haven, CT 06504, United States
| | - Jason C White
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, New Haven, CT 06504, United States
| | - Mengfei Yin
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Huimin Cao
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Jicheng Wang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Cuiping Wang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
| | - Hongwen Sun
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States
| |
Collapse
|
8
|
Ishida JK, Caldas DGG, Oliveira LR, Frederici GC, Leite LMP, Mui TS. Genome-wide characterization of the NRAMP gene family in Phaseolus vulgaris provides insights into functional implications during common bean development. Genet Mol Biol 2018; 41:820-833. [PMID: 30334565 PMCID: PMC6415609 DOI: 10.1590/1678-4685-gmb-2017-0272] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 02/20/2018] [Indexed: 12/24/2022] Open
Abstract
Transporter proteins play an essential role in the uptake, trafficking and storage of metals in plant tissues. The Natural Resistance-Associated Macrophage Protein (NRAMP) family plays an essential role in divalent metal transport. We conducted bioinformatics approaches to identify seven NRAMP genes in the Phaseolus vulgaris genome, investigated their phylogenetic relation, and performed transmembrane domain and gene/protein structure analyses. We found that the NRAMP gene family forms two distinct groups. One group included the PvNRAMP1, -6, and -7 genes that share a fragmented structure with a numerous exon/intron organization and encode proteins with mitochondrial or plastidial localization. The other group is characterized by few exons that encode cytoplasmic proteins. In addition, our data indicated that PvNRAMP6 and -7 may be involved in mineral uptake and mobilization in nodule tissues, while the genes PvNRAMP1, -2, -3, -4 and -5 are potentially recruited during plant development. This data provided a more comprehensive understanding of the role of NRAMP transporters in metal homeostasis in P. vulgaris.
Collapse
Affiliation(s)
- Juliane Karine Ishida
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo (CENA-USP), Piracicaba, SP, Brazil
| | - Danielle G G Caldas
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo (CENA-USP), Piracicaba, SP, Brazil
| | - Lucas Roberto Oliveira
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo (CENA-USP), Piracicaba, SP, Brazil
| | - Gabriela Campos Frederici
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo (CENA-USP), Piracicaba, SP, Brazil
| | | | - Tsai Siu Mui
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo (CENA-USP), Piracicaba, SP, Brazil
| |
Collapse
|
9
|
Tan GZH, Das Bhowmik SS, Hoang TML, Karbaschi MR, Long H, Cheng A, Bonneau JP, Beasley JT, Johnson AAT, Williams B, Mundree SG. Investigation of Baseline Iron Levels in Australian Chickpea and Evaluation of a Transgenic Biofortification Approach. FRONTIERS IN PLANT SCIENCE 2018; 9:788. [PMID: 29963065 PMCID: PMC6010650 DOI: 10.3389/fpls.2018.00788] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 05/24/2018] [Indexed: 05/25/2023]
Abstract
Iron deficiency currently affects over two billion people worldwide despite significant advances in technology and society aimed at mitigating this global health problem. Biofortification of food staples with iron (Fe) represents a sustainable approach for alleviating human Fe deficiency in developing countries, however, biofortification efforts have focused extensively on cereal staples while pulses have been largely overlooked. In this study we describe a genetic engineering (GE) approach to biofortify the pulse crop, chickpea (Cicer arietinum L.), with Fe using a combination of the chickpea nicotianamine synthase 2 (CaNAS2) and soybean (Glycine max) ferritin (GmFER) genes which function in Fe transport and storage, respectively. This study consists of three main components: (1) the establishment for baseline Fe concentration of existing germplam, (2) the isolation and study of expression pattern of the novel CaNAS2 gene, and (3) the generation of GE chickpea overexpressing the CaNAS2 and GmFER genes. Seed of six commercial chickpea cultivars was collected from four different field locations in Australia and assessed for seed Fe concentration. The results revealed little difference between the cultivars assessed, and that chickpea seed Fe was negatively affected where soil Fe bioavailability is low. The desi cultivar HatTrick was then selected for further study. From it, the CaNAS2 gene was cloned and its expression in different tissues examined. The gene was found to be expressed in multiple vegetative tissues under Fe-sufficient conditions, suggesting that it may play a housekeeping role in systemic translocation of Fe. Two GE chickpea events were then generated and the overexpression of the CaNAS2 and GmFER transgenes confirmed. Analysis of nicotianamine (NA) and Fe levels in the GE seeds revealed that NA was nearly doubled compared to the null control while Fe concentration was not changed. Increased NA content in chickpea seed is likely to translate into increased Fe bioavailability and may thus overcome the effect of the bioavailability inhibitors found in pulses; however, further study is required to confirm this. This is the first known example of GE Fe biofortified chickpea; information gleaned from this study can feed into future pulse biofortification work to help alleviate global Fe deficiency.
Collapse
Affiliation(s)
- Grace Z. H. Tan
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, QLD, Australia
| | - Sudipta S. Das Bhowmik
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, QLD, Australia
| | - Thi M. L. Hoang
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, QLD, Australia
| | - Mohammad R. Karbaschi
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, QLD, Australia
| | - Hao Long
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, QLD, Australia
| | - Alam Cheng
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, QLD, Australia
| | - Julien P. Bonneau
- School of Biosciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Jesse T. Beasley
- School of Biosciences, The University of Melbourne, Melbourne, VIC, Australia
| | | | - Brett Williams
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, QLD, Australia
| | - Sagadevan G. Mundree
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
10
|
Muhammad I, Jing XQ, Shalmani A, Ali M, Yi S, Gan PF, Li WQ, Liu WT, Chen KM. Comparative in Silico Analysis of Ferric Reduction Oxidase (FRO) Genes Expression Patterns in Response to Abiotic Stresses, Metal and Hormone Applications. Molecules 2018; 23:molecules23051163. [PMID: 29757203 PMCID: PMC6099960 DOI: 10.3390/molecules23051163] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 05/04/2018] [Accepted: 05/09/2018] [Indexed: 02/01/2023] Open
Abstract
The ferric reduction oxidase (FRO) gene family is involved in various biological processes widely found in plants and may play an essential role in metal homeostasis, tolerance and intricate signaling networks in response to a number of abiotic stresses. Our study describes the identification, characterization and evolutionary relationships of FRO genes families. Here, total 50 FRO genes in Plantae and 15 ‘FRO like’ genes in non-Plantae were retrieved from 16 different species. The entire FRO genes have been divided into seven clades according to close similarity in biological and functional behavior. Three conserved domains were common in FRO genes while in two FROs sub genome have an extra NADPH-Ox domain, separating the function of plant FROs. OsFRO1 and OsFRO7 genes were expressed constitutively in rice plant. Real-time RT-PCR analysis demonstrated that the expression of OsFRO1 was high in flag leaf, and OsFRO7 gene expression was maximum in leaf blade and flag leaf. Both genes showed vigorous expressions level in response to different abiotic and hormones treatments. Moreover, the expression of both genes was also substantial under heavy metal stresses. OsFRO1 gene expression was triggered following 6 h under Zn, Pb, Co and Ni treatments, whereas OsFRO7 gene expression under Fe, Pb and Ni after 12 h, Zn and Cr after 6 h, and Mn and Co after 3 h treatments. These findings suggest the possible involvement of both the genes under abiotic and metal stress and the regulation of phytohormones. Therefore, our current work may provide the foundation for further functional characterization of rice FRO genes family.
Collapse
Affiliation(s)
- Izhar Muhammad
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China.
| | - Xiu-Qing Jing
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China.
| | - Abdullah Shalmani
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China.
| | - Muhammad Ali
- College of Horticulture, Northwest A&F University, Yangling 712100, China.
| | - Shi Yi
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China.
| | - Peng-Fei Gan
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China.
| | - Wen-Qiang Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China.
| | - Wen-Ting Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China.
| | - Kun-Ming Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
11
|
Huo W, Li B, Kuang J, He P, Xu Z, Wang J. Functional Characterization of the Steroid Reductase Genes GmDET2a and GmDET2b form Glycine max. Int J Mol Sci 2018; 19:E726. [PMID: 29510512 PMCID: PMC5877587 DOI: 10.3390/ijms19030726] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 02/26/2018] [Accepted: 02/28/2018] [Indexed: 12/02/2022] Open
Abstract
Brassinosteroids are important phytohormones for plant growth and development. In soybean (Glycine max), BR receptors have been identified, but the genes encoding BR biosynthesis-related enzymes remain poorly understood. Here, we found that the soybean genome encodes eight steroid reductases (GmDET2a to GmDET2h). Phylogenetic analysis grouped 105 steroid reductases from moss, fern and higher plants into five subgroups and indicated that the steroid reductase family has experienced purifying selection. GmDET2a and GmDET2b, homologs of the Arabidopsis thaliana steroid 5 α -reductase AtDET2, are proteins of 263 amino acids. Ectopic expression of GmDET2a and GmDET2b rescued the defects of the Atdet2-1 mutant in both darkness and light. Compared to the mutant, the hypocotyl length and plant height of the transgenic lines GmDET2a and GmDET2b increased significantly, in both darkness and light, and the transcript levels of the BR biosynthesis-related genes CPD, DWF4, BR6ox-1 and BR6ox-2 were downregulated in GmDET2aOX-23 and GmDET2bOX-16 lines compared to that in Atdet2-1. Quantitative real-time PCR revealed that GmDET2a and GmDET2b are ubiquitously expressed in all tested soybean organs, including roots, leaves and hypocotyls. Moreover, epibrassinosteroid negatively regulated GmDET2a and GmDET2b expression. Sulfate deficiency downregulated GmDET2a in leaves and GmDET2b in leaves and roots; by contrast, phosphate deficiency upregulated GmDET2b in roots and leaves. Taken together, our results revealed that GmDET2a and GmDET2b function as steroid reductases.
Collapse
Affiliation(s)
- Weige Huo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China.
| | - Bodi Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China.
- Root Biology Center, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
| | - Jiebing Kuang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China.
- Root Biology Center, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
| | - Pingan He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China.
- Root Biology Center, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
| | - Zhihao Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China.
- Root Biology Center, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
| | - Jinxiang Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China.
- Root Biology Center, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
12
|
Peris-Peris C, Serra-Cardona A, Sánchez-Sanuy F, Campo S, Ariño J, San Segundo B. Two NRAMP6 Isoforms Function as Iron and Manganese Transporters and Contribute to Disease Resistance in Rice. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2017; 30:385-398. [PMID: 28430017 DOI: 10.1094/mpmi-01-17-0005-r] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Metal ions are essential elements for all living organisms. However, metals can be toxic when present in excess. In plants, metal homeostasis is partly achieved through the function of metal transporters, including the diverse natural resistance-associated macrophage proteins (NRAMP). Among them, the OsNramp6 gene encodes a previously uncharacterized member of the rice NRAMP family that undergoes alternative splicing to produce different NRAMP6 proteins. In this work, we determined the metal transport activity and biological role of the full-length and the shortest NRAMP6 proteins (l-NRAMP6 and s-NRAMP6, respectively). Both l-NRAMP6 and s-NRAMP6 are plasma membrane-localized proteins that function as iron and manganese transporters. The expression of l-Nramp6 and s-Nramp6 is regulated during infection with the fungal pathogen Magnaporthe oryzae, albeit with different kinetics. Rice plants grown under high iron supply show stronger induction of rice defense genes and enhanced resistance to M. oryzae infection. Also, loss of function of OsNramp6 results in enhanced resistance to M. oryzae, supporting the idea that OsNramp6 negatively regulates rice immunity. Furthermore, nramp6 plants showed reduced biomass, pointing to a role of OsNramp6 in plant growth. A better understanding of OsNramp6-mediated mechanisms underlying disease resistance in rice will help in developing appropriate strategies for crop protection.
Collapse
Affiliation(s)
- Cristina Peris-Peris
- 1 Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB. Edifici CRAG, Campus UAB, Bellaterra (Cerdanyola del Vallés), 08193 Barcelona, Spain; and
| | - Albert Serra-Cardona
- 2 Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Barcelona, Spain
| | - Ferrán Sánchez-Sanuy
- 1 Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB. Edifici CRAG, Campus UAB, Bellaterra (Cerdanyola del Vallés), 08193 Barcelona, Spain; and
| | - Sonia Campo
- 1 Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB. Edifici CRAG, Campus UAB, Bellaterra (Cerdanyola del Vallés), 08193 Barcelona, Spain; and
| | - Joaquin Ariño
- 2 Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Barcelona, Spain
| | - Blanca San Segundo
- 1 Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB. Edifici CRAG, Campus UAB, Bellaterra (Cerdanyola del Vallés), 08193 Barcelona, Spain; and
| |
Collapse
|
13
|
Xiang Q, Shen K, Yu X, Zhao K, Gu Y, Zhang X, Chen X, Chen Q. Analysis of the oligopeptide transporter gene family in Ganoderma lucidum: structure, phylogeny, and expression patterns. Genome 2017; 60:293-302. [DOI: 10.1139/gen-2016-0120] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Oligopeptide transporters (OPTs) are believed to transport broad ranges of substrates across the plasma membrane from the extracellular environment into the cell and are thought to contribute to various biological processes. In the present study, 13 putative OPTs (Gl-OPT1 to Gl-OPT13) were identified through extensive search of Ganoderma lucidum genome database. Phylogenetic analysis with OPTs from other fungi and plants indicates that these genes can be further divided into five groups. Motif compositions of OPT members are highly conserved in each group, indicative of functional conservation. Expression profile analysis of the 13 Gl-OPT genes indicated that, with the exception of Gl-OPT7–Gl-OPT9, for which no transcripts were detected, all paralogues were differentially expressed, suggesting their potential involvement in stress response and functional development of fungi. Overall, the analyses in this study provide a starting point for elucidating the functions of OPT in G. lucidum, and for understanding the complexities of metabolic regulation.
Collapse
Affiliation(s)
- Quanju Xiang
- College of Resource, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Keyu Shen
- College of Resource, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Xiumei Yu
- College of Resource, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Ke Zhao
- College of Resource, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Yunfu Gu
- College of Resource, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Xiaoping Zhang
- College of Resource, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Xiaoqiong Chen
- Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Qiang Chen
- College of Resource, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| |
Collapse
|
14
|
dos Santos RS, de Araujo AT, Pegoraro C, de Oliveira AC. Dealing with iron metabolism in rice: from breeding for stress tolerance to biofortification. Genet Mol Biol 2017; 40:312-325. [PMID: 28304072 PMCID: PMC5452141 DOI: 10.1590/1678-4685-gmb-2016-0036] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 09/22/2016] [Indexed: 12/23/2022] Open
Abstract
Iron is a well-known metal. Used by humankind since ancient times in many different ways, this element is present in all living organisms, where, unfortunately, it represents a two-way problem. Being an essential block in the composition of different proteins and metabolic pathways, iron is a vital component for animals and plants. That is why iron deficiency has a severe impact on the lives of different organisms, including humans, becoming a major concern, especially in developing countries where access to adequate nutrition is still difficult. On the other hand, this metal is also capable of causing damage when present in excess, becoming toxic to cells and affecting the whole organism. Because of its importance, iron absorption, transport and storage mechanisms have been extensively investigated in order to design alternatives that may solve this problem. As the understanding of the strategies that plants use to control iron homeostasis is an important step in the generation of improved plants that meet both human agricultural and nutritional needs, here we discuss some of the most important points about this topic.
Collapse
Affiliation(s)
- Railson Schreinert dos Santos
- Plant Genomics and Breeding Center (CGF), Universidade Federal de
Pelotas, Pelotas, RS, Brazil
- Technology Development Center (CDTec), Universidade Federal de
Pelotas, Pelotas, RS, Brazil
| | | | - Camila Pegoraro
- Plant Genomics and Breeding Center (CGF), Universidade Federal de
Pelotas, Pelotas, RS, Brazil
| | - Antonio Costa de Oliveira
- Plant Genomics and Breeding Center (CGF), Universidade Federal de
Pelotas, Pelotas, RS, Brazil
- Technology Development Center (CDTec), Universidade Federal de
Pelotas, Pelotas, RS, Brazil
| |
Collapse
|
15
|
Lo JC, Tsednee M, Lo YC, Yang SC, Hu JM, Ishizaki K, Kohchi T, Lee DC, Yeh KC. Evolutionary analysis of iron (Fe) acquisition system in Marchantia polymorpha. THE NEW PHYTOLOGIST 2016; 211:569-83. [PMID: 26948158 DOI: 10.1111/nph.13922] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 02/02/2016] [Indexed: 05/18/2023]
Abstract
To acquire appropriate iron (Fe), vascular plants have developed two unique strategies, the reduction-based strategy I of nongraminaceous plants for Fe(2+) and the chelation-based strategy II of graminaceous plants for Fe(3+) . However, the mechanism of Fe uptake in bryophytes, the earliest diverging branch of land plants and dominant in gametophyte generation is less clear. Fe isotope fractionation analysis demonstrated that the liverwort Marchantia polymorpha uses reduction-based Fe acquisition. Enhanced activities of ferric chelate reductase and proton ATPase were detected under Fe-deficient conditions. However, M. polymorpha did not show mugineic acid family phytosiderophores, the key components of strategy II, or the precursor nicotianamine. Five ZIP (ZRT/IRT-like protein) homologs were identified and speculated to be involved in Fe uptake in M. polymorpha. MpZIP3 knockdown conferred reduced growth under Fe-deficient conditions, and MpZIP3 overexpression increased Fe content under excess Fe. Thus, a nonvascular liverwort, M. polymorpha, uses strategy I for Fe acquisition. This system may have been acquired in the common ancestor of land plants and coopted from the gametophyte to sporophyte generation in the evolution of land plants.
Collapse
Affiliation(s)
- Jing-Chi Lo
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan
- Institute of Plant Biology, National Taiwan University, Taipei, 10617, Taiwan
| | - Munkhtsetseg Tsednee
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Ying-Chu Lo
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Shun-Chung Yang
- Institute of Earth Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Jer-Ming Hu
- Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei, 10617, Taiwan
| | - Kimitsune Ishizaki
- Graduate School of Science, Kobe University, 1-1 Rokkodai, Kobe, 657-8501, Japan
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| | - Der-Chuen Lee
- Institute of Earth Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Kuo-Chen Yeh
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan
| |
Collapse
|
16
|
Peng S, Tao P, Xu F, Wu A, Huo W, Wang J. Functional Characterization of Soybean Glyma04g39610 as a Brassinosteroid Receptor Gene and Evolutionary Analysis of Soybean Brassinosteroid Receptors. Int J Mol Sci 2016; 17:E897. [PMID: 27338344 PMCID: PMC4926431 DOI: 10.3390/ijms17060897] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 05/17/2016] [Accepted: 05/19/2016] [Indexed: 11/29/2022] Open
Abstract
Brassinosteroids (BR) play important roles in plant growth and development. Although BR receptors have been intensively studied in Arabidopsis, the BR receptors in soybean remain largely unknown. Here, in addition to the known receptor gene Glyma06g15270 (GmBRI1a), we identified five putative BR receptor genes in the soybean genome: GmBRI1b, GmBRL1a, GmBRL1b, GmBRL2a, and GmBRL2b. Analysis of their expression patterns by quantitative real-time PCR showed that they are ubiquitously expressed in primary roots, lateral roots, stems, leaves, and hypocotyls. We used rapid amplification of cDNA ends (RACE) to clone GmBRI1b (Glyma04g39160), and found that the predicted amino acid sequence of GmBRI1b showed high similarity to those of AtBRI1 and pea PsBRI1. Structural modeling of the ectodomain also demonstrated similarities between the BR receptors of soybean and Arabidopsis. GFP-fusion experiments verified that GmBRI1b localizes to the cell membrane. We also explored GmBRI1b function in Arabidopsis through complementation experiments. Ectopic over-expression of GmBRI1b in Arabidopsis BR receptor loss-of-function mutant (bri1-5 bak1-1D) restored hypocotyl growth in etiolated seedlings; increased the growth of stems, leaves, and siliques in light; and rescued the developmental defects in leaves of the bri1-6 mutant, and complemented the responses of BR biosynthesis-related genes in the bri1-5 bak1-D mutant grown in light. Bioinformatics analysis demonstrated that the six BR receptor genes in soybean resulted from three gene duplication events during evolution. Phylogenetic analysis classified the BR receptors in dicots and monocots into three subclades. Estimation of the synonymous (Ks) and the nonsynonymous substitution rate (Ka) and selection pressure (Ka/Ks) revealed that the Ka/Ks of BR receptor genes from dicots and monocots were less than 1.0, indicating that BR receptor genes in plants experienced purifying selection during evolution.
Collapse
Affiliation(s)
- Suna Peng
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agriculture University, Guangzhou 510642, China.
- College of Agriculture & Root Biology Center, South China Agricultural University, Guangzhou 510642, China.
| | - Ping Tao
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agriculture University, Guangzhou 510642, China.
- College of Agriculture & Root Biology Center, South China Agricultural University, Guangzhou 510642, China.
| | - Feng Xu
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agriculture University, Guangzhou 510642, China.
- College of Agriculture & Root Biology Center, South China Agricultural University, Guangzhou 510642, China.
| | - Aiping Wu
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agriculture University, Guangzhou 510642, China.
- College of Agriculture & Root Biology Center, South China Agricultural University, Guangzhou 510642, China.
| | - Weige Huo
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agriculture University, Guangzhou 510642, China.
- College of Agriculture & Root Biology Center, South China Agricultural University, Guangzhou 510642, China.
| | - Jinxiang Wang
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agriculture University, Guangzhou 510642, China.
- College of Agriculture & Root Biology Center, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
17
|
Singh AP, Pandey BK, Deveshwar P, Narnoliya L, Parida SK, Giri J. JAZ Repressors: Potential Involvement in Nutrients Deficiency Response in Rice and Chickpea. FRONTIERS IN PLANT SCIENCE 2015; 6:975. [PMID: 26617618 PMCID: PMC4639613 DOI: 10.3389/fpls.2015.00975] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 10/25/2015] [Indexed: 05/20/2023]
Abstract
Jasmonates (JA) are well-known phytohormones which play important roles in plant development and defense against pathogens. Jasmonate ZIM domain (JAZ) proteins are plant-specific proteins and act as transcriptional repressors of JA-responsive genes. JA regulates both biotic and abiotic stress responses in plants; however, its role in nutrient deficiency responses is very elusive. Although, JA is well-known for root growth inhibition, little is known about behavior of JAZ genes in response to nutrient deficiencies, under which root architectural alteration is an important adaptation. Using protein sequence homology and a conserved-domains approach, here we identify 10 novel JAZ genes from the recently sequenced Chickpea genome, which is one of the most nutrient efficient crops. Both rice and chickpea JAZ genes express in tissue- and stimuli-specific manners. Many of which are preferentially expressed in root. Our analysis further showed differential expression of JAZ genes under macro (NPK) and micronutrients (Zn, Fe) deficiency in rice and chickpea roots. While both rice and chickpea JAZ genes showed a certain level of specificity toward type of nutrient deficiency, generally majority of them showed induction under K deficiency. Generally, JAZ genes showed an induction at early stages of stress and expression declined at later stages of macro-nutrient deficiency. Our results suggest that JAZ genes might play a role in early nutrient deficiency response both in monocot and dicot roots, and information generated here can be further used for understanding the possible roles of JA in root architectural alterations for nutrient deficiency adaptations.
Collapse
Affiliation(s)
- Ajit P. Singh
- National Institute of Plant Genome Research, Jawaharlal Nehru UniversityNew Delhi, India
| | - Bipin K. Pandey
- National Institute of Plant Genome Research, Jawaharlal Nehru UniversityNew Delhi, India
| | - Priyanka Deveshwar
- National Institute of Plant Genome Research, Jawaharlal Nehru UniversityNew Delhi, India
- Department of Botany, Sri Aurobindo College, University of DelhiNew Delhi, India
| | - Laxmi Narnoliya
- National Institute of Plant Genome Research, Jawaharlal Nehru UniversityNew Delhi, India
| | - Swarup K. Parida
- National Institute of Plant Genome Research, Jawaharlal Nehru UniversityNew Delhi, India
| | - Jitender Giri
- National Institute of Plant Genome Research, Jawaharlal Nehru UniversityNew Delhi, India
- *Correspondence: Jitender Giri
| |
Collapse
|
18
|
Finatto T, de Oliveira AC, Chaparro C, da Maia LC, Farias DR, Woyann LG, Mistura CC, Soares-Bresolin AP, Llauro C, Panaud O, Picault N. Abiotic stress and genome dynamics: specific genes and transposable elements response to iron excess in rice. RICE (NEW YORK, N.Y.) 2015; 8:13. [PMID: 25844118 PMCID: PMC4385019 DOI: 10.1186/s12284-015-0045-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 01/21/2015] [Indexed: 05/04/2023]
Abstract
BACKGROUND Iron toxicity is a root related abiotic stress, occurring frequently in flooded soils. It can affect the yield of rice in lowland production systems. This toxicity is associated with high concentrations of reduced iron (Fe(2+)) in the soil solution. Although the first interface of the element is in the roots, the consequences of an excessive uptake can be observed in several rice tissues. In an original attempt to find both genes and transposable elements involved in the response to an iron toxicity stress, we used a microarray approach to study the transcriptional responses of rice leaves of cv. Nipponbare (Oryza sativa L. ssp. japonica) to iron excess in nutrient solution. RESULTS A large number of genes were significantly up- or down-regulated in leaves under the treatment. We analyzed the gene ontology and metabolic pathways of genes involved in the response to this stress and the cis-regulatory elements (CREs) present in the promoter region of up-regulated genes. The majority of genes act in the pathways of lipid metabolic process, carbohydrate metabolism, biosynthesis of secondary metabolites and plant hormones. We also found genes involved in iron acquisition and mobilization, transport of cations and regulatory mechanisms for iron responses, and in oxidative stress and reactive oxygen species detoxification. Promoter regions of 27% of genes up-regulated present at least one significant occurrence of an ABA-responsive CRE. Furthermore, and for the first time, we were able to show that iron stress triggers the up-regulation of many LTR-retrotransposons. We have established a complete inventory of transposable elements transcriptionally activated under iron excess and the CREs which are present in their LTRs. CONCLUSION The short-term response of Nipponbare seedlings to iron excess, includes activation of genes involved in iron homeostasis, in particular transporters, transcription factors and ROS detoxification in the leaves, but also many transposable elements. Our data led to the identification of CREs which are associated with both genes and LTR-retrotransposons up-regulated under iron excess. Our results strengthen the idea that LTR-retrotransposons participate in the transcriptional response to stress and could thus confer an adaptive advantage for the plant.
Collapse
Affiliation(s)
- Taciane Finatto
- />Plant Genomics and Breeding Center, Eliseu Maciel School of Agronomy, Federal University of Pelotas, 96010-610 Pelotas, RS Brazil
- />Present address: Universidade Tecnológica Federal do Paraná, Campus Pato Branco, 85503-390 Pato Branco, PR Brazil
| | - Antonio Costa de Oliveira
- />Plant Genomics and Breeding Center, Eliseu Maciel School of Agronomy, Federal University of Pelotas, 96010-610 Pelotas, RS Brazil
| | - Cristian Chaparro
- />Laboratoire Génome et Développement des Plantes, UMR 5096, Université de Perpignan Via Domitia, F-66860 Perpignan, France
- />CNRS, Laboratoire Génome et Développement des Plantes, UMR 5096, F-66860 Perpignan, France
- />Present address: Laboratoire Ecologie et Evolution des Interactions, UMR 5244, F-66860, Université de Perpignan Via Domitia, Perpignan, France
| | - Luciano C da Maia
- />Plant Genomics and Breeding Center, Eliseu Maciel School of Agronomy, Federal University of Pelotas, 96010-610 Pelotas, RS Brazil
| | - Daniel R Farias
- />Plant Genomics and Breeding Center, Eliseu Maciel School of Agronomy, Federal University of Pelotas, 96010-610 Pelotas, RS Brazil
| | - Leomar G Woyann
- />Plant Genomics and Breeding Center, Eliseu Maciel School of Agronomy, Federal University of Pelotas, 96010-610 Pelotas, RS Brazil
| | - Claudete C Mistura
- />Plant Genomics and Breeding Center, Eliseu Maciel School of Agronomy, Federal University of Pelotas, 96010-610 Pelotas, RS Brazil
| | - Adriana P Soares-Bresolin
- />Plant Genomics and Breeding Center, Eliseu Maciel School of Agronomy, Federal University of Pelotas, 96010-610 Pelotas, RS Brazil
| | - Christel Llauro
- />Laboratoire Génome et Développement des Plantes, UMR 5096, Université de Perpignan Via Domitia, F-66860 Perpignan, France
- />CNRS, Laboratoire Génome et Développement des Plantes, UMR 5096, F-66860 Perpignan, France
| | - Olivier Panaud
- />Laboratoire Génome et Développement des Plantes, UMR 5096, Université de Perpignan Via Domitia, F-66860 Perpignan, France
- />CNRS, Laboratoire Génome et Développement des Plantes, UMR 5096, F-66860 Perpignan, France
| | - Nathalie Picault
- />Laboratoire Génome et Développement des Plantes, UMR 5096, Université de Perpignan Via Domitia, F-66860 Perpignan, France
- />CNRS, Laboratoire Génome et Développement des Plantes, UMR 5096, F-66860 Perpignan, France
| |
Collapse
|
19
|
Chen CC, Chien WF, Lin NC, Yeh KC. Alternative functions of Arabidopsis Yellow Stripe-Like3: from metal translocation to pathogen defense. PLoS One 2014; 9:e98008. [PMID: 24845074 PMCID: PMC4028246 DOI: 10.1371/journal.pone.0098008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Accepted: 04/28/2014] [Indexed: 11/18/2022] Open
Abstract
Yellow stripe-like1 (YSL1) and YSL3 are involved in iron (Fe) and copper (Cu) translocation. Previously, we reported that upregulation of YSL1 and YSL3 under excess Cu caused high accumulation of Cu in the siz1 mutant, impaired in small ubiquitin-like modifier (SUMO) E3 ligase. Interestingly, the siz1 mutant contains high levels of salicylic acid (SA), involved in plant defense against biotrophic pathogens. In this study, we found that YSL1 and YSL3 were upregulated by SA. SA-regulated YSL3 but not YSL1 depended on nonexpressor of PR1 (NPR1). Susceptibility to the pathogen Pseudomonas syringe pv. tomato (Pst) DC3000 was greater for ysl3 than the wild type. Also, during Pst DC3000 infection, YSL3 was positively regulated by SA signaling through NPR1 and the upregulation was enhanced in the coi1 mutant that defective in the jasmonic acid (JA) receptor, coronatine insensitive1. This line of evidence indicates that the regulation of YSL3 is downstream of SA signaling and interplays with JA signaling for involvement in pathogen-induced defense. We provide new insights into the biological function of the metal transporter YSL3 in plant pathogen defense.
Collapse
Affiliation(s)
- Chyi-chuann Chen
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Wei-Fu Chien
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Nai-Chun Lin
- Department of Agricultural Chemistry, National Taiwan University, Taipei, Taiwan
| | - Kuo-Chen Yeh
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
20
|
Panaud O, Jackson SA, Wendel JF. Drivers and dynamics of diversity in plant genomes. THE NEW PHYTOLOGIST 2014; 202:15-18. [PMID: 24571694 DOI: 10.1111/nph.12633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Affiliation(s)
- Olivier Panaud
- Université de Perpignan, UMR 5096 CNRS - IRD - UPVD, Perpignan, France
| | - Scott A Jackson
- Center for Applied Genetic Technologies, University of Georgia, 111 Riverbend Road, Athens, GA, 30602, USA
| | - Jonathan F Wendel
- Department of Ecology, Evolution, & Organismal Biology, Iowa State University, Ames, IA, 50011, USA
| |
Collapse
|
21
|
Jain A, Connolly EL. Mitochondrial iron transport and homeostasis in plants. FRONTIERS IN PLANT SCIENCE 2013; 4:348. [PMID: 24046773 PMCID: PMC3764374 DOI: 10.3389/fpls.2013.00348] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 08/18/2013] [Indexed: 05/20/2023]
Abstract
Iron (Fe) is an essential nutrient for plants and although the mechanisms controlling iron uptake from the soil are relatively well understood, comparatively little is known about subcellular trafficking of iron in plant cells. Mitochondria represent a significant iron sink within cells, as iron is required for the proper functioning of respiratory chain protein complexes. Mitochondria are a site of Fe-S cluster synthesis, and possibly heme synthesis as well. Here we review recent insights into the molecular mechanisms controlling mitochondrial iron transport and homeostasis. We focus on the recent identification of a mitochondrial iron uptake transporter in rice and a possible role for metalloreductases in iron uptake by mitochondria. In addition, we highlight recent advances in mitochondrial iron homeostasis with an emphasis on the roles of frataxin and ferritin in iron trafficking and storage within mitochondria.
Collapse
Affiliation(s)
| | - Erin L. Connolly
- *Correspondence: Erin L. Connolly, University of South Carolina, 715 Sumter Street, Columbia, SC 29208, USA e-mail:
| |
Collapse
|
22
|
Dissecting plant iron homeostasis under short and long-term iron fluctuations. Biotechnol Adv 2013; 31:1292-307. [PMID: 23680191 DOI: 10.1016/j.biotechadv.2013.05.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 04/18/2013] [Accepted: 05/05/2013] [Indexed: 12/30/2022]
Abstract
A wealth of information on the different aspects of iron homeostasis in plants has been obtained during the last decade. However, there is no clear road-map integrating the relationships between the various components. The principal aim of the current review is to fill this gap. In this context we discuss the lack of low affinity iron uptake mechanisms in plants, the utilization of a different uptake mechanism by graminaceous plants compared to the others, as well as the roles of riboflavin, ferritin isoforms, nitric oxide, nitrosylation, heme, aconitase, and vacuolar pH. Cross-homeostasis between elements is also considered, with a specific emphasis on the relationship between iron homeostasis and phosphorus and copper deficiencies. As the environment is a crucial parameter for modulating plant responses, we also highlight how diurnal fluctuations govern iron metabolism. Evolutionary aspects of iron homeostasis have so far attracted little attention. Looking into the past can inform us on how long-term oxygen and iron-availability fluctuations have influenced the evolution of iron uptake mechanisms. Finally, we evaluate to what extent this homeostastic road map can be used for the development of novel biofortification strategies in order to alleviate iron deficiency in human.
Collapse
|