1
|
Giordano R, Donthu RK, Zimin AV, Julca Chavez IC, Gabaldon T, van Munster M, Hon L, Hall R, Badger JH, Nguyen M, Flores A, Potter B, Giray T, Soto-Adames FN, Weber E, Marcelino JAP, Fields CJ, Voegtlin DJ, Hill CB, Hartman GL. Soybean aphid biotype 1 genome: Insights into the invasive biology and adaptive evolution of a major agricultural pest. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 120:103334. [PMID: 32109587 DOI: 10.1016/j.ibmb.2020.103334] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/07/2020] [Accepted: 02/10/2020] [Indexed: 05/12/2023]
Abstract
The soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae) is a serious pest of the soybean plant, Glycine max, a major world-wide agricultural crop. We assembled a de novo genome sequence of Ap. glycines Biotype 1, from a culture established shortly after this species invaded North America. 20.4% of the Ap. glycines proteome is duplicated. These in-paralogs are enriched with Gene Ontology (GO) categories mostly related to apoptosis, a possible adaptation to plant chemistry and other environmental stressors. Approximately one-third of these genes show parallel duplication in other aphids. But Ap. gossypii, its closest related species, has the lowest number of these duplicated genes. An Illumina GoldenGate assay of 2380 SNPs was used to determine the world-wide population structure of Ap. Glycines. China and South Korean aphids are the closest to those in North America. China is the likely origin of other Asian aphid populations. The most distantly related aphids to those in North America are from Australia. The diversity of Ap. glycines in North America has decreased over time since its arrival. The genetic diversity of Ap. glycines North American population sampled shortly after its first detection in 2001 up to 2012 does not appear to correlate with geography. However, aphids collected on soybean Rag experimental varieties in Minnesota (MN), Iowa (IA), and Wisconsin (WI), closer to high density Rhamnus cathartica stands, appear to have higher capacity to colonize resistant soybean plants than aphids sampled in Ohio (OH), North Dakota (ND), and South Dakota (SD). Samples from the former states have SNP alleles with high FST values and frequencies, that overlap with genes involved in iron metabolism, a crucial metabolic pathway that may be affected by the Rag-associated soybean plant response. The Ap. glycines Biotype 1 genome will provide needed information for future analyses of mechanisms of aphid virulence and pesticide resistance as well as facilitate comparative analyses between aphids with differing natural history and host plant range.
Collapse
Affiliation(s)
- Rosanna Giordano
- Puerto Rico Science, Technology and Research Trust, San Juan, PR, USA; Know Your Bee, Inc. San Juan, PR, USA.
| | - Ravi Kiran Donthu
- Puerto Rico Science, Technology and Research Trust, San Juan, PR, USA; Know Your Bee, Inc. San Juan, PR, USA.
| | - Aleksey V Zimin
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Irene Consuelo Julca Chavez
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain; Barcelona Supercomputing Centre (BSC-CNS), Barcelona, Spain; Institute for Research in Biomedicine, Barcelona, Spain
| | - Toni Gabaldon
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain; Barcelona Supercomputing Centre (BSC-CNS), Barcelona, Spain; Institute for Research in Biomedicine, Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Manuella van Munster
- CIRAD-INRA-Montpellier SupAgro, TA A54/K, Campus International de Baillarguet, Montpellier, France
| | | | | | - Jonathan H Badger
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institute of Health, DHHS, Bethesda, MD, USA
| | - Minh Nguyen
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Alejandra Flores
- College of Liberal Arts and Sciences, School of Molecular and Cellular Biology, University of Illinois, Urbana, IL, USA
| | - Bruce Potter
- University of Minnesota, Southwest Research and Outreach Center, Lamberton, MN, USA
| | - Tugrul Giray
- Department of Biology, University of Puerto Rico, San Juan, PR, USA
| | - Felipe N Soto-Adames
- Florida Department of Agriculture and Consumer Services, Division of Plant Industry, Entomology, Gainesville, FL, USA
| | | | - Jose A P Marcelino
- Puerto Rico Science, Technology and Research Trust, San Juan, PR, USA; Know Your Bee, Inc. San Juan, PR, USA; Department of Entomology and Nematology, University of Florida, Gainesville, FL, USA
| | - Christopher J Fields
- HPCBio, Roy J. Carver Biotechnology Center, University of Illinois, Urbana, IL, USA
| | - David J Voegtlin
- Illinois Natural History Survey, University of Illinois, Urbana, IL, USA
| | | | - Glen L Hartman
- USDA-ARS and Department of Crop Sciences, University of Illinois, Urbana, IL, USA
| |
Collapse
|
2
|
Fang F, Chen J, Jiang L, Qu Y, Qiao G. Genetic origin and dispersal of the invasive soybean aphid inferred from population genetic analysis and approximate Bayesian computation. Integr Zool 2018; 13:536-552. [PMID: 29316260 DOI: 10.1111/1749-4877.12307] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Biological invasion is considered among the most important global environmental problems. Knowledge of the source and dispersal routes of invasion could facilitate the eradication and control of invasive species. Soybean aphid, Aphis glycines, is among the most destructive soybean pests. For effective management of this pest, we conducted genetic analyses and approximate Bayesian computation analysis to determine the origins and dispersal of the aphid species, as well as the source of its invasion in the USA, using 8 microsatellite loci and the mitochondrial cytochrome c oxidase subunit I gene. We were able to identify a significant isolation by distance pattern and 3 genetic lineages in the microsatellite data but not in the mtDNA dataset. The genetic structure showed that the USA population had the closest relationship with those from Korea and Japan, indicating that the 2 latter populations might be the sources of the invasion to the USA. Both population genetic analyses and approximate Bayesian computation showed that the northeastern populations in China were the possible sources of the further spread of A. glycines to Indonesia. The dispersal history of this aphid can provide useful information for pest management strategies and can further help predict areas at risk of invasion.
Collapse
Affiliation(s)
- Fang Fang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jing Chen
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Liyun Jiang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yanhua Qu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Gexia Qiao
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
Yates AD, Michel A. Mechanisms of aphid adaptation to host plant resistance. CURRENT OPINION IN INSECT SCIENCE 2018; 26:41-49. [PMID: 29764659 DOI: 10.1016/j.cois.2018.01.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 01/11/2018] [Accepted: 01/14/2018] [Indexed: 05/27/2023]
Abstract
Host-plant resistant (HPR) crops can play a major role in preventing insect damage, but their durability is limited due to insect adaptation. Research in basal plant resistance provides a framework to investigate adaptation against HPR. Resistance and adaptation are predicted to follow the gene-for-gene and zigzag models of plant defense. These models also highlight the importance of insect effectors, which are small molecules that modulate host plant defense signaling. We highlight research in insect adaptation to plant resistance, and then draw parallels to virulence adaptation. We focus on virulent biotype evolution within the Aphididae, since this group has the highest number of described virulent biotypes. Understanding how virulence occurs will lead to more durable insect management strategies and enhance food production and security.
Collapse
Affiliation(s)
- Ashley D Yates
- Center for Applied Plant Sciences, and The Ohio State Center for Soybean Research, USA
| | - Andy Michel
- Center for Applied Plant Sciences, and The Ohio State Center for Soybean Research, USA; Department of Entomology, Ohio Agricultural Research and Development Center, The Ohio State University, 1680 Madison Ave., Wooster, OH, USA.
| |
Collapse
|
4
|
Duan C, Li W, Zhu Z, Li D, Sun S, Wang X. Genetic differentiation and diversity of Callosobruchus chinensis collections from China. BULLETIN OF ENTOMOLOGICAL RESEARCH 2016; 106:124-34. [PMID: 26548842 PMCID: PMC4762245 DOI: 10.1017/s0007485315000863] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Callosobruchus chinensis (Linnaeus) is one of the most destructive pests of leguminous seeds. Genetic differentiation and diversity analysis of 345 C. chinensis individuals from 23 geographic populations using 20 polymorphic simple sequence repeats revealed a total of 149 alleles with an average of 7.45 alleles per locus. The average Shannon's information index was 1.015. The gene flow and genetic differentiation rate values at the 20 loci ranged from 0.201 to 1.841 and 11.0-47.2%, with averages of 0.849 and 24.4%, respectively. In the 23 geographic populations, the effective number of alleles and observed heterozygosity ranged from 1.441 to 2.218 and 0.191-0.410, respectively. Shannon's information index ranged from 0.357 to 0.949, with the highest value in Hohhot and the lowest in Rudong. In all comparisons, the fixation index (F ST ) values ranged from 0.049 to 0.441 with a total F ST value of 0.254 among the 23 C. chinensis populations, indicating a moderate level of genetic differentiation and gene flow among these populations. Analysis of molecular variance revealed that the genetic variation within populations accounted for 76.7% of the total genetic variation. The genetic similarity values between populations varied from 0.617 to 0.969, whereas genetic distances varied from 0.032 to 0.483. Using unweighted pair-group method using arithmetical averages cluster analysis, the 23 geographic collections were classified into four distinct genetic groups but most of them were clustered into a single group. The pattern of the three concentrated groups from polymerase chain reactions analysis showed a somewhat different result with cluster.
Collapse
Affiliation(s)
- C.X. Duan
- Institute of Crop Science, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing 100081, China
- Author for correspondence Tel: +86-10-8210-9609 Fax: +86-10-8210-9608 E-mail:
| | - W.C. Li
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Z.D. Zhu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing 100081, China
| | - D.D. Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing 100081, China
| | - S.L. Sun
- Institute of Crop Science, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing 100081, China
| | - X.M. Wang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing 100081, China
| |
Collapse
|
5
|
Crossley MS, Hogg DB. Potential Overwintering Locations of Soybean Aphid (Hemiptera: Aphididae) Colonizing Soybean in Ohio and Wisconsin. ENVIRONMENTAL ENTOMOLOGY 2015; 44:210-22. [PMID: 26313174 DOI: 10.1093/ee/nvv012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 01/20/2015] [Indexed: 06/04/2023]
Abstract
Soybean aphids, Aphis glycines Matsumura, depend on long-distance, wind-aided dispersal to complete their life cycle. Despite our general understanding of soybean aphid biology, little is explicitly known about dispersal of soybean aphids between winter and summer hosts in North America. This study compared genotypic diversity of soybean aphids sampled from several overwintering locations in the Midwest and soybean fields in Ohio and Wisconsin to test the hypothesis that these overwintering locations are sources of the soybean colonists. In addition, air parcel trajectory analyses were used to demonstrate the potential for long-distance dispersal events to occur to or from these overwintering locations. Results suggest that soybean aphids from overwintering locations along the Illinois-Iowa border and northern Indiana-Ohio are potential colonists of soybean in Ohio and Wisconsin, but that Ohio is also colonized by soybean aphids from other unknown overwintering locations. Soybean aphids in Ohio and Wisconsin exhibit a small degree of population structure that is not associated with the locations of soybean fields in which they occur, but that may be related to specific overwintering environments, multiple introductions to North America, or spatial variation in aphid phenology. There may be a limited range of suitable habitat for soybean aphid overwintering, in which case management of soybean aphids may be more effective at their overwintering sites. Further research efforts should focus on discovering more overwintering locations of soybean aphid in North America, and the relative impact of short- and long-distance dispersal events on soybean aphid population dynamics.
Collapse
Affiliation(s)
- Michael S Crossley
- Department of Entomology, University of Wisconsin-Madison, 1630 Linden Dr., Madison, WI 53706.
| | - David B Hogg
- Department of Entomology, University of Wisconsin-Madison, 1630 Linden Dr., Madison, WI 53706
| |
Collapse
|