1
|
Chu CY, Lin LF, Lai SC, Yang JH, Chou ML. FaTEDT1L of Octoploid Cultivated Strawberry Functions as a Transcriptional Activator and Enhances Abiotic Stress Tolerance in Transgenic Arabidopsis. Int J Mol Sci 2024; 25:10091. [PMID: 39337577 PMCID: PMC11432484 DOI: 10.3390/ijms251810091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/13/2024] [Accepted: 09/15/2024] [Indexed: 09/30/2024] Open
Abstract
Plants may encounter abiotic stresses, such as drought, flooding, salinity, and extreme temperatures, thereby negatively affecting their growth, development, and reproduction. In order to enhance their tolerance to such stresses, plants have developed intricate signaling networks that regulate stress-responsive gene expression. For example, Arabidopsis Enhanced Drought Tolerance1/HOMEODOMAIN GLABROUS 11 (AtEDT1/HDG11), one of the transcription factor genes from the group IV of homeodomain-leucine zipper (HD-ZIP) gene family, has been shown to increase drought tolerance in various transgenic plants. However, the underlying molecular mechanisms of enhanced stress tolerance remain unclear. In this study, we identified a homologous gene related to AtEDT1/HDG11, named FaTEDT1L, from the transcriptome sequencing database of cultivated strawberry. Phylogenetic analysis revealed the close relationship of FaTEDT1L with AtEDT1/HDG11, which is one of the group IV members of the HD-ZIP gene family. Yeast one-hybrid analysis showed that FaTEDT1L functions as a transcriptional activator. Transgenic Arabidopsis plants overexpressing FaTEDT1L under the control of the cauliflower mosaic virus (CaMV) 35S promoter exhibited significantly enhanced tolerance to osmotic stress (both drought and salinity) when compared to the wild-type (WT) plants. Under osmotic stress, the average root length was 3.63 ± 0.83 cm, 4.20 ± 1.03 cm, and 4.60 ± 1.14 cm for WT, 35S::FaTEDT1L T2 #3, and 35S:: FaTEDT1L T2 #5, respectively. Substantially increased root length in 35S::FaTEDT1L T2 #3 and 35S::FaTEDT1L T2 #5 was noted when compared to the WT. In addition, the average water loss rates were 64%, 57.1%, and 55.6% for WT, 35S::FaTEDT1L T2 #3, and 35S::FaTEDT1L T2 #5, respectively, after drought treatment, indicating a significant decrease in water loss rate of 35S:: FaTEDT1L T2 #3 and 35S::FaTEDT1L T2 #5 is a critical factor in enhancing plant drought resistance. These findings thus highlight the crucial role of FaTEDT1L in mitigating drought and salt stresses and regulating plant osmotic stress tolerance. Altogether, FaTEDT1L shows its potential usage as a candidate gene for strawberry breeding in improving crop resilience and increasing agricultural productivity under adverse environmental conditions.
Collapse
Affiliation(s)
- Ching-Ying Chu
- Department of Life Sciences, Tzu Chi University, Hualien 97004, Taiwan
| | - Lee-Fong Lin
- Department of Life Sciences, Tzu Chi University, Hualien 97004, Taiwan
- Department of Biomedical Sciences and Engineering, Tzu Chi University, Hualien 97004, Taiwan
| | - Shang-Chih Lai
- School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien 97004, Taiwan
| | - Jui-Hung Yang
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu 30011, Taiwan
| | - Ming-Lun Chou
- Department of Life Sciences, Tzu Chi University, Hualien 97004, Taiwan
- Department of Biomedical Sciences and Engineering, Tzu Chi University, Hualien 97004, Taiwan
| |
Collapse
|
2
|
Xu Z, Xiao Y, Guo J, Lv Z, Chen W. Relevance and regulation of alternative splicing in plant secondary metabolism: current understanding and future directions. HORTICULTURE RESEARCH 2024; 11:uhae173. [PMID: 39135731 PMCID: PMC11317897 DOI: 10.1093/hr/uhae173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/14/2024] [Indexed: 08/15/2024]
Abstract
The secondary metabolism of plants is an essential life process enabling organisms to navigate various stages of plant development and cope with ever-changing environmental stresses. Secondary metabolites, abundantly found in nature, possess significant medicinal value. Among the regulatory mechanisms governing these metabolic processes, alternative splicing stands out as a widely observed post-transcriptional mechanism present in multicellular organisms. It facilitates the generation of multiple mRNA transcripts from a single gene by selecting different splicing sites. Selective splicing events in plants are widely induced by various signals, including external environmental stress and hormone signals. These events ultimately regulate the secondary metabolic processes and the accumulation of essential secondary metabolites in plants by influencing the synthesis of primary metabolites, hormone metabolism, biomass accumulation, and capillary density. Simultaneously, alternative splicing plays a crucial role in enhancing protein diversity and the abundance of the transcriptome. This paper provides a summary of the factors inducing alternative splicing events in plants and systematically describes the progress in regulating alternative splicing with respect to different secondary metabolites, including terpenoid, phenolic compounds, and nitrogen-containing compounds. Such elucidation offers critical foundational insights for understanding the role of alternative splicing in regulating plant metabolism and presents novel avenues and perspectives for bioengineering.
Collapse
Affiliation(s)
- Zihan Xu
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ying Xiao
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jinlin Guo
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611103, China
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611103, China
| | - Zongyou Lv
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Wansheng Chen
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| |
Collapse
|
3
|
Liu J, Wang X, Wu H, Zhu Y, Ahmad I, Dong G, Zhou G, Wu Y. Association between Reactive Oxygen Species, Transcription Factors, and Candidate Genes in Drought-Resistant Sorghum. Int J Mol Sci 2024; 25:6464. [PMID: 38928168 PMCID: PMC11203540 DOI: 10.3390/ijms25126464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/04/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
Drought stress is one of the most severe natural disasters in terms of its frequency, length, impact intensity, and associated losses, making it a significant threat to agricultural productivity. Sorghum (Sorghum bicolor), a C4 plant, shows a wide range of morphological, physiological, and biochemical adaptations in response to drought stress, paving the way for it to endure harsh environments. In arid environments, sorghum exhibits enhanced water uptake and reduced dissipation through its morphological activity, allowing it to withstand drought stress. Sorghum exhibits physiological and biochemical resistance to drought, primarily by adjusting its osmotic potential, scavenging reactive oxygen species, and changing the activities of its antioxidant enzymes. In addition, certain sorghum genes exhibit downregulation capabilities in response to drought stress. Therefore, in the current review, we explore drought tolerance in sorghum, encompassing its morphological characteristics and physiological mechanisms and the identification and selection of its functional genes. The use of modern biotechnological and molecular biological approaches to improving sorghum resistance is critical for selecting and breeding drought-tolerant sorghum varieties.
Collapse
Affiliation(s)
- Jiao Liu
- Joint International Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225000, China; (J.L.); (X.W.); (H.W.); (Y.Z.); (I.A.)
- Jiangsu Key Laboratory of Crop Cultivation and Physiology, Yangzhou University, Yangzhou 225000, China;
| | - Xin Wang
- Joint International Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225000, China; (J.L.); (X.W.); (H.W.); (Y.Z.); (I.A.)
- Jiangsu Key Laboratory of Crop Cultivation and Physiology, Yangzhou University, Yangzhou 225000, China;
| | - Hao Wu
- Joint International Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225000, China; (J.L.); (X.W.); (H.W.); (Y.Z.); (I.A.)
- Jiangsu Key Laboratory of Crop Cultivation and Physiology, Yangzhou University, Yangzhou 225000, China;
| | - Yiming Zhu
- Joint International Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225000, China; (J.L.); (X.W.); (H.W.); (Y.Z.); (I.A.)
- Jiangsu Key Laboratory of Crop Cultivation and Physiology, Yangzhou University, Yangzhou 225000, China;
| | - Irshad Ahmad
- Joint International Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225000, China; (J.L.); (X.W.); (H.W.); (Y.Z.); (I.A.)
- Jiangsu Key Laboratory of Crop Cultivation and Physiology, Yangzhou University, Yangzhou 225000, China;
| | - Guichun Dong
- Jiangsu Key Laboratory of Crop Cultivation and Physiology, Yangzhou University, Yangzhou 225000, China;
| | - Guisheng Zhou
- Joint International Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225000, China; (J.L.); (X.W.); (H.W.); (Y.Z.); (I.A.)
- Jiangsu Key Laboratory of Crop Cultivation and Physiology, Yangzhou University, Yangzhou 225000, China;
| | - Yanqing Wu
- Joint International Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225000, China; (J.L.); (X.W.); (H.W.); (Y.Z.); (I.A.)
- Jiangsu Key Laboratory of Crop Cultivation and Physiology, Yangzhou University, Yangzhou 225000, China;
| |
Collapse
|
4
|
Mi C, Sun C, Yuan Y, Li F, Wang Q, Zhu H, Hua S, Lin L. Effects of Low Nighttime Temperature on Fatty Acid Content in Developing Seeds from Brassica napus L. Based on RNA-Seq and Metabolome. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12020325. [PMID: 36679038 PMCID: PMC9862530 DOI: 10.3390/plants12020325] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/02/2023] [Accepted: 01/05/2023] [Indexed: 06/12/2023]
Abstract
Brassica napus L. is a vital plant oil resource worldwide. The fatty acid biosynthesis and oil accumulation in its seeds are controlled by several genetic and environmental factors, including daytime and nighttime temperatures. We analyzed changes in oleic and erucic acid content in two double haploid (DH) lines, DH0729, a weakly temperature-sensitive line, and DH0815, a strongly temperature-sensitive line, derived from B. napus plants grown at different altitudes (1600, 1800, 2000, 2200, and 2400 m a.s.l., 28.85° N, 112.35° E) and nighttime temperatures (20/18, 20/16, 20/13 and 20/10 °C, daytime/nighttime temperature). Based on medium- and long-chain fatty acid metabolites, the total oleic acid content 35 and 43 days after flowering was significantly lower in low nighttime temperature (LNT, 20/13 °C) plants than in high nighttime temperature (HNT, 20/18 °C) plants (HNT: 58-62%; LNT: 49-54%; an average decrease of 9%), and the total erucic acid content was significantly lower in HNT than in LNT plants (HNT: 1-2%; LNT: 8-13%; an average increase of 10%). An RNA-seq analysis showed that the expression levels of SAD (LOC106366808), ECR (LOC106396280), KCS (LOC106419344), KAR (LOC106367337), HB1(LOC106430193), and DOF5 (LOC111211868) in STSL seeds increased under LNT conditions. In STSL seeds, a base mutation in the cis-acting element involved in low-temperature responsiveness (LTR), the HB1 and KCS promoter caused loss of sensitivity to low temperatures, whereas that of the KCS promoter caused increased sensitivity to low temperatures.
Collapse
Affiliation(s)
- Chao Mi
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China
| | - Chao Sun
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China
| | - Yuting Yuan
- Agricultural Research Institute, Tibet Academy of Agriculture and Animal Husbandry Sciences, Lhasa 850032, China
| | - Fei Li
- Yunnan Key Laboratory for Wild Plant Resources, Department of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China
| | - Qian Wang
- Horticultural Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650200, China
| | - Haiping Zhu
- Food Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650200, China
| | - Shuijin Hua
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, 17, Hangzhou 310021, China
| | - Liangbin Lin
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
5
|
Xie Q, Xiong C, Yang Q, Zheng F, Larkin RM, Zhang J, Wang T, Zhang Y, Ouyang B, Lu Y, Ye J, Ye Z, Yang C. A novel regulatory complex mediated by Lanata (Ln) controls multicellular trichome formation in tomato. THE NEW PHYTOLOGIST 2022; 236:2294-2310. [PMID: 36102042 DOI: 10.1111/nph.18492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
Trichomes that originate from plant aerial epidermis act as mechanical and chemical barriers against herbivores. Although several regulators have recently been identified, the regulatory pathway underlying multicellular trichome formation remains largely unknown in tomato. Here, we report a novel HD-ZIP IV transcription factor, Lanata (Ln), a missense mutation which caused the hairy phenotype. Biochemical analyses demonstrate that Ln separately interacts with two trichome regulators, Woolly (Wo) and Hair (H). Genetic and molecular evidence demonstrates that Ln directly regulates the expression of H. The interaction between Ln and Wo can increase trichome density by enhancing the expression of SlCycB2 and SlCycB3, which we previously showed are involved in tomato trichome formation. Furthermore, SlCycB2 represses the transactivation of the SlCycB3 gene by Ln and vice versa. Our findings provide new insights into the novel regulatory network controlling multicellular trichome formation in tomato.
Collapse
Affiliation(s)
- Qingmin Xie
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Cheng Xiong
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qihong Yang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Fangyan Zheng
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Robert M Larkin
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Junhong Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Taotao Wang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuyang Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bo Ouyang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yongen Lu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jie Ye
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhibiao Ye
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Changxian Yang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
6
|
Genome-Wide Identification and Expression Analysis of Homeodomain Leucine Zipper Subfamily IV (HD-ZIP IV) Gene Family in Cannabis sativa L. PLANTS 2022; 11:plants11101307. [PMID: 35631732 PMCID: PMC9144208 DOI: 10.3390/plants11101307] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/06/2022] [Accepted: 05/10/2022] [Indexed: 12/19/2022]
Abstract
The plant-specific homeodomain zipper family (HD-ZIP) of transcription factors plays central roles in regulating plant development and environmental resistance. HD-ZIP transcription factors IV (HDZ IV) have been involved primarily in the regulation of epidermal structure development, such as stomata and trichomes. In our study, we identified nine HDZ IV-encoding genes in Cannabis sativa L. by conducting a computational analysis of cannabis genome resources. Our analysis suggests that these genes putatively encode proteins that have all the conserved domains of HDZ IV transcription factors. The phylogenetic analysis of HDZ IV gene family members of cannabis, rice (Oryza sativa), and Arabidopsis further implies that they might have followed distinct evolutionary paths after divergence from a common ancestor. All the identified cannabis HDZ IV gene promoter sequences have multiple regulation motifs, such as light- and hormone-responsive elements. Furthermore, experimental evidence shows that different HDZ IV genes have different expression patterns in root, stem, leaf, and flower tissues. Four genes were primarily expressed in flowers, and the expression of CsHDG5 (XP_030501222.1) was also correlated with flower maturity. Fifty-nine genes were predicted as targets of HDZ IV transcription factors. Some of these genes play central roles in pathogen response, flower development, and brassinosteroid signaling. A subcellular localization assay indicated that one gene of this family is localized in the Arabidopsis protoplast nucleus. Taken together, our work lays fundamental groundwork to illuminate the function of cannabis HDZ IV genes and their possible future uses in increasing cannabis trichome morphogenesis and secondary metabolite production.
Collapse
|
7
|
Du H, Wang G, Pan J, Chen Y, Xiao T, Zhang L, Zhang K, Wen H, Xiong L, Yu Y, He H, Pan J, Cai R. The HD-ZIP IV transcription factor Tril regulates fruit spine density through gene dosage effects in cucumber. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:6297-6310. [PMID: 32710537 DOI: 10.1093/jxb/eraa344] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 07/21/2020] [Indexed: 05/24/2023]
Abstract
Trichomes and fruit spines are important traits that directly affect the appearance quality and commercial value of cucumber (Cucumis sativus). Tril (Trichome-less), encodes a HD-Zip IV transcription factor that plays a crucial role in the initiation of trichomes and fruit spines, but little is known about the details of the regulatory mechanisms involved. In this study, analysis of tissue expression patterns indicated that Tril is expressed and functions in the early stages of organ initiation and development. Expression of Tril under the control of its own promoter (the TrilPro::Tril-3*flag fragment) could partly rescue the mutant phenotypes of tril, csgl3 (cucumber glabrous 3, an allelic mutant of tril), and fs1 (few spines 1, a fragment substitution in the Tril promoter region), providing further evidence that Tril is responsible for the initiation of trichomes and fruit spines. In lines with dense spine, fs1-type lines, and transgenic lines of different backgrounds containing the TrilPro::Tril-3*flag foreign fragment, spine density increased in conjunction with increases in Tril expression, indicating that Tril has a gene dosage effect on fruit spine density in cucumber. Numerous Spines (NS) is a negative regulatory factor of fruit spine density. Characterization of the molecular and genetic interaction between Tril and NS/ns demonstrated that Tril functions upstream of NS with respect to spine initiation. Overall, our results reveal a novel regulatory mechanism governing the effect of Tril on fruit spine development, and provide a reference for future work on breeding for physical quality in cucumber.
Collapse
Affiliation(s)
- Hui Du
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Gang Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Jian Pan
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yue Chen
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Tingting Xiao
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Leyu Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Keyan Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Haifan Wen
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Liangrong Xiong
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yao Yu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Huanle He
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Junsong Pan
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Run Cai
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- State Key Laboratory of Vegetable Germplasm Innovation, Tianjin, China
| |
Collapse
|
8
|
Cai Y, Bartholomew ES, Dong M, Zhai X, Yin S, Zhang Y, Feng Z, Wu L, Liu W, Shan N, Zhang X, Ren H, Liu X. The HD-ZIP IV transcription factor GL2-LIKE regulates male flowering time and fertility in cucumber. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:5425-5437. [PMID: 32490515 PMCID: PMC7501822 DOI: 10.1093/jxb/eraa251] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 05/27/2020] [Indexed: 05/19/2023]
Abstract
Cucumber is dioecious by nature, having both male and female flowers, and is a model system for unisexual flower development. Knowledge related to male flowering is limited, but it is reported to be regulated by transcription factors and hormone signals. Here, we report functional characterization of the cucumber (Cucumis sativus) GL2-LIKE gene, which encodes a homeodomain leucine zipper (HD-ZIP) IV transcription factor that plays an important role in regulating male flower development. Spatial-temporal expression analyses revealed high-level expression of CsGL2-LIKE in the male flower buds and anthers. CsGL2-LIKE is closely related to AtGL2, which is known to play a key role in trichome development. However, ectopic expression of CsGL2-LIKE in Arabidopsis gl2-8 mutant was unable to rescue the gl2-8 phenotype. Interestingly, the silencing of CsGL2-LIKE delayed male flowering by inhibiting the expression of the florigen gene FT and reduced pollen vigor and seed viability. Protein-protein interaction assays showed that CsGL2-LIKE interacts with the jasmonate ZIM domain protein CsJAZ1 to form a HD-ZIP IV-CsJAZ1 complex. Collectively, our study indicates that CsGL2-LIKE regulates male flowering in cucumber, and reveals a novel function of a HD-ZIP IV transcription factor in regulating male flower development of cucumber.
Collapse
Affiliation(s)
- Yanling Cai
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, P. R. China
- Engineering Research Center of Breeding and Propagation of Horticultural Crops, Ministry of Education, College of Horticulture, China Agricultural University, Beijing, P. R. China
| | - Ezra S Bartholomew
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, P. R. China
- Engineering Research Center of Breeding and Propagation of Horticultural Crops, Ministry of Education, College of Horticulture, China Agricultural University, Beijing, P. R. China
| | - Mingming Dong
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, P. R. China
- Engineering Research Center of Breeding and Propagation of Horticultural Crops, Ministry of Education, College of Horticulture, China Agricultural University, Beijing, P. R. China
| | - Xuling Zhai
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, P. R. China
- Engineering Research Center of Breeding and Propagation of Horticultural Crops, Ministry of Education, College of Horticulture, China Agricultural University, Beijing, P. R. China
| | - Shuai Yin
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, P. R. China
- Engineering Research Center of Breeding and Propagation of Horticultural Crops, Ministry of Education, College of Horticulture, China Agricultural University, Beijing, P. R. China
| | - Yaqi Zhang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, P. R. China
- Engineering Research Center of Breeding and Propagation of Horticultural Crops, Ministry of Education, College of Horticulture, China Agricultural University, Beijing, P. R. China
| | - Zhongxuan Feng
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, P. R. China
- Engineering Research Center of Breeding and Propagation of Horticultural Crops, Ministry of Education, College of Horticulture, China Agricultural University, Beijing, P. R. China
| | - Licai Wu
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, P. R. China
- Engineering Research Center of Breeding and Propagation of Horticultural Crops, Ministry of Education, College of Horticulture, China Agricultural University, Beijing, P. R. China
| | - Wan Liu
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, P. R. China
- Engineering Research Center of Breeding and Propagation of Horticultural Crops, Ministry of Education, College of Horticulture, China Agricultural University, Beijing, P. R. China
| | - Nan Shan
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, P. R. China
- Engineering Research Center of Breeding and Propagation of Horticultural Crops, Ministry of Education, College of Horticulture, China Agricultural University, Beijing, P. R. China
| | - Xiao Zhang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, P. R. China
- Engineering Research Center of Breeding and Propagation of Horticultural Crops, Ministry of Education, College of Horticulture, China Agricultural University, Beijing, P. R. China
| | - Huazhong Ren
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, P. R. China
- Engineering Research Center of Breeding and Propagation of Horticultural Crops, Ministry of Education, College of Horticulture, China Agricultural University, Beijing, P. R. China
| | - Xingwang Liu
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, P. R. China
- Engineering Research Center of Breeding and Propagation of Horticultural Crops, Ministry of Education, College of Horticulture, China Agricultural University, Beijing, P. R. China
- Correspondence:
| |
Collapse
|
9
|
Zhang H, Ma X, Li W, Niu D, Wang Z, Yan X, Yang X, Yang Y, Cui H. Genome-wide characterization of NtHD-ZIP IV: different roles in abiotic stress response and glandular Trichome induction. BMC PLANT BIOLOGY 2019; 19:444. [PMID: 31651252 PMCID: PMC6814048 DOI: 10.1186/s12870-019-2023-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 09/10/2019] [Indexed: 05/12/2023]
Abstract
BACKGROUND The plant-specific homeodomain-leucine zipper class IV (HD-ZIP IV) gene family has been involved in the regulation of epidermal development. RESULTS Fifteen genes coding for HD-ZIP IV proteins were identified (NtHD-ZIP-IV-1 to NtHD-ZIP-IV-15) based on the genome of N. tabacum. Four major domains (HD, ZIP, SAD and START) were present in these proteins. Tissue expression pattern analysis indicated that NtHD-ZIP-IV-1, - 2, - 3, - 10, and - 12 may be associated with trichome development; NtHD-ZIP-IV-8 was expressed only in cotyledons; NtHD-ZIP-IV-9 only in the leaf and stem epidermis; NtHD-ZIP-IV-11 only in leaves; and NtHD-ZIP-IV-15 only in the root and stem epidermis. We found that jasmonates may induce the generation of glandular trichomes, and that NtHD-ZIP-IV-1, - 2, - 5, and - 7 were response to MeJA treatment. Dynamic expression under abiotic stress and after application of phytohormones indicated that most NtHD-ZIP IV genes were induced by heat, cold, salt and drought. Furthermore, most of these genes were induced by gibberellic acid, 6-benzylaminopurine, and salicylic acid, but were inhibited by abscisic acid. NtHD-ZIP IV genes were sensitive to heat, but insensitive to osmotic stress. CONCLUSION NtHD-ZIP IV genes are implicated in a complex regulatory gene network controlling epidermal development and abiotic stress responses. The present study provides evidence to elucidate the gene functions of NtHD-ZIP IVs during epidermal development and stress response.
Collapse
Affiliation(s)
- Hongying Zhang
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002 China
| | - Xudong Ma
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002 China
| | - Wenjiao Li
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002 China
| | - Dexin Niu
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002 China
| | - Zhaojun Wang
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002 China
| | - Xiaoxiao Yan
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002 China
| | - Xinling Yang
- Technology Center, China Tobacco Henan Industrial Co., Ltd, Zhengzhou, 450000 China
| | - Yongfeng Yang
- Technology Center, China Tobacco Henan Industrial Co., Ltd, Zhengzhou, 450000 China
| | - Hong Cui
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002 China
| |
Collapse
|
10
|
Wei M, Liu A, Zhang Y, Zhou Y, Li D, Dossa K, Zhou R, Zhang X, You J. Genome-wide characterization and expression analysis of the HD-Zip gene family in response to drought and salinity stresses in sesame. BMC Genomics 2019; 20:748. [PMID: 31619177 PMCID: PMC6796446 DOI: 10.1186/s12864-019-6091-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 09/10/2019] [Indexed: 01/19/2023] Open
Abstract
Background The homeodomain-leucine zipper (HD-Zip) gene family is one of the plant-specific transcription factor families, involved in plant development, growth, and in the response to diverse stresses. However, comprehensive analysis of the HD-Zip genes, especially those involved in response to drought and salinity stresses is lacking in sesame (Sesamum indicum L.), an important oil crop in tropical and subtropical areas. Results In this study, 45 HD-Zip genes were identified in sesame, and denominated as SiHDZ01-SiHDZ45. Members of SiHDZ family were classified into four groups (HD-Zip I-IV) based on the phylogenetic relationship of Arabidopsis HD-Zip proteins, which was further supported by the analysis of their conserved motifs and gene structures. Expression analyses of SiHDZ genes based on transcriptome data showed that the expression patterns of these genes were varied in different tissues. Additionally, we showed that at least 75% of the SiHDZ genes were differentially expressed in responses to drought and salinity treatments, and highlighted the important role of HD-Zip I and II genes in stress responses in sesame. Conclusions This study provides important information for functional characterization of stress-responsive HD-Zip genes and may contribute to the better understanding of the molecular basis of stress tolerance in sesame.
Collapse
Affiliation(s)
- Mengyuan Wei
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Aili Liu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Yujuan Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China.,Special Economic Crop Research Center of Shandon Academy of Agricultural Sciences, Shandong Cotton Research Center, Jinan, 250100, China
| | - Yong Zhou
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Donghua Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Komivi Dossa
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Rong Zhou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Xiurong Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China.
| | - Jun You
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China.
| |
Collapse
|
11
|
Genome-Wide Identification and Expression Analyses of the Fibrillin Family Genes Suggest Their Involvement in Photoprotection in Cucumber. PLANTS 2018; 7:plants7030050. [PMID: 29954122 PMCID: PMC6161074 DOI: 10.3390/plants7030050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 06/15/2018] [Accepted: 06/23/2018] [Indexed: 11/17/2022]
Abstract
Fibrillin (FBN) is a plastid lipid-associated protein found in photosynthetic organisms from cyanobacteria to plants. In this study, 10 CsaFBN genes were identified in genomic DNA sequences of cucumber (Chinese long and Gy14) through database searches using the conserved domain of FBN and the 14 FBN genes of Arabidopsis. Phylogenetic analysis of CsaFBN protein sequences showed that there was no counterpart of Arabidopsis and rice FBN5 in the cucumber genome. FBN5 is essential for growth in Arabidopsis and rice; its absence in cucumber may be because of incomplete genome sequences or that another FBN carries out its functions. Among the 10 CsaFBN genes, CsaFBN1 and CsaFBN9 were the most divergent in terms of nucleotide sequences. Most of the CsaFBN genes were expressed in the leaf, stem and fruit. CsaFBN4 showed the highest mRNA expression levels in various tissues, followed by CsaFBN6, CsaFBN1 and CsaFBN9. High-light stress combined with low temperature decreased photosynthetic efficiency and highly induced transcript levels of CsaFBN1, CsaFBN6 and CsaFBN11, which decreased after 24 h treatment. Transcript levels of the other seven genes were changed only slightly. This result suggests that CsaFBN1, CsaFBN6 and CsaFBN11 may be involved in photoprotection under high-light conditions at low temperature.
Collapse
|
12
|
Zhu H, Sun X, Zhang Q, Song P, Hu Q, Zhang X, Li X, Hu J, Pan J, Sun S, Weng Y, Yang L. GLABROUS (CmGL) encodes a HD-ZIP IV transcription factor playing roles in multicellular trichome initiation in melon. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:569-579. [PMID: 29147724 DOI: 10.1007/s00122-017-3019-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 11/10/2017] [Indexed: 05/07/2023]
Abstract
Map-based cloning identified CmGL that encodes a HD-ZIP type IV transcription factor that controls multicellular trichome initiation in melon. Trichomes are small hairs covering the aerial parts of plants that originate from the epidermal cells, which can protect plants against the damage by insects and pathogens. The regulatory pathway of unicellular trichomes has been well studied in the model plant Arabidopsis. Little is known about the genetic control and regulation of trichome development in melon (Cucumis melo L.) which has multicellular trichomes. In this study, we identified a melon mutant, cmgl, which showed completely glabrous on all aerial organs. A bulked segregant analysis was conducted to identify polymorphic markers for linkage analysis in a population with 256 F2 plants, which allowed to locate the cmgl locus in melon chromosome VIII. Next-generation sequencing-aided marker discovery and fine mapping in a large population with 1536 F2 plants narrowed the candidate gene region to 12 kb that harbored only one candidate gene for cmgl, which encoded a class IV homeodomain-associated leucine zipper transcription factor. Four SNPs in the coding region of the CmGL gene were identified between the two parental lines; a single base substitution from C to A resulted in a premature termination codon and a truncated protein in the cmgl. The SNP was converted into a dCAPS marker, which showed co-segregation in the F2 population and 564 melon accessions. Result of this study will be helpful for better understanding of genetic control of trichome development in melon and marker-assisted selection in developing new cultivars.
Collapse
Affiliation(s)
- Huayu Zhu
- College of Horticulture, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, China
| | - Xiaofen Sun
- College of Horticulture, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, China
| | - Qi Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Pengyao Song
- College of Horticulture, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, China
| | - Qianmei Hu
- College of Horticulture, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, China
| | - Xiaojing Zhang
- College of Horticulture, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, China
| | - Xiang Li
- College of Horticulture, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, China
| | - Jianbin Hu
- College of Horticulture, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, China
- Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou, 450002, China
| | - Junsong Pan
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Shouru Sun
- College of Horticulture, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, China
- Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou, 450002, China
| | - Yiqun Weng
- USDA-ARS Vegetable Crops Research Unit, Horticulture Department, University of Wisconsin, Madison, WI, 53706, USA
| | - Luming Yang
- College of Horticulture, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, China.
| |
Collapse
|
13
|
Zhang H, Wang L, Zheng S, Liu Z, Wu X, Gao Z, Cao C, Li Q, Ren Z. A fragment substitution in the promoter of CsHDZIV11/CsGL3 is responsible for fruit spine density in cucumber (Cucumis sativus L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2016; 129:1289-1301. [PMID: 27015676 DOI: 10.1007/s00122-016-2703-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 03/05/2016] [Indexed: 05/25/2023]
Abstract
The indel in the promoter of CsHDZIV11 co-segregates with fruit spine density and could be used for molecular breeding in cucumber. Fruit spine density is an important quality trait for marketing in cucumber (Cucumis sativus L.). However, the molecular basis of fruit spine density in cucumber remains unclear. In this study, we isolated a mutant, few spines 1 (fs1), from CNS2 (wild type, WT), a North China-type cucumber with a high density of fruit spines. Genetic analysis showed that fs1 was controlled by a single recessive Mendelian factor. Bulked segregant analysis combined with genome resequencing were used for mapping fs1 in the F2 population derived from a cross between the fs1 mutant and WT, and it was located on chromosome 6 through association analysis. To develop more polymorphic markers to locate fs1, another F2 population was constructed from the cross between fs1 and 'Chinese long' 9930. Then, fs1 was narrowed down to a 110.4-kb genomic region containing 25 annotated genes. A fragment substitution was identified in the promoter region of Csa6M514870 between fs1 and WT. This fragment in fs1 was also present in wild cucumber. Csa6M514870 encodes a PDF2-related protein, a homeodomain-leucine zipper IV transcription factor (CsHDZIV11/CsGL3) sharing high identity and similarity with proteins related to trichome formation or epidermal cell differentiation. Quantitative reverse-transcription PCR revealed a higher expression level of CsHDZIV11 in young fruits from fs1 compared to WT. A molecular marker based on this indel co-segregated with the spine density. This work provides a solid foundation not only for understanding the molecular mechanism of fruit spine density, but also for molecular breeding in cucumber.
Collapse
Affiliation(s)
- Haiyang Zhang
- State Key Laboratory of Corp Biology, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Huanghuai Region), Ministry of Agriculture, College of Horticulture Science and Engineering, Shandong Agricultural University, No. 61 Daizong road, Tai'an, 271018, Shandong, China
| | - Lina Wang
- State Key Laboratory of Corp Biology, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Huanghuai Region), Ministry of Agriculture, College of Horticulture Science and Engineering, Shandong Agricultural University, No. 61 Daizong road, Tai'an, 271018, Shandong, China
| | - Shuangshuang Zheng
- State Key Laboratory of Corp Biology, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Huanghuai Region), Ministry of Agriculture, College of Horticulture Science and Engineering, Shandong Agricultural University, No. 61 Daizong road, Tai'an, 271018, Shandong, China
| | - Zezhou Liu
- State Key Laboratory of Corp Biology, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Huanghuai Region), Ministry of Agriculture, College of Horticulture Science and Engineering, Shandong Agricultural University, No. 61 Daizong road, Tai'an, 271018, Shandong, China
| | - Xiaoqin Wu
- State Key Laboratory of Corp Biology, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Huanghuai Region), Ministry of Agriculture, College of Horticulture Science and Engineering, Shandong Agricultural University, No. 61 Daizong road, Tai'an, 271018, Shandong, China
| | - Zhihui Gao
- State Key Laboratory of Corp Biology, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Huanghuai Region), Ministry of Agriculture, College of Horticulture Science and Engineering, Shandong Agricultural University, No. 61 Daizong road, Tai'an, 271018, Shandong, China
| | - Chenxing Cao
- State Key Laboratory of Corp Biology, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Huanghuai Region), Ministry of Agriculture, College of Horticulture Science and Engineering, Shandong Agricultural University, No. 61 Daizong road, Tai'an, 271018, Shandong, China
| | - Qiang Li
- State Key Laboratory of Corp Biology, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Huanghuai Region), Ministry of Agriculture, College of Horticulture Science and Engineering, Shandong Agricultural University, No. 61 Daizong road, Tai'an, 271018, Shandong, China
| | - Zhonghai Ren
- State Key Laboratory of Corp Biology, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Huanghuai Region), Ministry of Agriculture, College of Horticulture Science and Engineering, Shandong Agricultural University, No. 61 Daizong road, Tai'an, 271018, Shandong, China.
| |
Collapse
|
14
|
Pandey A, Misra P, Alok A, Kaur N, Sharma S, Lakhwani D, Asif MH, Tiwari S, Trivedi PK. Genome-Wide Identification and Expression Analysis of Homeodomain Leucine Zipper Subfamily IV (HDZ IV) Gene Family from Musa accuminata. FRONTIERS IN PLANT SCIENCE 2016; 7:20. [PMID: 26870050 PMCID: PMC4740955 DOI: 10.3389/fpls.2016.00020] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 01/08/2016] [Indexed: 05/12/2023]
Abstract
The homeodomain zipper family (HD-ZIP) of transcription factors is present only in plants and plays important role in the regulation of plant-specific processes. The subfamily IV of HDZ transcription factors (HD-ZIP IV) has primarily been implicated in the regulation of epidermal structure development. Though this gene family is present in all lineages of land plants, members of this gene family have not been identified in banana, which is one of the major staple fruit crops. In the present work, we identified 21 HDZIV encoding genes in banana by the computational analysis of banana genome resource. Our analysis suggested that these genes putatively encode proteins having all the characteristic domains of HDZIV transcription factors. The phylogenetic analysis of the banana HDZIV family genes further confirmed that after separation from a common ancestor, the banana, and poales lineages might have followed distinct evolutionary paths. Further, we conclude that segmental duplication played a major role in the evolution of banana HDZIV encoding genes. All the identified banana HDZIV genes expresses in different banana tissue, however at varying levels. The transcript levels of some of the banana HDZIV genes were also detected in banana fruit pulp, suggesting their putative role in fruit attributes. A large number of genes of this family showed modulated expression under drought and salinity stress. Taken together, the present work lays a foundation for elucidation of functional aspects of the banana HDZIV encoding genes and for their possible use in the banana improvement programs.
Collapse
Affiliation(s)
- Ashutosh Pandey
- Department of Biotechnology, National Agri-Food Biotechnology InstituteMohali, India
- *Correspondence: Ashutosh Pandey
| | - Prashant Misra
- CSIR-National Botanical Research InstituteLucknow, India
| | - Anshu Alok
- Department of Biotechnology, National Agri-Food Biotechnology InstituteMohali, India
| | - Navneet Kaur
- Department of Biotechnology, National Agri-Food Biotechnology InstituteMohali, India
| | - Shivani Sharma
- Department of Biotechnology, National Agri-Food Biotechnology InstituteMohali, India
| | | | - Mehar H. Asif
- CSIR-National Botanical Research InstituteLucknow, India
| | - Siddharth Tiwari
- Department of Biotechnology, National Agri-Food Biotechnology InstituteMohali, India
| | - Prabodh K. Trivedi
- CSIR-National Botanical Research InstituteLucknow, India
- Prabodh K. Trivedi ;
| |
Collapse
|
15
|
Gao Y, Gao S, Xiong C, Yu G, Chang J, Ye Z, Yang C. Comprehensive analysis and expression profile of the homeodomain leucine zipper IV transcription factor family in tomato. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2015; 96:141-53. [PMID: 26263517 DOI: 10.1016/j.plaphy.2015.07.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 07/21/2015] [Accepted: 07/22/2015] [Indexed: 05/26/2023]
Abstract
Homeodomain leucine zipper IV (HD-ZIP IV) proteins are plant-specific transcription factors that play important roles in development of epidermal cell layers and cuticle formation. The functions of two HD-ZIP IV family genes, CD2 and Wo, have been well characterized in tomato (Solanum lycopersicum). CD2 and Wo are involved in cuticle biosynthesis and trichome formation, respectively. In this study, we identified 13 novel tomato HD-ZIP IV (SlHDZIV) genes. We analyzed the structures, chromosome locations, phylogeny, protein motifs, and expression profiles of these SlHDZIV genes. Gene structure analysis revealed that a module of 11 exons and 10 introns existed in the SlHDZIV genes. These genes were asymmetrically distributed on chromosomes, except on chromosome 4 and 5. Segmental duplication possibly contributed to the expansion of tomato HD-ZIP IV genes. The expression profiles of these genes revealed their broad expression pattern and high expression in young leaves and flowers. Each gene responded to more than one of different phytohormones [abscisic acid, ethephon, 4-(indolyl)-butyric acid, jasmonic acid, salicylic acid, gibberellic acid, and 6-benzylaminopurine] and four abiotic stress treatments (cold, heat, salt, and drought). This study provided significant insights into the diverse roles of SlHDZIV genes in tomato growth and development.
Collapse
Affiliation(s)
- Yanna Gao
- Key Laboratory of Horticultural Plant Biology (MOE), Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), MOA, Huazhong Agricultural University, Wuhan 430070, China
| | - Shenghua Gao
- Key Laboratory of Horticultural Plant Biology (MOE), Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), MOA, Huazhong Agricultural University, Wuhan 430070, China
| | - Cheng Xiong
- Key Laboratory of Horticultural Plant Biology (MOE), Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), MOA, Huazhong Agricultural University, Wuhan 430070, China
| | - Gang Yu
- Key Laboratory of Horticultural Plant Biology (MOE), Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), MOA, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiang Chang
- Key Laboratory of Horticultural Plant Biology (MOE), Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), MOA, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhibiao Ye
- Key Laboratory of Horticultural Plant Biology (MOE), Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), MOA, Huazhong Agricultural University, Wuhan 430070, China
| | - Changxian Yang
- Key Laboratory of Horticultural Plant Biology (MOE), Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), MOA, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
16
|
Ge XX, Liu Z, Wu XM, Chai LJ, Guo WW. Genome-wide identification, classification and analysis of HD-ZIP gene family in citrus, and its potential roles in somatic embryogenesis regulation. Gene 2015; 574:61-8. [PMID: 26232336 DOI: 10.1016/j.gene.2015.07.079] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 07/22/2015] [Accepted: 07/24/2015] [Indexed: 01/13/2023]
Abstract
The homeodomain-leucine zipper (HD-Zip) transcription factors, which belong to a class of Homeobox proteins, has been reported to be involved in different biological processes of plants, including growth and development, photomorphogenesis, flowering, fruit ripening and adaptation responses to environmental stresses. In this study, 27 HD-Zip genes (CsHBs) were identified in Citrus. Based on the phylogenetic analysis and characteristics of individual gene or protein, the HD-Zip gene family in Citrus can be classified into 4 subfamilies, i.e. HD-Zip I, HD-Zip II, HD-Zip III, and HD-Zip IV containing 16, 2, 4, and 5 members respectively. The digital expression patterns of 27 HD-Zip genes were analyzed in the callus, flower, leaf and fruit of Citrus sinensis. The qRT-PCR and RT-PCR analyses of six selected HD-Zip genes were performed in six citrus cultivars with different embryogenic competence and in the embryo induction stages, which revealed that these genes were differentially expressed and might be involved in citrus somatic embryogenesis (SE). The results exhibited that the expression of CsHB1 was up-regulated in somatic embryo induction process, and its expression was higher in citrus cultivars with high embryogenic capacity than in cultivars recalcitrant to form somatic embryos. Moreover, a microsatellite site of three nucleotide repeats was found in CsHB1 gene among eighteen citrus genotypes, indicating the possible association of CsHB1 gene to the capacity of callus induction.
Collapse
Affiliation(s)
- Xiao-Xia Ge
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China; Center of Applied Biotechnology, Wuhan Institute of Bioengineering, Wuhan 430415, China.
| | - Zheng Liu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
| | - Xiao-Meng Wu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
| | - Li-Jun Chai
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
| | - Wen-Wu Guo
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
17
|
Belamkar V, Weeks NT, Bharti AK, Farmer AD, Graham MA, Cannon SB. Comprehensive characterization and RNA-Seq profiling of the HD-Zip transcription factor family in soybean (Glycine max) during dehydration and salt stress. BMC Genomics 2014; 15:950. [PMID: 25362847 PMCID: PMC4226900 DOI: 10.1186/1471-2164-15-950] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 10/16/2014] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND The homeodomain leucine zipper (HD-Zip) transcription factor family is one of the largest plant specific superfamilies, and includes genes with roles in modulation of plant growth and response to environmental stresses. Many HD-Zip genes are characterized in Arabidopsis (Arabidopsis thaliana), and members of the family are being investigated for abiotic stress responses in rice (Oryza sativa), maize (Zea mays), poplar (Populus trichocarpa) and cucumber (Cucmis sativus). Findings in these species suggest HD-Zip genes as high priority candidates for crop improvement. RESULTS In this study we have identified members of the HD-Zip gene family in soybean cv. 'Williams 82', and characterized their expression under dehydration and salt stress. Homology searches with BLASTP and Hidden Markov Model guided sequence alignments identified 101 HD-Zip genes in the soybean genome. Phylogeny reconstruction coupled with domain and gene structure analyses using soybean, Arabidopsis, rice, grape (Vitis vinifera), and Medicago truncatula homologues enabled placement of these sequences into four previously described subfamilies. Of the 101 HD-Zip genes identified in soybean, 88 exist as whole-genome duplication-derived gene pairs, indicating high retention of these genes following polyploidy in Glycine ~13 Mya. The HD-Zip genes exhibit ubiquitous expression patterns across 24 conditions that include 17 tissues of soybean. An RNA-Seq experiment performed to study differential gene expression at 0, 1, 6 and 12 hr soybean roots under dehydration and salt stress identified 20 differentially expressed (DE) genes. Several of these DE genes are orthologs of genes previously reported to play a role under abiotic stress, implying conservation of HD-Zip gene functions across species. Screening of HD-Zip promoters identified transcription factor binding sites that are overrepresented in the DE genes under both dehydration and salt stress, providing further support for the role of HD-Zip genes in abiotic stress responses. CONCLUSIONS We provide a thorough description of soybean HD-Zip genes, and identify potential candidates with probable roles in dehydration and salt stress. Expression profiles generated for all soybean genes, under dehydration and salt stress, at four time points, will serve as an important resource for the soybean research community, and will aid in understanding plant responses to abiotic stress.
Collapse
Affiliation(s)
- Vikas Belamkar
- />Interdepartmental Genetics, Iowa State University, Ames, IA 50011 USA
- />Department of Agronomy, Iowa State University, Ames, IA 50011 USA
| | - Nathan T Weeks
- />United States Department of Agriculture - Agricultural Research Service, Corn Insects and Crop Genetics Research Unit, Ames, IA 50011 USA
| | - Arvind K Bharti
- />National Center for Genome Resources, Santa Fe, NM 87505 USA
| | - Andrew D Farmer
- />National Center for Genome Resources, Santa Fe, NM 87505 USA
| | - Michelle A Graham
- />Department of Agronomy, Iowa State University, Ames, IA 50011 USA
- />United States Department of Agriculture - Agricultural Research Service, Corn Insects and Crop Genetics Research Unit, Ames, IA 50011 USA
| | - Steven B Cannon
- />Department of Agronomy, Iowa State University, Ames, IA 50011 USA
- />United States Department of Agriculture - Agricultural Research Service, Corn Insects and Crop Genetics Research Unit, Ames, IA 50011 USA
| |
Collapse
|