1
|
Badaeva ED, Kotseruba VV, Fisenko AV, Chikida NN, Belousova MK, Zhurbenko PM, Surzhikov SA, Dragovich AY. Intraspecific divergence of diploid grass Aegilopscomosa is associated with structural chromosome changes. COMPARATIVE CYTOGENETICS 2023; 17:75-112. [PMID: 37304148 PMCID: PMC10252141 DOI: 10.3897/compcytogen.17.101008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 03/24/2023] [Indexed: 06/13/2023]
Abstract
Aegilopscomosa Smith in Sibthorp et Smith, 1806 is diploid grass with MM genome constitution occurring mainly in Greece. Two morphologically distinct subspecies - Ae.c.comosa Chennaveeraiah, 1960 and Ae.c.heldreichii (Holzmann ex Boissier) Eig, 1929 are discriminated within Ae.comosa, however, genetic and karyotypic bases of their divergence are not fully understood. We used Fluorescence in situ hybridization (FISH) with repetitive DNA probes and electrophoretic analysis of gliadins to characterize the genome and karyotype of Ae.comosa to assess the level of their genetic diversity and uncover mechanisms leading to radiation of subspecies. We show that two subspecies differ in size and morphology of chromosomes 3M and 6M, which can be due to reciprocal translocation. Subspecies also differ in the amount and distribution of microsatellite and satellite DNA sequences, the number and position of minor NORs, especially on 3M and 6M, and gliadin spectra mainly in the a-zone. Frequent occurrence of hybrids can be caused by open pollination, which, along with genetic heterogeneity of accessions and, probably, the lack of geographic or genetic barrier between the subspecies, may contribute to extremely broad intraspecific variation of GAAn and gliadin patterns in Ae.comosa, which are usually not observed in endemic plant species.
Collapse
Affiliation(s)
- Ekaterina D. Badaeva
- N.I.Vavilov Institute of General Genetics, Russian Academy of Sciences, Gubkina str. 3, GSP-1, Moscow 119991, RussiaEngelhardt Institute of Molecular Biology, Russian Academy of SciencesMoscowRussia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova str. 32, GSP-1, Moscow 119334, RussiaN.I.Vavilov Institute of General Genetics, Russian Academy of SciencesMoscowRussia
| | - Violetta V. Kotseruba
- Komarov Botanical Institute, Russian Academy of Sciences, Prof. Popova str. 2, Saint Petersburg 197376, RussiaKomarov Botanical Institute, Russian Academy of SciencesSaint PetersburgRussia
| | - Andnrey V. Fisenko
- N.I.Vavilov Institute of General Genetics, Russian Academy of Sciences, Gubkina str. 3, GSP-1, Moscow 119991, RussiaEngelhardt Institute of Molecular Biology, Russian Academy of SciencesMoscowRussia
| | - Nadezhda N. Chikida
- N.I. Vavilov Institute of Plant Genetic Resources (VIR), Ministry of Science and Higher Education, Bolshaya Morskaya str. 42-44, Saint Petersburg 190000, RussiaN.I. Vavilov Institute of Plant Genetic Resources (VIR), Ministry of Science and Higher EducationSaint PetersburgRussia
| | - Maria Kh. Belousova
- N.I. Vavilov Institute of Plant Genetic Resources (VIR), Ministry of Science and Higher Education, Bolshaya Morskaya str. 42-44, Saint Petersburg 190000, RussiaN.I. Vavilov Institute of Plant Genetic Resources (VIR), Ministry of Science and Higher EducationSaint PetersburgRussia
| | - Peter M. Zhurbenko
- Komarov Botanical Institute, Russian Academy of Sciences, Prof. Popova str. 2, Saint Petersburg 197376, RussiaKomarov Botanical Institute, Russian Academy of SciencesSaint PetersburgRussia
| | - Sergei A. Surzhikov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova str. 32, GSP-1, Moscow 119334, RussiaN.I.Vavilov Institute of General Genetics, Russian Academy of SciencesMoscowRussia
| | - Alexandra Yu. Dragovich
- N.I.Vavilov Institute of General Genetics, Russian Academy of Sciences, Gubkina str. 3, GSP-1, Moscow 119991, RussiaEngelhardt Institute of Molecular Biology, Russian Academy of SciencesMoscowRussia
| |
Collapse
|
2
|
Tomaszewska P, Schwarzacher T, Heslop-Harrison JS(P. Oat chromosome and genome evolution defined by widespread terminal intergenomic translocations in polyploids. FRONTIERS IN PLANT SCIENCE 2022; 13:1026364. [PMID: 36483968 PMCID: PMC9725029 DOI: 10.3389/fpls.2022.1026364] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/14/2022] [Indexed: 06/17/2023]
Abstract
Structural chromosome rearrangements involving translocations, fusions and fissions lead to evolutionary variation between species and potentially reproductive isolation and variation in gene expression. While the wheats (Triticeae, Poaceae) and oats (Aveneae) all maintain a basic chromosome number of x=7, genomes of oats show frequent intergenomic translocations, in contrast to wheats where these translocations are relatively rare. We aimed to show genome structural diversity and genome relationships in tetraploid, hexaploid and octoploid Avena species and amphiploids, establishing patterns of intergenomic translocations across different oat taxa using fluorescence in situ hybridization (FISH) with four well-characterized repetitive DNA sequences: pAs120, AF226603, Ast-R171 and Ast-T116. In A. agadiriana (2n=4x=28), the selected probes hybridized to all chromosomes indicating that this species originated from one (autotetraploid) or closely related ancestors with the same genomes. Hexaploid amphiploids were confirmed as having the genomic composition AACCDD, while octoploid amphiploids showed three different genome compositions: AACCCCDD, AAAACCDD or AABBCCDD. The A, B, C, and D genomes of oats differ significantly in their involvement in non-centromeric, intercalary translocations. There was a predominance of distal intergenomic translocations from the C- into the D-genome chromosomes. Translocations from A- to C-, or D- to C-genome chromosomes were less frequent, proving that at least some of the translocations in oat polyploids are non-reciprocal. Rare translocations from A- to D-, D- to A- and C- to B-genome chromosomes were also visualized. The fundamental research has implications for exploiting genomic biodiversity in oat breeding through introgression from wild species potentially with contrasting chromosomal structures and hence deleterious segmental duplications or large deletions in amphiploid parental lines.
Collapse
Affiliation(s)
- Paulina Tomaszewska
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
- Department of Genetics and Cell Physiology, Faculty of Biological Sciences, University of Wrocław, Wrocław, Poland
| | - Trude Schwarzacher
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization/Guangdong Provincial, Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - J. S. (Pat) Heslop-Harrison
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization/Guangdong Provincial, Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
3
|
Fominaya A, Loarce Y, González JM, Ferrer E. Cytogenetic evidence supports Avena insularis being closely related to hexaploid oats. PLoS One 2021; 16:e0257100. [PMID: 34653181 PMCID: PMC8519437 DOI: 10.1371/journal.pone.0257100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/01/2021] [Indexed: 11/19/2022] Open
Abstract
Cytogenetic observations, phylogenetic studies and genome analysis using high-density genetic markers have suggested a tetraploid Avena species carrying the C and D genomes (formerly C and A) to be the donor of all hexaploid oats (AACCDD). However, controversy surrounds which of the three extant CCDD tetraploid species—A. insularis, A. magna and A. murphyi—is most closely related to hexaploid oats. The present work describes a comparative karyotype analysis of these three CCDD tetraploid species and two hexaploid species, A. sativa and A. byzantina. This involved the use of FISH with six simple sequence repeats (SSRs) with the motifs CT, AAC, AAG, ACG, ATC and ACT, two repeated ribosomal sequences, and C genome-specific repetitive DNA. The hybridization pattern of A. insularis with oligonucleotide (AC)10 was also determined and compared with those previously published for A. sativa and A. byzantina. Significant differences in the 5S sites and SSR hybridization patterns of A. murphyi compared to the other CCDD species rule out its being directly involved in the origin of the hexaploids. In contrast, the repetitive and SSR hybridization patterns shown by the D genome chromosomes, and by most of the C genome chromosomes of A. magna and A. insularis, can be equated with the corresponding chromosomes of the hexaploids. Several chromosome hybridization signals seen for A. insularis, but not for A. magna, were shared with the hexaploid oats species, especially with A. byzantina. These diagnostic signals add weight to the idea that the extant A. insularis, or a direct ancestor of it, is the most closely related progenitor of hexaploid oats. The similarity of the chromosome hybridization patterns of the hexaploids and CCDD tetraploids was taken as being indicative of homology. A common chromosome nomenclature for CCDD species based on that of the hexaploid species is proposed.
Collapse
Affiliation(s)
- Araceli Fominaya
- Department of Biomedicine and Biotechnology, University of Alcalá, Alcalá de Henares, Madrid, Spain
| | - Yolanda Loarce
- Department of Biomedicine and Biotechnology, University of Alcalá, Alcalá de Henares, Madrid, Spain
| | - Juan M. González
- Department of Biomedicine and Biotechnology, University of Alcalá, Alcalá de Henares, Madrid, Spain
| | - Esther Ferrer
- Department of Biomedicine and Biotechnology, University of Alcalá, Alcalá de Henares, Madrid, Spain
- * E-mail:
| |
Collapse
|
4
|
Tomaszewska P, Kosina R. Cytogenetic events in the endosperm of amphiploid Avena magna × A. longiglumis. JOURNAL OF PLANT RESEARCH 2021; 134:1047-1060. [PMID: 34057611 PMCID: PMC8364899 DOI: 10.1007/s10265-021-01314-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 05/19/2021] [Indexed: 05/13/2023]
Abstract
This study analysed cytogenetic events occurring in the syncytial endosperm of the Avena magna H. C. Murphy & Terrell × Avena longiglumis Durieu amphiploid, which is a product of two wild species having different genomes. Selection through the elimination of chromosomes and their fragments, including those translocated, decreased the level of ploidy in the endosperm below the expected 3n, leading to the modal number close to 2n. During intergenomic translocations, fragments of the heterochromatin-rich C-genome were transferred to the D and Al genomes. Terminal and non-reciprocal exchanges dominated, whereas other types of translocations, including microexchanges, were less common. Using two probes and by counterstaining with DAPI, the A. longiglumis and the rare exchanges between the D and Al genomes were detected by GISH. The large discontinuity in the probe labelling in the C chromosomes demonstrated inequality in the distribution of repetitive sequences along the chromosome and probable intragenomic rearrangements. In the nucleus, the spatial arrangement of genomes was non-random and showed a sectorial-concentric pattern, which can vary during the cell cycle, especially in the less stable tissue like the hybrid endosperm.
Collapse
Affiliation(s)
| | - Romuald Kosina
- Institute of Environmental Biology, University of Wrocław, Przybyszewskiego 63, 51-148, Wroclaw, Poland.
| |
Collapse
|
5
|
Loskutov IG, Gnutikov AA, Blinova EV, Rodionov AV. The Origin and Resource Potential of Wild and Cultivated Species of the Genus of Oats (Avena L.). RUSS J GENET+ 2021. [DOI: 10.1134/s1022795421060065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Jiang W, Jiang C, Yuan W, Zhang M, Fang Z, Li Y, Li G, Jia J, Yang Z. A universal karyotypic system for hexaploid and diploid Avena species brings oat cytogenetics into the genomics era. BMC PLANT BIOLOGY 2021; 21:213. [PMID: 33980176 PMCID: PMC8114715 DOI: 10.1186/s12870-021-02999-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/28/2021] [Indexed: 05/04/2023]
Abstract
BACKGROUND The identification of chromosomes among Avena species have been studied by C-banding and in situ hybridization. However, the complicated results from several cytogenetic nomenclatures for identifying oat chromosomes are often contradictory. A universal karyotyping nomenclature system for precise chromosome identification and comparative evolutionary studies would be essential for genus Avena based on the recently released genome sequences of hexaploid and diploid Avena species. RESULTS Tandem repetitive sequences were predicted and physically located on chromosomal regions of the released Avena sativa OT3098 genome assembly v1. Eight new oligonucleotide (oligo) probes for sequential fluorescence in situ hybridization (FISH) were designed and then applied for chromosome karyotyping on mitotic metaphase spreads of A. brevis, A. nuda, A. wiestii, A. ventricosa, A. fatua, and A. sativa species. We established a high-resolution standard karyotype of A. sativa based on the distinct FISH signals of multiple oligo probes. FISH painting with bulked oligos, based on wheat-barley collinear regions, was used to validate the linkage group assignment for individual A. sativa chromosomes. We integrated our new Oligo-FISH based karyotype system with earlier karyotype nomenclatures through sequential C-banding and FISH methods, then subsequently determined the precise breakage points of some chromosome translocations in A. sativa. CONCLUSIONS This new universal chromosome identification system will be a powerful tool for describing the genetic diversity, chromosomal rearrangements and evolutionary relationships among Avena species by comparative cytogenetic and genomic approaches.
Collapse
Affiliation(s)
- Wenxi Jiang
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, 611731, Chengdu, China
| | - Chengzhi Jiang
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, 611731, Chengdu, China
| | - Weiguang Yuan
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, 611731, Chengdu, China
| | - Meijun Zhang
- College of Agronomy, Shanxi Agricultural University, 030801, Taigu, China
| | - Zijie Fang
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, 611731, Chengdu, China
| | - Yang Li
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, 611731, Chengdu, China
| | - Guangrong Li
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, 611731, Chengdu, China
| | - Juqing Jia
- College of Agronomy, Shanxi Agricultural University, 030801, Taigu, China.
| | - Zujun Yang
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, 611731, Chengdu, China.
| |
Collapse
|
7
|
Abstract
Hibiscus exhibits high variation in chromosome number both within and among species. The Hibiscus mutabilis L. karyotype was analyzed in detail using fluorescence in situ hybridization (FISH) with oligonucleotide probes for (AG3T3)3 and 5S rDNA, which were tested here for the first time. In total, 90 chromosomes were counted in prometaphase and metaphase, and all exhibited similarly intense (AG3T3)3 signals at both ends. (AG3T3)3 showed little variation and thus did not allow discrimination among H. mutabilis chromosomes, but its location at both ends confirmed the integrity of each chromosome, thus contributing to accurate counting of the numerous, small chromosomes. Oligo-5S rDNA marked the proximal/distal regions of six chromosomes: weak signals on chromosomes 7 and 8, slightly stronger signals on chromosomes 15 and 16, and very strong signals on chromosomes 17 and 18. Therefore, 5S rDNA could assist in chromosome identification in H. mutabilis. Metaphase chromosome lengths ranged from 3.00 to 1.18 μm, indicating small chromosomes. The ratios of longest to shortest chromosome length in prometaphase and metaphase were 2.58 and 2.54, respectively, indicating karyotype asymmetry in H. mutabilis. These results provide an exact chromosome number and a physical map, which will be useful for genome assembly and contribute to molecular cytogenetics in the genus Hibiscus.
Collapse
Affiliation(s)
- Xiaomei Luo
- College of Forestry, Sichuan Agricultural University, Huimin Road 211, Wenjiang District 611130, Chengdu City, China.,College of Forestry, Sichuan Agricultural University, Huimin Road 211, Wenjiang District 611130, Chengdu City, China
| | - Zhoujian He
- College of Forestry, Sichuan Agricultural University, Huimin Road 211, Wenjiang District 611130, Chengdu City, China.,College of Forestry, Sichuan Agricultural University, Huimin Road 211, Wenjiang District 611130, Chengdu City, China
| |
Collapse
|
8
|
Yan H, Ren Z, Deng D, Yang K, Yang C, Zhou P, Wight CP, Ren C, Peng Y. New evidence confirming the CD genomic constitutions of the tetraploid Avena species in the section Pachycarpa Baum. PLoS One 2021; 16:e0240703. [PMID: 33417607 PMCID: PMC7793304 DOI: 10.1371/journal.pone.0240703] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/21/2020] [Indexed: 11/28/2022] Open
Abstract
The tetraploid Avena species in the section Pachycarpa Baum, including A. insularis, A. maroccana, and A. murphyi, are thought to be involved in the evolution of hexaploid oats; however, their genome designations are still being debated. Repetitive DNA sequences play an important role in genome structuring and evolution, so understanding the chromosomal organization and distribution of these sequences in Avena species could provide valuable information concerning genome evolution in this genus. In this study, the chromosomal organizations and distributions of six repetitive DNA sequences (including three SSR motifs (TTC, AAC, CAG), one 5S rRNA gene fragment, and two oat A and C genome specific repeats) were investigated using non-denaturing fluorescence in situ hybridization (ND-FISH) in the three tetraploid species mentioned above and in two hexaploid oat species. Preferential distribution of the SSRs in centromeric regions was seen in the A and D genomes, whereas few signals were detected in the C genomes. Some intergenomic translocations were observed in the tetraploids; such translocations were also detected between the C and D genomes in the hexaploids. These results provide robust evidence for the presence of the D genome in all three tetraploids, strongly suggesting that the genomic constitution of these species is DC and not AC, as had been thought previously.
Collapse
Affiliation(s)
- Honghai Yan
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Zichao Ren
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Di Deng
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Kehan Yang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Chuang Yang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Pingping Zhou
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Charlene P. Wight
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, ON, Canada
| | - Changzhong Ren
- Baicheng Academy of Agricultural Sciences, Baicheng, China
| | - Yuanying Peng
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
9
|
Physical Map of FISH 5S rDNA and (AG 3T 3) 3 Signals Displays Chimonanthus campanulatus R.H. Chang & C.S. Ding Chromosomes, Reproduces its Metaphase Dynamics and Distinguishes Its Chromosomes. Genes (Basel) 2019; 10:genes10110904. [PMID: 31703401 PMCID: PMC6895986 DOI: 10.3390/genes10110904] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 10/31/2019] [Accepted: 11/05/2019] [Indexed: 12/25/2022] Open
Abstract
Chimonanthus campanulatus R.H. Chang & C.S. Ding is a good horticultural tree because of its beautiful yellow flowers and evergreen leaves. In this study, fluorescence in situ hybridization (FISH) was used to analyse mitotic metaphase chromosomes of Ch. campanulatus with 5S rDNA and (AG3T3)3 oligonucleotides. Twenty-two small chromosomes were observed. Weak 5S rDNA signals were observed only in proximal regions of two chromosomes, which were adjacent to the (AG3T3)3 proximal signals. Weak (AG3T3)3 signals were observed on both chromosome ends, which enabled accurate chromosome counts. A pair of satellite bodies was observed. (AG3T3)3 signals displayed quite high diversity, changing in intensity from weak to very strong as follows: far away from the chromosome ends (satellites), ends, subtelomeric regions, and proximal regions. Ten high-quality spreads revealed metaphase dynamics from the beginning to the end and the transition to anaphase. Chromosomes gradually grew larger and thicker into linked chromatids, which grew more significantly in width than in length. Based on the combination of 5S rDNA and (AG3T3)3 signal patterns, ten chromosomes were exclusively distinguished, and the remaining twelve chromosomes were divided into two distinct groups. Our physical map, which can reproduce dynamic metaphase progression and distinguish chromosomes, will powerfully guide cytogenetic research on Chimonanthus and other trees.
Collapse
|