1
|
Yang X, Wang S, Cai J, Zhang T, Yuan D, Li Y. Genome-wide identification, phylogeny and expression analysis of Hsf gene family in Verbena bonariensis under low-temperature stress. BMC Genomics 2024; 25:729. [PMID: 39075346 PMCID: PMC11285383 DOI: 10.1186/s12864-024-10612-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 07/10/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND The heat shock transcription factor (Hsf) is a crucial regulator of plant stress resistance, playing a key role in plant stress response, growth, and development regulation. RESULTS In this study, we utilized bioinformatics tools to screen 25 VbHsf members, which were named VbHsf1-VbHsf25. We used bioinformatics methods to analyze the sequence structure, physicochemical properties, conserved motifs, phylogenetic evolution, chromosome localization, promoter cis-acting elements, collinearity, and gene expression of Hsf heat shock transcription factor family members under low-temperature stress. The results revealed that the majority of the Hsf genes contained motif1, motif2, and motif3, signifying that these three motifs were highly conserved in the Hsf protein sequence of Verbena bonariensis. Although there were some variations in motif deletion among the members, the domain remained highly conserved. The theoretical isoelectric point ranged from 4.17 to 9.71, with 21 members being unstable proteins and the remainder being stable proteins. Subcellular localization predictions indicated that all members were located in the nucleus. Phylogenetic analysis of the Hsf gene family in V. bonariensis and Arabidopsis thaliana revealed that the Hsf gene family of V. bonariensis could be categorized into three groups, with group A comprising 17 members and group C having at least two members. Among the 25 Hsf members, there were 1-3 exons located on seven chromosome fragments, which were unevenly distributed. Collinearity analysis demonstrated the presence of seven pairs of homologous genes in the VbHsf gene family. The Ka/Ks ratios were less than one, indicating that the VbHsf gene underwent purification selection pressure. Additionally, nine genes in V. bonariensis were found to have collinearity with A. thaliana. Promoter analysis revealed that the promoters of all VbHsf genes contained various types of cis-acting elements related to hormones and stress. Based on RNA-seq data, qRT-PCR analysis of six highly expressed genes was performed, and it was found that VbHsf5, VbHsf14, VbHsf17, VbHsf18, VbHsf20 and VbHsf21 genes were highly expressed at 12 h of low-temperature treatment, and the expression decreased after 24 h, among which VbHsf14 was up-regulated at 12 h of low-temperature by 70-fold. CONCLUSIONS Our study may help reveal the important roles of Hsf in plant development and show insight for the further molecular breeding of V. bonariensis.
Collapse
Affiliation(s)
- Xiuliu Yang
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Institute of Agro-bioengineering, Guizhou University, Guiyang, 550025, Guizhou Province, China
| | - Sisi Wang
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Institute of Agro-bioengineering, Guizhou University, Guiyang, 550025, Guizhou Province, China
| | - Ju Cai
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Institute of Agro-bioengineering, Guizhou University, Guiyang, 550025, Guizhou Province, China
| | - Tao Zhang
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Institute of Agro-bioengineering, Guizhou University, Guiyang, 550025, Guizhou Province, China
| | - Dandan Yuan
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Institute of Agro-bioengineering, Guizhou University, Guiyang, 550025, Guizhou Province, China
| | - Yan Li
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Institute of Agro-bioengineering, Guizhou University, Guiyang, 550025, Guizhou Province, China.
| |
Collapse
|
2
|
Hao X, He S. Genome-wide identification, classification and expression analysis of the heat shock transcription factor family in Garlic (Allium sativum L.). BMC PLANT BIOLOGY 2024; 24:421. [PMID: 38760734 PMCID: PMC11102281 DOI: 10.1186/s12870-024-05018-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 04/12/2024] [Indexed: 05/19/2024]
Abstract
BACKGROUND The heat shock transcription factor (HSF) plays a crucial role in the regulatory network by coordinating responses to heat stress as well as other stress signaling pathways. Despite extensive studies on HSF functions in various plant species, our understanding of this gene family in garlic, an important crop with nutritional and medicinal value, remains limited. In this study, we conducted a comprehensive investigation of the entire garlic genome to elucidate the characteristics of the AsHSF gene family. RESULTS In this study, we identified a total of 17 AsHSF transcription factors. Phylogenetic analysis classified these transcription factors into three subfamilies: Class A (9 members), Class B (6 members), and Class C (2 members). Each subfamily was characterized by shared gene structures and conserved motifs. The evolutionary features of the AsHSF genes were investigated through a comprehensive analysis of chromosome location, conserved protein motifs, and gene duplication events. These findings suggested that the evolution of AsHSF genes is likely driven by both tandem and segmental duplication events. Moreover, the nucleotide diversity of the AsHSF genes decreased by only 0.0002% from wild garlic to local garlic, indicating a slight genetic bottleneck experienced by this gene family during domestication. Furthermore, the analysis of cis-acting elements in the promoters of AsHSF genes indicated their crucial roles in plant growth, development, and stress responses. qRT-PCR analysis, co-expression analysis, and protein interaction prediction collectively highlighted the significance of Asa6G04911. Subsequent experimental investigations using yeast two-hybridization and yeast induction experiments confirmed its interaction with HSP70/90, reinforcing its significance in heat stress. CONCLUSIONS This study is the first to unravel and analyze the AsHSF genes in garlic, thereby opening up new avenues for understanding their functions. The insights gained from this research provide a valuable resource for future investigations, particularly in the functional analysis of AsHSF genes.
Collapse
Affiliation(s)
- Xiaomeng Hao
- Institute of Neurobiology, Jining Medical University, Jining, China
| | - Shutao He
- Institute of Biotechnology and Health, Beijing Academy of Science and Technology, Beijing, China.
| |
Collapse
|
3
|
Aina O, Bakare OO, Fadaka AO, Keyster M, Klein A. Plant biomarkers as early detection tools in stress management in food crops: a review. PLANTA 2024; 259:60. [PMID: 38311674 PMCID: PMC10838863 DOI: 10.1007/s00425-024-04333-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 01/07/2024] [Indexed: 02/06/2024]
Abstract
MAIN CONCLUSION Plant Biomarkers are objective indicators of a plant's cellular state in response to abiotic and biotic stress factors. They can be explored in crop breeding and engineering to produce stress-tolerant crop species. Global food production safely and sustainably remains a top priority to feed the ever-growing human population, expected to reach 10 billion by 2050. However, abiotic and biotic stress factors negatively impact food production systems, causing between 70 and 100% reduction in crop yield. Understanding the plant stress responses is critical for developing novel crops that can adapt better to various adverse environmental conditions. Using plant biomarkers as measurable indicators of a plant's cellular response to external stimuli could serve as early warning signals to detect stresses before severe damage occurs. Plant biomarkers have received considerable attention in the last decade as pre-stress indicators for various economically important food crops. This review discusses some biomarkers associated with abiotic and biotic stress conditions and highlights their importance in developing stress-resilient crops. In addition, we highlighted some factors influencing the expression of biomarkers in crop plants under stress. The information presented in this review would educate plant researchers, breeders, and agronomists on the significance of plant biomarkers in stress biology research, which is essential for improving plant growth and yield toward sustainable food production.
Collapse
Affiliation(s)
- Omolola Aina
- Plant Omics Laboratory, Department of Biotechnology, University of the Western Cape, Robert Sobukwe Road, Bellville, 7530, South Africa
| | - Olalekan O Bakare
- Department of Biochemistry, Faculty of Basic Medical Sciences, Olabisi Onabanjo University, Sagamu, 121001, Nigeria
- Environmental Biotechnology Laboratory, Department of Biotechnology, University of the Western Cape, Robert Sobukwe Road, Bellville, 7530, South Africa
| | - Adewale O Fadaka
- Plant Omics Laboratory, Department of Biotechnology, University of the Western Cape, Robert Sobukwe Road, Bellville, 7530, South Africa
| | - Marshall Keyster
- Environmental Biotechnology Laboratory, Department of Biotechnology, University of the Western Cape, Robert Sobukwe Road, Bellville, 7530, South Africa
| | - Ashwil Klein
- Plant Omics Laboratory, Department of Biotechnology, University of the Western Cape, Robert Sobukwe Road, Bellville, 7530, South Africa.
| |
Collapse
|
4
|
Jiao Q, Deng J, Zhao X, Yao X, Li M, Pei Z, Li X, Jiang X, Zhang F. Physiological and biochemical regulation of tobacco by oxathiapiprolin under Phytophthora nicotianae infection. PHYSIOLOGIA PLANTARUM 2023; 175:e13891. [PMID: 36917080 DOI: 10.1111/ppl.13891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 03/09/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
As a fungicide, oxathiapiprolin has excellent effects on diseases caused by oomycetes. Fungicides generally protect crops by inhibiting pathogens, but little research has addressed the effects of fungicides on crops. This study combined transcriptomic and metabolomic analyses to systematically analyze the physiological regulatory mechanisms of oxathiapiprolin on tobacco under Phytophthora nicotianae infection. The results showed that under P. nicotianae infection, tobacco's photosynthetic rate and antioxidant enzyme activity increased after the application of oxathiapiprolin. Omics results showed that the genes related to carbon metabolism, disease-resistant proteins, and amino acid synthesis were highly expressed, and the amino acid content increased in tobacco leaves. This study is the first comprehensive investigation of the physiological regulatory effects of oxathiapiprolin on tobacco in response to P. nicotianae infection. These findings provide a basis for the balance between regulating tobacco growth and development and enhancing disease resistance under the stimulation of oxathiapiprolin and provide new research and development opportunities for identifying new disease-resistance genes and the development of high-yielding disease-resistant crop varieties.
Collapse
Affiliation(s)
- Qin Jiao
- College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, People's Republic of China
| | - Jiahui Deng
- College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, People's Republic of China
| | - Xiaoyan Zhao
- College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, People's Republic of China
| | - Xiangfeng Yao
- College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, People's Republic of China
| | - Min Li
- China Tobacco Hebei Industrial Co., Ltd, ShiJiazhuang, China
| | | | - Xiangdong Li
- College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, People's Republic of China
| | - Xingyin Jiang
- College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, People's Republic of China
| | - Fengwen Zhang
- College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, People's Republic of China
| |
Collapse
|
5
|
Cao Y, Qu J, Yu H, Yang Q, Li W, Fu F. Genomic Characteristics of Elite Maize Inbred Line 18-599 and Its Transcriptional Response to Drought and Low-Temperature Stresses. PLANTS (BASEL, SWITZERLAND) 2022; 11:3242. [PMID: 36501283 PMCID: PMC9739999 DOI: 10.3390/plants11233242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/10/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Elite inbred line 18-599 was developed via triple test cross from introduced hybrid P78599 and used as parents of dozens of maize hybrids adapting to the diverse ecological conditions of the maize ecological region in Southwest China. In this study, its genomic DNA was resequenced and aligned with the B73 genome sequence to identify single nucleotide polymorphism (SNP), and insertion (In) and deletion (Del) loci. These loci were aligned with those between B73 and 1020 inbred lines in the HapMap database to identify specific variation loci of 18-599. The results showed that there were 930,439 specific SNPs and 358,750 InDels between 18-599 and the 1020 lines. In total, 21,961 of them showed significant impacts on the functions of 12,297 genes, such as frameshift, change of splicing site, stop gain, change of start site, and stop loss. Phylogenetic analysis showed that 18-599 was closely related to inbred lines ZEAxujRAUDIAAPE and 2005-4, but far from some inbred lines directly isolated from P78599. This result indicated that 18-599 not only pyramided the elite genes of P78599, but also acquired genetic divergence during the repetitive backcrosses of triple test cross to confer its elite agronomic characteristics. Subsequently, the RNA of 18-599 was sequenced. The aligned 9713 and 37,528 of the 165,098 unigenes were screened and aligned with annotated transcripts of the B73 genome differentially expressed under drought and low-temperature stress, respectively, and their functions were involved in the responses to these stresses. The quantitative PCR results of fourteen random genes verified the RNA sequencing results. These findings suggest that the transcriptional responses of many resistance-related genes were an important mechanism for 18-599 to adapt to diverse ecological conditions.
Collapse
Affiliation(s)
- Yang Cao
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Jingtao Qu
- CIMMYT-China Specialty Maize Research Center, Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Haoqiang Yu
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Qingqing Yang
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Wanchen Li
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Fengling Fu
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
6
|
Ma J, Zhang G, Ye Y, Shang L, Hong S, Ma Q, Zhao Y, Gu C. Genome-Wide Identification and Expression Analysis of HSF Transcription Factors in Alfalfa ( Medicago sativa) under Abiotic Stress. PLANTS (BASEL, SWITZERLAND) 2022; 11:2763. [PMID: 36297789 PMCID: PMC9609925 DOI: 10.3390/plants11202763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Alfalfa (Medicago sativa) is one of the most important legume forage species in the world. It is often affected by several abiotic stressors that result in reduced yields and poor growth. Therefore, it is crucial to study the resistance of M. sativa to abiotic stresses. Heat shock transcription factors (HSF) are key players in a number of transcriptional regulatory pathways. These pathways play an essential role in controlling how plants react to different abiotic stressors. Studies on the HSF gene family have been reported in many species but have not yet undergone a thorough analysis in M. sativa. Therefore, in order to identify a more comprehensive set of HSF genes, from the genomic data, we identified 16 members of the MsHSF gene, which were unevenly distributed over six chromosomes. We also looked at their gene architectures and protein motifs, and phylogenetic analysis allowed us to divide them into 3 groups with a total of 15 subgroups. Along with these aspects, we then examined the physicochemical properties, subcellular localization, synteny analysis, GO annotation and enrichment, and protein interaction networks of amino acids. Finally, the analysis of 16 MsHSF genes' expression levels across all tissues and under four abiotic stresses using publicly available RNA-Seq data revealed that these genes had significant tissue-specific expression. Moreover, the expression of most MsHSF genes increased dramatically under abiotic stress, further validating the critical function played by the MsHSF gene family in abiotic stress. These results provided basic information about MsHSF gene family and laid a foundation for further study on the biological role of MsHSF gene in response to stress in M. sativa.
Collapse
Affiliation(s)
- Jin Ma
- College of Landscape and Architecture, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China
- Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China
| | - Guozhe Zhang
- College of Landscape and Architecture, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China
- Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China
| | - Yacheng Ye
- College of Landscape and Architecture, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China
- Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China
| | - Linxue Shang
- College of Landscape and Architecture, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China
- Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China
| | - Sidan Hong
- College of Landscape and Architecture, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China
- Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China
| | - Qingqing Ma
- College of Landscape and Architecture, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China
- Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China
| | - Yu Zhao
- College of Landscape and Architecture, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China
- Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China
| | - Cuihua Gu
- College of Landscape and Architecture, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China
- Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China
| |
Collapse
|
7
|
The Roles of Cassava in Marginal Semi-Arid Farming in East Nusa Tenggara—Indonesia. SUSTAINABILITY 2022. [DOI: 10.3390/su14095439] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Risk and uncertainty in grain crop production are common in marginal semi-arid environments, such as East Nusa Tenggara province. Growing root and tuber crops in a mixed-cropping system is one of the strategies developed by smallholder farmers to substitute food grains and minimize risk. Nevertheless, root and tuber crops are not prioritized for food production systems since food crops in Indonesia are based more on grain and wetland rice production systems. This paper reviews cassava crops, which are widely cultivated by smallholder farmers. This paper contributes to understanding the roles of cassava for smallholder farmers, the diversity of the cassava germ plasm, the progress made to increase cassava productivity, and the potency of cassava crops to improve farmers’ incomes. This paper highlights that, in the low and erratic rainfall of dominant semi-arid regions, the development of cassava is pivotal to secure the harvest of food crops or food availability and income generation for marginal farmers.
Collapse
|
8
|
Otun S, Escrich A, Achilonu I, Rauwane M, Lerma-Escalera JA, Morones-Ramírez JR, Rios-Solis L. The future of cassava in the era of biotechnology in Southern Africa. Crit Rev Biotechnol 2022; 43:594-612. [PMID: 35369831 DOI: 10.1080/07388551.2022.2048791] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Cassava (Manihot esculenta) is a major staple food and the world's fourth source of calories. Biotechnological contributions to enhancing this crop, its advances, and present issues must be assessed regularly. Functional genomics, genomic-assisted breeding, molecular tools, and genome editing technologies, among other biotechnological approaches, have helped improve the potential of economically important crops like cassava by addressing some of its significant constraints, such as nutrient deficiency, toxicity, poor starch quality, disease susceptibility, low yield capacity, and postharvest deterioration. However, the development, improvement, and subsequent acceptance of the improved cultivars have been challenging and have required holistic approaches to solving them. This article provides an update of trends and gaps in cassava biotechnology, reviewing the relevant strategies used to improve cassava crops and highlighting the potential risk and acceptability of improved cultivars in Southern Africa.
Collapse
Affiliation(s)
- Sarah Otun
- School of Molecular and Cell Biology, Faculty of Science, Protein Structure-Function and Research Unit, University of the Witwatersrand, Braamfontein, Johannesburg, South Africa
| | - Ainoa Escrich
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Ikechukwu Achilonu
- School of Molecular and Cell Biology, Faculty of Science, Protein Structure-Function and Research Unit, University of the Witwatersrand, Braamfontein, Johannesburg, South Africa
| | - Molemi Rauwane
- Department of Agriculture and Animal Health, Science Campus, University of South Africa, Florida, South Africa
| | - Jordy Alexis Lerma-Escalera
- Facultad de Ciencias Químicas, Centro de Investigación en Biotecnología y Nanotecnología, Parque de Investigación e Innovación Tecnológica, Universidad Autónoma de Nuevo León, Apodaca, Mexico.,Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
| | - José Rubén Morones-Ramírez
- Facultad de Ciencias Químicas, Centro de Investigación en Biotecnología y Nanotecnología, Parque de Investigación e Innovación Tecnológica, Universidad Autónoma de Nuevo León, Apodaca, Mexico.,Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
| | - Leonardo Rios-Solis
- Institute for Bioengineering, School of Engineering, University of Edinburgh, Edinburgh, UK.,Centre for Synthetic and Systems Biology (SynthSys), University of Edinburgh, Edinburgh, UK
| |
Collapse
|
9
|
Yu T, Bai Y, Liu Z, Wang Z, Yang Q, Wu T, Feng S, Zhang Y, Shen S, Li Q, Gu L, Song X. Large-scale analyses of heat shock transcription factors and database construction based on whole-genome genes in horticultural and representative plants. HORTICULTURE RESEARCH 2022; 9:uhac035. [PMID: 35184193 PMCID: PMC9123238 DOI: 10.1093/hr/uhac035] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/18/2021] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
Heat shock transcription factor (Hsf) plays a critical role in regulating heat resistance. Here, 2950 Hsf family genes were identified from 111 horticultural and representative plants. More Hsf genes were detected in higher plants than lower plants. Based on all Hsf genes, we constructed a phylogenetic tree, which indicated that Hsf genes of each branch evolved independently after species differentiation. Furthermore, we uncovered the evolutionary trajectories of Hsf genes by motif analysis. There were only 6 motifs (M1 to M6) in lower plants, and then 4 novel motifs (M7-M10) appeared in higher plants. However, the motifs of some Hsf genes were lost in higher plant, indicating that Hsf genes have undergone sequence variation during the evolution. The number of Hsf gene loss was more than duplication after whole-genome duplication in higher plants. The heat response network was constructed using 24 Hsf genes, 2421 downstream, and 222 upstream genes of Arabidopsis. Further enrichment analysis revealed that Hsf genes and other transcription factors interacted with each other to response heat resistance. The global expression maps were illustrated for Hsf genes under various abiotic, biotic stresses, and several developmental stages in Arabidopsis. The syntenic and phylogenetic analyses were conducted using Hsf genes of Arabidopsis and Pan-genome of 18 Brassica rapa accessions. We also performed the expression pattern analysis of Hsf and six Hsp family genes using expression values from different tissues and heat treatments in B. rapa. The interaction network between Hsf and Hsp gene families was constructed in B. rapa, and several core genes were detected in the network. Finally, we constructed a Hsf database (http://hsfdb.bio2db.com) for researchers to retrieve Hsf gene family information. Therefore, our study will provide rich resources for the evolution and functional study of Hsf genes.
Collapse
Affiliation(s)
- Tong Yu
- School of Life Sciences, North China University of Science and Technology, Tangshan 063210, Hebei, China
| | - Yun Bai
- School of Life Sciences, North China University of Science and Technology, Tangshan 063210, Hebei, China
| | - Zhuo Liu
- School of Life Sciences, North China University of Science and Technology, Tangshan 063210, Hebei, China
| | - Zhiyuan Wang
- School of Life Sciences, North China University of Science and Technology, Tangshan 063210, Hebei, China
| | - Qihang Yang
- School of Life Sciences, North China University of Science and Technology, Tangshan 063210, Hebei, China
| | - Tong Wu
- School of Life Sciences, North China University of Science and Technology, Tangshan 063210, Hebei, China
| | - Shuyan Feng
- School of Life Sciences, North China University of Science and Technology, Tangshan 063210, Hebei, China
| | - Yu Zhang
- School of Life Sciences, North China University of Science and Technology, Tangshan 063210, Hebei, China
| | - Shaoqin Shen
- School of Life Sciences, North China University of Science and Technology, Tangshan 063210, Hebei, China
| | - Qiang Li
- Faculty of Life Science, Tangshan Normal University, Tangshan 063000, Hebei, China
| | - Liqiang Gu
- Faculty of Life Science, Tangshan Normal University, Tangshan 063000, Hebei, China
| | - Xiaoming Song
- School of Life Sciences, North China University of Science and Technology, Tangshan 063210, Hebei, China
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
- Food Science and Technology Department, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| |
Collapse
|
10
|
Cao M, Zheng L, Li J, Mao Y, Zhang R, Niu X, Geng M, Zhang X, Huang W, Luo K, Chen Y. Transcriptomic profiling suggests candidate molecular responses to waterlogging in cassava. PLoS One 2022; 17:e0261086. [PMID: 35061680 PMCID: PMC8782352 DOI: 10.1371/journal.pone.0261086] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 11/23/2021] [Indexed: 11/19/2022] Open
Abstract
Owing to climate change impacts, waterlogging is a serious abiotic stress that affects crops, resulting in stunted growth and loss of productivity. Cassava (Manihot esculenta Grantz) is usually grown in areas that experience high amounts of rainfall; however, little research has been done on the waterlogging tolerance mechanism of this species. Therefore, we investigated the physiological responses of cassava plants to waterlogging stress and analyzed global gene transcription responses in the leaves and roots of waterlogged cassava plants. The results showed that waterlogging stress significantly decreased the leaf chlorophyll content, caused premature senescence, and increased the activities of superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) in the leaves and roots. In total, 2538 differentially expressed genes (DEGs) were detected in the leaves and 13364 in the roots, with 1523 genes shared between the two tissues. Comparative analysis revealed that the DEGs were related mainly to photosynthesis, amino metabolism, RNA transport and degradation. We also summarized the functions of the pathways that respond to waterlogging and are involved in photosynthesis, glycolysis and galactose metabolism. Additionally, many transcription factors (TFs), such as MYBs, AP2/ERFs, WRKYs and NACs, were identified, suggesting that they potentially function in the waterlogging response in cassava. The expression of 12 randomly selected genes evaluated via both quantitative real-time PCR (qRT-PCR) and RNA sequencing (RNA-seq) was highly correlated (R2 = 0.9077), validating the reliability of the RNA-seq results. The potential waterlogging stress-related transcripts identified in this study are representatives of candidate genes and molecular resources for further understanding the molecular mechanisms underlying the waterlogging response in cassava.
Collapse
Affiliation(s)
- Min Cao
- Key Laboratory of Sustainable Utilization of Tropical Biological Resources of Hainan Province, Haikou, China
- School of Tropical Crops, Hainan University, Haikou, China
| | - Linling Zheng
- Key Laboratory of Sustainable Utilization of Tropical Biological Resources of Hainan Province, Haikou, China
- School of Life Sciences, Hainan University, Haikou, China
| | - Junyi Li
- Key Laboratory of Sustainable Utilization of Tropical Biological Resources of Hainan Province, Haikou, China
- School of Tropical Crops, Hainan University, Haikou, China
| | - Yiming Mao
- Key Laboratory of Sustainable Utilization of Tropical Biological Resources of Hainan Province, Haikou, China
- School of Tropical Crops, Hainan University, Haikou, China
| | - Rui Zhang
- Key Laboratory of Sustainable Utilization of Tropical Biological Resources of Hainan Province, Haikou, China
- School of Tropical Crops, Hainan University, Haikou, China
| | - Xiaolei Niu
- Key Laboratory of Sustainable Utilization of Tropical Biological Resources of Hainan Province, Haikou, China
- School of Tropical Crops, Hainan University, Haikou, China
| | - Mengting Geng
- Key Laboratory of Sustainable Utilization of Tropical Biological Resources of Hainan Province, Haikou, China
- School of Tropical Crops, Hainan University, Haikou, China
| | - Xiaofei Zhang
- Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Wei Huang
- Hainan University Archives, Haikou, the People’s Republic of China
| | - Kai Luo
- Key Laboratory of Sustainable Utilization of Tropical Biological Resources of Hainan Province, Haikou, China
- School of Tropical Crops, Hainan University, Haikou, China
| | - Yinhua Chen
- Key Laboratory of Sustainable Utilization of Tropical Biological Resources of Hainan Province, Haikou, China
- School of Life Sciences, Hainan University, Haikou, China
| |
Collapse
|
11
|
Tan B, Yan L, Li H, Lian X, Cheng J, Wang W, Zheng X, Wang X, Li J, Ye X, Zhang L, Li Z, Feng J. Genome-wide identification of HSF family in peach and functional analysis of PpHSF5 involvement in root and aerial organ development. PeerJ 2021; 9:e10961. [PMID: 33763299 PMCID: PMC7958895 DOI: 10.7717/peerj.10961] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 01/27/2021] [Indexed: 12/01/2022] Open
Abstract
Background Heat shock factors (HSFs) play important roles during normal plant growth and development and when plants respond to diverse stressors. Although most studies have focused on the involvement of HSFs in the response to abiotic stresses, especially in model plants, there is little research on their participation in plant growth and development or on the HSF (PpHSF) gene family in peach (Prunus persica). Methods DBD (PF00447), the HSF characteristic domain, was used to search the peach genome and identify PpHSFs. Phylogenetic, multiple alignment and motif analyses were conducted using MEGA 6.0, ClustalW and MEME, respectively. The function of PpHSF5 was confirmed by overexpression of PpHSF5 into Arabidopsis. Results Eighteen PpHSF genes were identified within the peach genome. The PpHSF genes were nonuniformly distributed on the peach chromosomes. Seventeen of the PpHSFs (94.4%) contained one or two introns, except PpHSF18, which contained three introns. The in silico-translated PpHSFs were classified into three classes (PpHSFA, PpHSFB and PpHSFC) based on multiple alignment, motif analysis and phylogenetic comparison with HSFs from Arabidopsis thaliana and Oryza sativa. Dispersed gene duplication (DSD at 67%) mainly contributed to HSF gene family expansion in peach. Promoter analysis showed that the most common cis-elements were the MYB (abiotic stress response), ABRE (ABA-responsive) and MYC (dehydration-responsive) elements. Transcript profiling of 18 PpHSFs showed that the expression trend of PpHSF5 was consistent with shoot length changes in the cultivar ‘Zhongyoutao 14’. Further analysis of the PpHSF5 was conducted in 5-year-old peach trees, Nicotiana benthamiana and Arabidopsis thaliana, respectively. Tissue-specific expression analysis showed that PpHSF5 was expressed predominantly in young vegetative organs (leaf and apex). Subcellular localization revealed that PpHSF5 was located in the nucleus in N. benthamiana cells. Two transgenic Arabidopsis lines were obtained that overexpressed PpHSF5. The root length and the number of lateral roots in the transgenic seedlings were significantly less than in WT seedlings and after cultivation for three weeks. The transgenic rosettes were smaller than those of the WT at 2–3 weeks. The two transgenic lines exhibited a dwarf phenotype three weeks after transplanting, although there was no significant difference in the number of internodes. Moreover, the PpHSF5-OE lines exhibited enhanced thermotolerance. These results indicated that PpHSF5 might be act as a suppresser of growth and development of root and aerial organs.
Collapse
Affiliation(s)
- Bin Tan
- College of Horticulture, Henan Agricultural University, Zhengzhou, China.,Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou, China
| | - Liu Yan
- College of Horticulture, Henan Agricultural University, Zhengzhou, China.,Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou, China
| | - Huannan Li
- College of Horticulture, Henan Agricultural University, Zhengzhou, China.,Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou, China
| | - Xiaodong Lian
- College of Horticulture, Henan Agricultural University, Zhengzhou, China.,Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou, China
| | - Jun Cheng
- College of Horticulture, Henan Agricultural University, Zhengzhou, China.,Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou, China
| | - Wei Wang
- College of Horticulture, Henan Agricultural University, Zhengzhou, China.,Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou, China
| | - Xianbo Zheng
- College of Horticulture, Henan Agricultural University, Zhengzhou, China.,Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou, China
| | - Xiaobei Wang
- College of Horticulture, Henan Agricultural University, Zhengzhou, China.,Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou, China
| | - Jidong Li
- College of Horticulture, Henan Agricultural University, Zhengzhou, China.,Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou, China
| | - Xia Ye
- College of Horticulture, Henan Agricultural University, Zhengzhou, China.,Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou, China
| | - Langlang Zhang
- College of Horticulture, Henan Agricultural University, Zhengzhou, China.,Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou, China
| | - Zhiqian Li
- College of Horticulture, Henan Agricultural University, Zhengzhou, China.,Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou, China
| | - Jiancan Feng
- College of Horticulture, Henan Agricultural University, Zhengzhou, China.,Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou, China
| |
Collapse
|
12
|
Genome-Wide Identification and Characterization of Heat-Shock Transcription Factors in Rubber Tree. FORESTS 2019. [DOI: 10.3390/f10121157] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Heat-shock transcription factors (Hsfs) play a pivotal role in the response of plants to various stresses. The present study aimed to characterize the Hsf genes in the rubber tree, a primary global source of natural rubber. In this study, 30 Hsf genes were identified in the rubber tree using genome-wide analysis. They possessed a structurally conserved DNA-binding domain and an oligomerization domain. On the basis of the length of the insert region between HR-A and HR-B in the oligomerization domain, the 30 members were clustered into three classes, Classes A (18), B (10), and C (2). Members within the same class shared highly conserved gene structures and protein motifs. The background expression levels of 11 genes in cold-tolerant rubber-tree clone 93-14 were significantly higher than those in cold-sensitive rubber-tree clone Reken501, while four genes exhibited inverse expression patterns. Upon cold stress, 20 genes were significantly upregulated in 93-114. Of the upregulated genes, HbHsfA2b, HbHsfA3a, and HbHsfA7a were also significantly upregulated in three other cold-tolerant rubber-tree clones at one or more time intervals upon cold stress. Their nuclear localization was verified, and the protein–protein interaction network was predicted. This study provides a basis for dissecting Hsf function in the enhanced cold tolerance of the rubber tree.
Collapse
|