1
|
Transient MutS-Based Hypermutation System for Adaptive Evolution of Lactobacillus casei to Low pH. Appl Environ Microbiol 2017; 83:AEM.01120-17. [PMID: 28802267 DOI: 10.1128/aem.01120-17] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 08/01/2017] [Indexed: 11/20/2022] Open
Abstract
This study explored transient inactivation of the gene encoding the DNA mismatch repair enzyme MutS as a tool for adaptive evolution of Lactobacillus casei MutS deletion derivatives of L. casei 12A and ATCC 334 were constructed and subjected to a 100-day adaptive evolution process to increase lactic acid resistance at low pH. Wild-type parental strains were also subjected to this treatment. At the end of the process, the ΔmutS lesion was repaired in representative L. casei 12A and ATCC 334 ΔmutS mutant isolates. Growth studies in broth at pH 4.0 (titrated with lactic acid) showed that all four adapted strains grew more rapidly, to higher cell densities, and produced significantly more lactic acid than untreated wild-type cells. However, the adapted ΔmutS derivative mutants showed the greatest increases in growth and lactic acid production. Further characterization of the L. casei 12A-adapted ΔmutS derivative revealed that it had a significantly smaller cell volume, a rougher cell surface, and significantly better survival at pH 2.5 than parental L. casei 12A. Genome sequence analysis confirmed that transient mutS inactivation decreased DNA replication fidelity in both L. casei strains, and it identified genetic changes that might contribute to the lactic acid-resistant phenotypes of adapted cells. Targeted inactivation of three genes that had acquired nonsense mutations in the adapted L. casei 12A ΔmutS mutant derivative showed that NADH dehydrogenase (ndh), phosphate transport ATP-binding protein PstB (pstB), and two-component signal transduction system (TCS) quorum-sensing histidine protein kinase (hpk) genes act in combination to increase lactic acid resistance in L. casei 12A.IMPORTANCE Adaptive evolution has been applied to microorganisms to increase industrially desirable phenotypes, including acid resistance. We developed a method to increase the adaptability of Lactobacillus casei 12A and ATCC 334 through transient inactivation of the DNA mismatch repair enzyme MutS. Here, we show this method was effective in increasing the resistance of L. casei to lactic acid at low pH. Additionally, we identified three genes that contribute to increased acid resistance in L. casei 12A. These results provide valuable insight on methods to enhance an organism's fitness to complex phenotypes through adaptive evolution and targeted gene inactivation.
Collapse
|
2
|
Zhu L, Zhang Z, Liang J. Fatty-acid profiles and expression of the fabM gene in a fluoride-resistant strain of Streptococcus mutans. Arch Oral Biol 2011; 57:10-4. [PMID: 21741617 DOI: 10.1016/j.archoralbio.2011.06.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 05/25/2011] [Accepted: 06/18/2011] [Indexed: 11/29/2022]
Abstract
OBJECTIVE The aim of this study was to compare the membrane fatty acid profile and expression of the fabM gene in a fluoride-resistant Streptococcus mutans strain with those of its wild-type counterpart. Additionally, we aimed to investigate whether mutations were present in the fabM gene of the fluoride-resistant strain. DESIGN A fluoride-resistant strain of S. mutans was obtained by step-by-step induction in vitro. The fluoride-resistant strain and its wild-type counterpart were grown anaerobically in a brain heart infusion broth, harvested and resuspended in a salt solution for an acid survival assay and a pH-drop experiment. The membrane fatty acid profile was determined by gas chromatography-mass spectrometry. Expression of the fabM gene was quantified by real-time PCR. The fabM gene was also sequenced. RESULTS The ability of the fluoride-resistant strain to resist acid stress was greater than that of the wild-type strain. A significant difference in the amount of long-chain monounsaturated fatty acids between the fluoride-resistant strain and the wild-type strain was detected in acidic condition (P<0.01). In addition, the level of fabM mRNA in the fluoride-resistant strain was significantly higher than that of the wild-type strain in the acidic condition as well (P<0.01). However, the sequence of the fabM gene from the fluoride-resistant strain was 100% homologous with that from the wild-type strain. CONCLUSIONS The membrane fatty acid profile and expression of the fabM gene in the fluoride-resistant strain were altered compared to the wild-type strain in acidic conditions, but no differences were found in the sequence of the fabM gene.
Collapse
Affiliation(s)
- Laikuan Zhu
- Department of Endodontics and Operative Dentistry, Ninth People's Hospital, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University School of Medicine, No. 639 Zhi Zao Ju Road, Shanghai, China
| | | | | |
Collapse
|
3
|
Zhou M, Theunissen D, Wels M, Siezen RJ. LAB-Secretome: a genome-scale comparative analysis of the predicted extracellular and surface-associated proteins of Lactic Acid Bacteria. BMC Genomics 2010; 11:651. [PMID: 21092245 PMCID: PMC3017865 DOI: 10.1186/1471-2164-11-651] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Accepted: 11/23/2010] [Indexed: 11/10/2022] Open
Abstract
Background In Lactic Acid Bacteria (LAB), the extracellular and surface-associated proteins can be involved in processes such as cell wall metabolism, degradation and uptake of nutrients, communication and binding to substrates or hosts. A genome-scale comparative study of these proteins (secretomes) can provide vast information towards the understanding of the molecular evolution, diversity, function and adaptation of LAB to their specific environmental niches. Results We have performed an extensive prediction and comparison of the secretomes from 26 sequenced LAB genomes. A new approach to detect homolog clusters of secretome proteins (LaCOGs) was designed by integrating protein subcellular location prediction and homology clustering methods. The initial clusters were further adjusted semi-manually based on multiple sequence alignments, domain compositions, pseudogene analysis and biological function of the proteins. Ubiquitous protein families were identified, as well as species-specific, strain-specific, and niche-specific LaCOGs. Comparative analysis of protein subfamilies has shown that the distribution and functional specificity of LaCOGs could be used to explain many niche-specific phenotypes. A comprehensive and user-friendly database LAB-Secretome was constructed to store, visualize and update the extracellular proteins and LaCOGs http://www.cmbi.ru.nl/lab_secretome/. This database will be updated regularly when new bacterial genomes become available. Conclusions The LAB-Secretome database could be used to understand the evolution and adaptation of lactic acid bacteria to their environmental niches, to improve protein functional annotation and to serve as basis for targeted experimental studies.
Collapse
Affiliation(s)
- Miaomiao Zhou
- Centre for Molecular and Biomolecular Informatics, Radboud University Nijmegen Medical Centre, PO Box 9101, 6500 HB Nijmegen, The Netherlands.
| | | | | | | |
Collapse
|
4
|
Bhattacharjee MK, Childs CB, Ali E. Sensitivity of the periodontal pathogen Aggregatibacter actinomycetemcomitans at mildly acidic pH. J Periodontol 2010; 82:917-25. [PMID: 21091350 DOI: 10.1902/jop.2010.100590] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Aggregatibacter actinomycetemcomitans (previously Actinobacillus actinomycetemcomitans), a capnophilic facultative anaerobe, is associated with localized aggressive periodontitis and endocarditis. When grown in broth, the cells begin to die rapidly after overnight growth. The cells also often lose viability on plates within a few days. The aim of this study is to identify the cause of the rapid loss of cell viability. METHODS Cell viabilities, as measured by colony forming units, were determined for cells obtained from isolated colonies and from the dense part of a streak on plates. The effect of pH on cell viability was determined by growing cells in broth at various initial glucose concentrations and with or without added bicarbonate. RESULTS A. actinomycetemcomitans cells were highly sensitive to even a mildly acidic pH of ≈6. Because the bacteria grew at a glucose concentration that is commonly used in many laboratories, there was a dramatic decrease in cell viability as the pH went <6, which happened long before the culture reached saturation. This was easily avoided by using a lower initial glucose concentration, and under these conditions, the addition of bicarbonate to the growth medium was not necessary. Cells resuspended in buffer without nutrients lost viability much faster at pH 6 than at a higher pH. On plates, the cell viability was much higher in isolated colonies than in the dense area of the streak. CONCLUSIONS A. actinomycetemcomitans cells rapidly lost viability at even a mildly acidic pH. The problem was easily rectified by growing cells at a low glucose concentration.
Collapse
Affiliation(s)
- Mrinal K Bhattacharjee
- Department of Chemistry and Biochemistry, Long Island University, Brooklyn, NY 11201, USA.
| | | | | |
Collapse
|
5
|
Abstract
Dental biofilms produce acids from carbohydrates that result in caries. According to the extended caries ecological hypothesis, the caries process consists of 3 reversible stages. The microflora on clinically sound enamel surfaces contains mainly non-mutans streptococci and Actinomyces, in which acidification is mild and infrequent. This is compatible with equilibrium of the demineralization/remineralization balance or shifts the mineral balance toward net mineral gain (dynamic stability stage). When sugar is supplied frequently, acidification becomes moderate and frequent. This may enhance the acidogenicity and acidurance of the non-mutans bacteria adaptively. In addition, more aciduric strains, such as ‘low-pH’ non-mutans streptococci, may increase selectively. These microbial acid-induced adaptation and selection processes may, over time, shift the demineralization/remineralization balance toward net mineral loss, leading to initiation/progression of dental caries (acidogenic stage). Under severe and prolonged acidic conditions, more aciduric bacteria become dominant through acid-induced selection by temporary acid-impairment and acid-inhibition of growth (aciduric stage). At this stage, mutans streptococci and lactobacilli as well as aciduric strains of non-mutans streptococci, Actinomyces, bifidobacteria, and yeasts may become dominant. Many acidogenic and aciduric bacteria are involved in caries. Environmental acidification is the main determinant of the phenotypic and genotypic changes that occur in the microflora during caries.
Collapse
Affiliation(s)
- N. Takahashi
- Division of Oral Ecology and Biochemistry, Department of Oral Biology, Tohoku University Graduate School of Dentistry, 4–1 Seiryo-machi, Aoba-ku, Sendai, 980–8575, Japan
| | - B. Nyvad
- School of Dentistry, Faculty of Health Sciences, University of Aarhus, Denmark
| |
Collapse
|
6
|
Physiological and transcriptional response of Lactobacillus casei ATCC 334 to acid stress. J Bacteriol 2010; 192:2445-58. [PMID: 20207759 DOI: 10.1128/jb.01618-09] [Citation(s) in RCA: 147] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
This study investigated features of the acid tolerance response (ATR) in Lactobacillus casei ATCC 334. To optimize ATR induction, cells were acid adapted for 10 or 20 min at different pH values (range, 3.0 to 5.0) and then acid challenged at pH 2.0. Adaptation over a broad range of pHs improved acid tolerance, but the highest survival was noted in cells acid adapted for 10 or 20 min at pH 4.5. Analysis of cytoplasmic membrane fatty acids (CMFAs) in acid-adapted cells showed that they had significantly (P < 0.05) higher total percentages of saturated and cyclopropane fatty acids than did control cells. Specifically, large increases in the percentages of C(14:0), C(16:1n(9)), C(16:0), and C(19:0(11c)) were noted in the CMFAs of acid-adapted and acid-adapted, acid-challenged cells, while C(18:1n(9)) and C(18:1n(11)) showed the greatest decrease. Comparison of the transcriptome from control cells (grown at pH 6.0) against that from cells acid adapted for 20 min at pH 4.5 indicated that acid adaption invoked a stringent-type response that was accompanied by other functions which likely helped these cells resist acid damage, including malolactic fermentation and intracellular accumulation of His. Validation of microarray data was provided by experiments that showed that L. casei survival at pH 2.5 was improved at least 100-fold by chemical induction of the stringent response or by the addition of 30 mM malate or 30 mM histidine to the acid challenge medium. To our knowledge, this is the first report that intracellular histidine accumulation may be involved in bacterial acid resistance.
Collapse
|
7
|
Sheng J, Marquis RE. Enhanced acid resistance of oral streptococci at lethal pH values associated with acid-tolerant catabolism and with ATP synthase activity. FEMS Microbiol Lett 2006; 262:93-8. [PMID: 16907744 DOI: 10.1111/j.1574-6968.2006.00374.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Caries-causing oral bacteria such as Streptococcus mutans are protected by the actions of F-ATPases against acid damage in dental plaque acidified by glycolytic acid production or ingestion of acids foods and beverages. Catabolites such as glucose and sucrose were found to enhance the protection of S. mutans and also other oral lactic-acid bacteria against acid killing at lethal pH values as low as 2.5. Protection involved glycolysis with the production of lactate and ATP, which is a substrate for F-ATPases. ATP could also be produced by starved cells apparently through synthase activity of the F-ATPase associated with acid decline. Fluoride and the organic weak-acid indomethacin acted to diminish this protection, as did F-ATPase inhibitors such as dicyclohexylcarbodi-imide. Protection against acid killing involving catabolism and synthase activity is likely to be important for plaque cariogenicity.
Collapse
Affiliation(s)
- Jiangyun Sheng
- Department of Microbiology & Immunology and Center for Oral Biology, University of Rochester Medical Center, Rochester, NY 14642-8672, USA
| | | |
Collapse
|
8
|
Faustoferri RC, Hahn K, Weiss K, Quivey RG. Smx nuclease is the major, low-pH-inducible apurinic/apyrimidinic endonuclease in Streptococcus mutans. J Bacteriol 2005; 187:2705-14. [PMID: 15805517 PMCID: PMC1070388 DOI: 10.1128/jb.187.8.2705-2714.2005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2004] [Accepted: 01/05/2005] [Indexed: 11/20/2022] Open
Abstract
The causative agent of dental caries in humans, Streptococcus mutans, outcompetes other bacterial species in the oral cavity and causes disease by surviving acidic conditions in dental plaque. We have previously reported that the low-pH survival strategy of S. mutans includes the ability to induce a DNA repair system that appears to involve an enzyme with exonuclease functions (K. Hahn, R. C. Faustoferri, and R. G. Quivey, Jr., Mol. Microbiol 31:1489-1498, 1999). Here, we report overexpression of the S. mutans apurinic/apyrimidinic (AP) endonuclease, Smx, in Escherichia coli; initial characterization of its enzymatic activity; and analysis of an smx mutant strain of S. mutans. Insertional inactivation of the smx gene eliminates the low-pH-inducible exonuclease activity previously reported. In addition, loss of Smx activity renders the mutant strain sensitive to hydrogen peroxide treatment but relatively unaffected by acid-mediated damage or near-UV irradiation. The smx strain of S. mutans was highly sensitive to the combination of iron and hydrogen peroxide, indicating the likely production of hydroxyl radical by Fenton chemistry with concomitant formation of AP sites that are normally processed by the wild-type allele. Smx activity was sufficiently expressed in E. coli to protect an xth mutant strain from the effects of hydrogen peroxide treatment. The data indicate that S. mutans expresses an inducible, class II-like AP endonuclease, encoded by the smx gene, that exhibits exonucleolytic activity and is regulated as part of the acid-adaptive response of the organism. Smx is likely the primary, if not the sole, AP endonuclease induced during growth at low pH values.
Collapse
Affiliation(s)
- Roberta C Faustoferri
- Center for Oral Biology, Aab Institute for Biomedical Sciences, 601 Elmwood Ave., Rochester, NY 14642, USA
| | | | | | | |
Collapse
|
9
|
Kuhnert WL, Zheng G, Faustoferri RC, Quivey RG. The F-ATPase operon promoter of Streptococcus mutans is transcriptionally regulated in response to external pH. J Bacteriol 2004; 186:8524-8. [PMID: 15576803 PMCID: PMC532412 DOI: 10.1128/jb.186.24.8524-8528.2004] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2004] [Accepted: 09/15/2004] [Indexed: 11/20/2022] Open
Abstract
Streptococcus mutans F-ATPase, the major component of the acid-adaptive response of the organism, is transcriptionally upregulated at low pH. Fusions of the F-ATPase promoter to chloramphenicol acetyltransferase indicated that pH-dependent expression is still observed with a short promoter that contains a domain conserved between streptococcal ATPase operons.
Collapse
Affiliation(s)
- Wendi L Kuhnert
- Center for Oral Biology, Box 611, 601 Elmwood Ave., Rochester, NY 14642, USA
| | | | | | | |
Collapse
|
10
|
Fozo EM, Kajfasz JK, Quivey RG. Low pH-induced membrane fatty acid alterations in oral bacteria. FEMS Microbiol Lett 2004. [DOI: 10.1111/j.1574-6968.2004.tb09769.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
11
|
Cotter PD, Hill C. Surviving the acid test: responses of gram-positive bacteria to low pH. Microbiol Mol Biol Rev 2003; 67:429-53, table of contents. [PMID: 12966143 PMCID: PMC193868 DOI: 10.1128/mmbr.67.3.429-453.2003] [Citation(s) in RCA: 772] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gram-positive bacteria possess a myriad of acid resistance systems that can help them to overcome the challenge posed by different acidic environments. In this review the most common mechanisms are described: i.e., the use of proton pumps, the protection or repair of macromolecules, cell membrane changes, production of alkali, induction of pathways by transcriptional regulators, alteration of metabolism, and the role of cell density and cell signaling. We also discuss the responses of Listeria monocytogenes, Rhodococcus, Mycobacterium, Clostridium perfringens, Staphylococcus aureus, Bacillus cereus, oral streptococci, and lactic acid bacteria to acidic environments and outline ways in which this knowledge has been or may be used to either aid or prevent bacterial survival in low-pH environments.
Collapse
Affiliation(s)
- Paul D Cotter
- Department of Microbiology and National Food Biotechnology Centre, University College Cork, Cork, Ireland
| | | |
Collapse
|
12
|
Hanna MN, Ferguson RJ, Li YH, Cvitkovitch DG. uvrA is an acid-inducible gene involved in the adaptive response to low pH in Streptococcus mutans. J Bacteriol 2001; 183:5964-73. [PMID: 11566996 PMCID: PMC99675 DOI: 10.1128/jb.183.20.5964-5973.2001] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The pH-inducible acid tolerance response (ATR) is believed to play a major role in acid adaptation and virulence of Streptococcus mutans. To study this phenomenon in S. mutans JH1005, differential display PCR was used to identify and clone 13 cDNA products that had increased expression in response to pH 5.0 compared to that of pH 7.5-grown cells. One of these products, confirmed to be pH inducible by RNA dot blot and reverse transcription-PCR analyses, had 67% identity to a uvrA-UV repair excinuclease gene in Bacillus subtilis. Further sequence analysis of the uvrA homologue using the S. mutans genome database revealed that the complete gene was encoded in an open reading frame (ORF) of 2,829 bp (944 amino acids; 104.67 kDa). Immediately 3' of uvrA was an ORF encoding a putative aminopeptidase gene (pepP). uvrA knockouts were constructed in S. mutans strains JH1005, NG8, and UA159 using allelic-exchange mutagenesis, replacing the entire gene with an erythromycin resistance cassette. As with uvrA mutants in other bacteria, the S. mutans uvrA mutants were extremely sensitive to UV irradiation. The uvrA mutant of S. mutans JH1005 was also more sensitive than the wild type to growth at pH 5.0, showing a 15% reduction in growth rate and a 14% reduction in final resting culture density. Acid-adapted S. mutans JH1005 uvrA mutants were shown to be more resistant to UV irradiation than was the parent but were unable to survive exposure to a killing pH of 3.0. Moreover, agarose gel electrophoretic analysis of chromosomal DNA isolated from uvrA-deficient cells exposed to low pH demonstrated more DNA damage than that for the wild-type strain. Here we suggest that uvrA and the nucleotide excision repair pathway are involved in the repair of acid-induced DNA damage and are associated with successful adaptation of S. mutans to low pH.
Collapse
Affiliation(s)
- M N Hanna
- Dental Research Institute, University of Toronto, Toronto, Ontario, Canada M5G 1G6
| | | | | | | |
Collapse
|
13
|
Abstract
Studies performed since the early, 1970s have yielded tremendous amounts of information about the physiology, genetics, and interactions of oral bacteria. This pioneering work has provided a solid foundation to begin to apply the knowledge and technologies developed using suspended populations for studying oral bacteria under conditions that more closely mimic conditions in the oral cavity, in biofilms. Our current understanding of phenotypic capabilities of individual and complex mixtures of adherent oral bacteria is in its infancy. There is ample evidence that oral streptococci have different patterns of gene expression than planktonic cells, but we have little understanding of the basis for these observations. Even in biofilmforming bacteria with very well-developed genetic systems it is only very recently that genetic loci involved in biofilm formation and responses to surface growth have been identified. A comprehensive study of the physiology and gene expression characteristics of adherent oral bacteria not only will enhance our abilities to control oral diseases, but it will provide critical information that can be applied to a variety of other pathogenic microorganisms.
Collapse
Affiliation(s)
- R A Burne
- Department of Microbiology and Immunology, University of Rochester Medical Center, New York 14642, USA
| | | | | |
Collapse
|
14
|
Quivey RG, Faustoferri R, Monahan K, Marquis R. Shifts in membrane fatty acid profiles associated with acid adaptation of Streptococcus mutans. FEMS Microbiol Lett 2000; 189:89-92. [PMID: 10913871 DOI: 10.1111/j.1574-6968.2000.tb09211.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Cells of Streptococcus mutans UA159 physiologically adapted to acidification during growth at pH 5 in glucose-limited chemostat cultures were enriched in mono-unsaturated and longer chain fatty acids compared with unadapted cells grown under the same conditions but at pH 7. Ratios of unsaturated to saturated fatty acids in the cells were, respectively, 1.2 and 0.3. Cyclopropane fatty acids were not detected. Streptococcus sobrinus 6715, which is known to have minimal acid-adaptive capacity, showed only minimal change in membrane fatty acids.
Collapse
Affiliation(s)
- R G Quivey
- Center for Oral Biology, University of Rochester, New York 14642, USA.
| | | | | | | |
Collapse
|
15
|
Hahn K, Faustoferri RC, Quivey RG. Induction of an AP endonuclease activity in Streptococcus mutans during growth at low pH. Mol Microbiol 1999; 31:1489-98. [PMID: 10200967 DOI: 10.1046/j.1365-2958.1999.01292.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The oral microbe Streptococcus mutans uses adaptive mechanisms to withstand the fluctuating pH levels in its natural environment. The regulation of protein synthesis is part of the mechanism of acid adaptation and tolerance in S. mutans. Here, we demonstrate that the organism's acid-inducible protein repertoire includes an AP endonuclease activity. This abasic site-specific endonuclease activity is present at greater levels in cells grown at low pH than in cells grown at pH 7, and is apparently independent of the RecA protein. Experiments using tetrahydrofuran or alpha-deoxyadenosine-containing substrates indicate that the activity induced at low pH may be similar to the activity of exonuclease III from E. coli. Acid-adapted S. mutans also shows an increased survival rate after exposure to near-UV radiation in both the wild type and a recA strain. Far-UV radiation resistance is observed in the wild type only. The endonuclease activity was purified approximately 500-fold from an S. mutans recA mutant strain grown at pH 5. Initial characterization revealed a 3' to 5' exonuclease activity, and showed additional functional similarities to DNA repair enzymes from other organisms.
Collapse
Affiliation(s)
- K Hahn
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, NY 14642, USA
| | | | | |
Collapse
|
16
|
Takahashi N, Yamada T. Acid-induced acid tolerance and acidogenicity of non-mutans streptococci. ORAL MICROBIOLOGY AND IMMUNOLOGY 1999; 14:43-8. [PMID: 10204479 DOI: 10.1034/j.1399-302x.1999.140105.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Acid tolerance and acidogenicity of non-mutans streptococci and their capacity of acid adaptation were studied. The cells of non-mutans streptococci (Streptococcus sanguis [Streptococcus sanguinis], Streptococcus gordonii, Streptococcus oralis and Streptococcus mitis) grown at pH 7.0 showed 0.0088% to 71% viability after acidification at pH 4.0 for 60 min, whereas the cells of mutans streptococci (Streptococcus mutans) were not killed by the acidification. Washed cells of non-mutans streptococci lowered pH to 4.04-4.33 in the presence of glucose, while mutans streptococci cells lowered pH to 3.70. When the growth pH was shifted to 5.5 for 30-90 min, the viability of non-mutans streptococci after the acidification at pH 4.0 for 60 min increased (0.25% to 91%) and the minimum pH values of the cells in the presence of glucose decreased (3.90 4.19). Along with the increase in acid tolerance and acidogenicity, non-mutans streptococci increased activities of H(+)-ATPase and arginine deiminase and amounts of stress proteins cross-reacting with 60 kDa and 70 kDa heat shock proteins (Hsp60 and Hsp70). These results indicate that non-mutans streptococci were capable of increasing their acid tolerance and acidogenicity in response to environmental acidification. Furthermore, it is suggested that the acid adaptation observed in non-mutans streptococci cells could involve the induction of H(+)-ATPase, arginine deiminase and stress protein syntheses. The strains of non-mutans streptococci, which are pioneer bacteria for dental plaque formation and predominant in plaque microbial flora, may play a significant role in shifting the dental plaque environment toward acidic and consequently promoting the colonization of more acid-tolerant and acidogenic bacteria such as mutans streptococci and lactobacilli.
Collapse
Affiliation(s)
- N Takahashi
- Department of Oral Biochemistry, Tohoku University School of Dentistry, Sendai, Japan
| | | |
Collapse
|