1
|
Emde B, Kreher H, Bäumer N, Bäumer S, Bouwes D, Tickenbrock L. Microfluidic-Based Detection of AML-Specific Biomarkers Using the Example of Promyelocyte Leukemia. Int J Mol Sci 2020; 21:ijms21238942. [PMID: 33255664 PMCID: PMC7728129 DOI: 10.3390/ijms21238942] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 11/23/2020] [Indexed: 01/22/2023] Open
Abstract
A microfluidic assay for the detection of promyelocytic leukemia (PML)-retinoic acid receptor α (RARα) fusion protein was developed. This microfluidic-based system can be used for rapid personalized differential diagnosis of acute promyelocyte leukemia (APL) with the aim of early initiation of individualized therapy. The fusion protein PML-RARα occurs in 95% of acute promyelocytic leukemia cases and is considered as diagnostically relevant. The fusion protein is formed as a result of translocation t(15,17) and is detected in the laboratory by fluorescence in situ hybridization (FISH) or reverse transcriptase polymerase chain reaction (RT-PCR). Diagnostic methods require many laboratory steps with specialized staff. The developed microfluidic assay includes a sandwich enzyme-linked immunosorbent assay (ELISA) system for PML-RARα on surface of magnetic microparticles in a microfluidic chip. A rapid detection of PML-RARα in cell lysates is achieved in less than one hour. A biotinylated PML-antibody on the surface of magnetic streptavidin coated microparticles is used as capture antibody. The bound translocation product is detected by a RARα antibody conjugated with horseradish peroxidase and the substrate QuantaRed. The analysis is performed in microfluidic channels which involves automated liquid processing with stringent washing and short incubation times. The results of the developed assay show that cell lysates of PML-RARα-positive cells (NB-4) can be clearly distinguished from PML-RARα-negative cells (HL-60, MV4-11).
Collapse
MESH Headings
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/isolation & purification
- Granulocyte Precursor Cells/metabolism
- Granulocyte Precursor Cells/pathology
- Humans
- In Situ Hybridization, Fluorescence/methods
- Leukemia, Promyelocytic, Acute/diagnosis
- Leukemia, Promyelocytic, Acute/genetics
- Leukemia, Promyelocytic, Acute/pathology
- Microfluidics/methods
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/isolation & purification
- Precision Medicine
- Promyelocytic Leukemia Protein/genetics
- Retinoic Acid Receptor alpha/genetics
- Translocation, Genetic/genetics
Collapse
Affiliation(s)
- Benedikt Emde
- Department Hamm 1, Hamm-Lippstadt University of Applied Science, 59063 Hamm, Germany;
- Correspondence: ; Tel.: +49-(0)2381-8789-443
| | - Heike Kreher
- Micronit GmbH, 44263 Dortmund, Germany; (H.K.); (D.B.)
| | - Nicole Bäumer
- Department of Medicine A, Hematology and Oncology, University of Muenster, 48149 Muenster, Germany; (N.B.); (S.B.)
| | - Sebastian Bäumer
- Department of Medicine A, Hematology and Oncology, University of Muenster, 48149 Muenster, Germany; (N.B.); (S.B.)
| | | | - Lara Tickenbrock
- Department Hamm 1, Hamm-Lippstadt University of Applied Science, 59063 Hamm, Germany;
| |
Collapse
|
2
|
Lomonte P. Herpesvirus Latency: On the Importance of Positioning Oneself. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2017; 223:95-117. [PMID: 28528441 DOI: 10.1007/978-3-319-53168-7_5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The nucleus is composed of multiple compartments and domains, which directly or indirectly influence many cellular processes including gene expression, RNA splicing and maturation, protein post-translational modifications, and chromosome segregation. Nuclear-replicating viruses, especially herpesviruses, have co-evolved with the cell, adopting strategies to counteract and eventually hijack this hostile environment for their own benefit. This allows them to persist in the host for the entire life of an individual and to ensure their maintenance in the target species. Herpesviruses establish latency in dividing or postmitotic cells from which they can efficiently reactivate after sometimes years of a seemingly dormant state. Therefore, herpesviruses circumvent the threat of permanent silencing by reactivating their dormant genomes just enough to escape extinction, but not too much to avoid life-threatening damage to the host. In addition, herpesviruses that establish latency in dividing cells must adopt strategies to maintain their genomes in the daughter cells to avoid extinction by dilution of their genomes following multiple cell divisions. From a biochemical point of view, reactivation and maintenance of viral genomes in dividing cells occur successfully because the viral genomes interact with the nuclear architecture in a way that allows the genomes to be transmitted faithfully and to benefit from the nuclear micro-environments that allow reactivation following specific stimuli. Therefore, spatial positioning of the viral genomes within the nucleus is likely to be essential for the success of the latent infection and, beyond that, for the maintenance of herpesviruses in their respective hosts.
Collapse
Affiliation(s)
- Patrick Lomonte
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR-5310, INSERM U-1217, LabEx DEVweCAN, Institut NeuroMyoGène (INMG), team Chromatin Assembly, Nuclear Domains, Virus, 69008, Lyon, France.
| |
Collapse
|
3
|
Audas TE, Hardy-Smith PW, Penney J, Taylor T, Lu R. Characterization of nuclear foci-targeting of Luman/CREB3 recruitment factor (LRF/CREBRF) and its potential role in inhibition of herpes simplex virus-1 replication. Eur J Cell Biol 2016; 95:611-622. [PMID: 28029379 DOI: 10.1016/j.ejcb.2016.10.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 10/07/2016] [Accepted: 10/24/2016] [Indexed: 01/18/2023] Open
Abstract
The recently identified Luman/CREB3-binding partner LRF (Luman/CREB3 recruitment factor) was shown to localize to discrete sub-nuclear foci. Luman is implicated in herpes simplex virus-1 (HSV-1) latency/reactivation and the unfolded protein response (UPR) pathway; therefore, we sought to characterize the formation of the LRF nuclear foci in the context of cellular signaling and HSV-1 replication. Here, we mapped the nuclear foci-targeting sequence to the central region containing the first leucine zipper (a.a.415-519), and found that the integrity of the whole region appears essential for LRF foci formation. LRF foci integrity was unaffected by inhibition of cellular DNA replication and translation, however, disruption of transcription resulted in altered LRF localization. When compared to other cellular and viral foci LRF co-localized with the nuclear receptor co-activator GRIP1, while the HSV-1 gene products ICP4, ICP27 and VP13/14 disrupted foci formation to varying degrees. Interestingly, cells over-expressing LRF were resistant to productive HSV-1 infection and this resistance was dependent upon protein targeting and an N-terminal transactivation domain. When LRF knockdown cells were subjected to primary infection, HSV-1 gene expression and progeny virus yield were enhanced by ∼3 fold compared to wildtype cells. Taken together, these results indicate that LRF is a key regulator that may act direct or indirectly as a repressor of essential genes required for productive viral infection.
Collapse
Affiliation(s)
- Timothy E Audas
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada; Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, B.C., V5A 1S6, Canada
| | - Philip W Hardy-Smith
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Jenna Penney
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Tiegh Taylor
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Ray Lu
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
4
|
Scherer M, Wagenknecht N, Reuter N, Stamminger T. Silencing of Human Cytomegalovirus Gene Expression Mediated by Components of PML Nuclear Bodies. EPIGENETICS - A DIFFERENT WAY OF LOOKING AT GENETICS 2016. [DOI: 10.1007/978-3-319-27186-6_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
5
|
Tsai K, Messick TE, Lieberman PM. Disruption of host antiviral resistances by gammaherpesvirus tegument proteins with homology to the FGARAT purine biosynthesis enzyme. Curr Opin Virol 2015; 14:30-40. [PMID: 26256000 DOI: 10.1016/j.coviro.2015.07.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 07/08/2015] [Accepted: 07/20/2015] [Indexed: 11/17/2022]
Abstract
All known gammaherpesviruses encode at least one conserved tegument protein that contains sequence homology to the cellular purine biosynthesis enzyme: phosphoribosylformylglycineamide amidotransferase (FGARAT, or PFAS). While no enzymatic activity have been found on these viral FGARAT-homology proteins (vFGARAT), they are important for disarming host intrinsic antiviral machinery. Most vFGARAT proteins disrupt the intrinsic antiviral response-associated cellular subnuclear structure: ProMyelocytic Leukemia (PML) associated nuclear body (PML-NB). vFGARATs from different viruses target different components of PML-NB to prevent cellular repression of viral infection. In addition, vFGARATs of rhadinoviruses were recently found to oligomerize with the cellular FGARAT to deamidate RIG-I and repress inflammatory cytokine production. In this review we discuss the diverse mechanisms of antiviral response disruption by gammaherpesvirus vFGARATs and the significance of the enzyme homology domain.
Collapse
Affiliation(s)
- Kevin Tsai
- The Wistar Institute, Philadelphia, PA 19104, United States; Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Troy E Messick
- The Wistar Institute, Philadelphia, PA 19104, United States
| | | |
Collapse
|
6
|
Shigella infection interferes with SUMOylation and increases PML-NB number. PLoS One 2015; 10:e0122585. [PMID: 25848798 PMCID: PMC4388590 DOI: 10.1371/journal.pone.0122585] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 02/20/2015] [Indexed: 01/08/2023] Open
Abstract
Shigellosis is a severe diarrheal disease that affects hundreds of thousands of individuals resulting in significant morbidity and mortality worldwide. Shigellosis is caused by Shigella spp., a gram-negative bacterium that uses a Type 3 Secretion System (T3SS) to deliver effector proteins into the cytosol of infected human cells. Shigella infection triggers multiple signaling programs that result in a robust host transcriptional response that includes the induction of multiple proinflammatory cytokines. PML nuclear bodies (PML-NBs) are dynamic subnuclear structures that coordinate immune signaling programs and have a demonstrated role in controlling viral infection. We show that PML-NB number increases upon Shigella infection. We examined the effects of Shigella infection on SUMOylation and found that upon Shigella infection the localization of SUMOylated proteins is altered and the level of SUMOylated proteins decreases. Although Shigella infection does not alter the abundance of SUMO activating enzymes SAE1 or SAE2, it dramatically decreases the level of the SUMO conjugating enzyme Ubc9. All Shigella-induced alterations to the SUMOylation system are dependent upon a T3SS. Thus, we demonstrate that Shigella uses one or more T3SS effectors to influence both PML-NB number and the SUMOylation machinery in human cells.
Collapse
|
7
|
Nuclear Arc Interacts with the Histone Acetyltransferase Tip60 to Modify H4K12 Acetylation(1,2,3). eNeuro 2014; 1:eN-NWR-0019-14. [PMID: 26464963 PMCID: PMC4596143 DOI: 10.1523/eneuro.0019-14.2014] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 11/10/2014] [Accepted: 11/10/2014] [Indexed: 12/12/2022] Open
Abstract
Arc is an immediate-early gene whose genetic ablation selectively abrogates long-term memory, indicating a critical role in memory consolidation. Although Arc protein is found at synapses, it also localizes to the neuronal nucleus, where its function is less understood. Nuclear Arc forms a complex with the β-spectrin isoform βSpIVΣ5 and associates with PML bodies, sites of epigenetic regulation of gene expression. We report here a novel interaction between Arc and Tip60, a histone-acetyltransferase and subunit of a chromatin-remodelling complex, using biochemistry and super-resolution microscopy in primary rat hippocampal neurons. Arc and βSpIVΣ5 are recruited to nuclear Tip60 speckles, and the three proteins form a tight complex that localizes to nuclear perichromatin regions, sites of transcriptional activity. Neuronal activity-induced expression of Arc (1) increases endogenous nuclear Tip60 puncta, (2) recruits Tip60 to PML bodies, and (3) increases histone acetylation of Tip60 substrate H4K12, a learning-induced chromatin modification. These mechanisms point to an epigenetic role for Arc in regulating memory consolidation.
Collapse
|
8
|
Alayed KM, Medeiros LJ, Phan D, Ojiaku C, Patel J, Yap JPV, McCord Y, Woods JS, Konoplev S, Bueso-Ramos CE, Reyes SR. Immunostaining for rapid diagnosis of acute promyelocytic leukemia with the tetramethylrhodamine-5-isothiocyanate-conjugated anti-promyelocytic leukemia monoclonal antibody PG-M3. Arch Pathol Lab Med 2013; 137:1669-73. [PMID: 24168508 DOI: 10.5858/arpa.2012-0565-oa] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
CONTEXT Anti-promyelocytic leukemia (PML) immunofluorescence staining is a known diagnostic tool for rapid diagnosis of acute promyelocytic leukemia (APL). OBJECTIVE We describe our methods using the recently developed, commercially available, tetramethylrhodamine-5-isothiocyanate-labeled PG-M3 anti-PML antibody for APL testing. DESIGN Immunofluorescence staining with the tetramethylrhodamine-5-isothiocyanate-labeled PG-M3 antibody was used to detect PML-RARA in bone marrow aspirate and/or peripheral blood smears from 30 patients with acute leukemia. The results were compared with those of concurrent testing with our in-house polyclonal anti-PML antibody and with established tests. RESULTS All APL cases showed a positive (fine/microgranular) immunofluorescence staining pattern, whereas non-APL cases showed a negative (chunky/macrogranular) pattern. These results, which were available within 2 hours, were validated by testing with the polyclonal anti-PML antibody and with established cytogenetic and molecular testing methods. CONCLUSIONS We validated the utility of the tetramethylrhodamine-5-isothiocyanate-labeled anti-PML antibody PG-M3 for the diagnosis of APL. Our results indicate that immunofluorescence staining with this antibody is a rapid and reliable method for the diagnosis of APL.
Collapse
Affiliation(s)
- Khaled M Alayed
- From the Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston (Drs Alayed, Medeiros, Konoplev, and Bueso-Ramos, Mr Phan, Ms Ojiaku, Ms Patel, Ms McCord, Mr Yap, and Ms Woods); and the Department of Pathology, College of Medicine, King Saud University, Riyadh, Saudi Arabia (Dr Alayed)
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
human herpesvirus 6 (HHV-6) is the major causative agent of exanthem subitum which is one of popular diseases in infant, and establishes latent infections in adults of more than 90%. Recently, the encephalitis caused by reactivated- HHV-6 has been shown in patients after transplantation. In addition, the relationship HHV-6 and drug-induced hypersensitivity syndrome has also been reported. human herpesvirus 7 (HHV-7) was isolated from the stimulated-peripheral blood lymphocytes of a healthy individual, and also causes exanthema subitum. Both viruses are related viruses which belong to betaherpesvirus subfamily, and replicate and produce progeny viruses in T cells.
Collapse
|
10
|
Cuchet D, Sykes A, Nicolas A, Orr A, Murray J, Sirma H, Heeren J, Bartelt A, Everett RD. PML isoforms I and II participate in PML-dependent restriction of HSV-1 replication. J Cell Sci 2010; 124:280-91. [PMID: 21172801 DOI: 10.1242/jcs.075390] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Intrinsic antiviral resistance mediated by constitutively expressed cellular proteins is one arm of defence against virus infection. Promyelocytic leukaemia nuclear bodies (PML-NBs, also known as ND10) contribute to host restriction of herpes simplex virus type 1 (HSV-1) replication via mechanisms that are counteracted by viral regulatory protein ICP0. ND10 assembly is dependent on PML, which comprises several different isoforms, and depletion of all PML isoforms decreases cellular resistance to ICP0-null mutant HSV-1. We report that individual expression of PML isoforms I and II partially reverses the increase in ICP0-null mutant HSV-1 plaque formation that occurs in PML-depleted cells. This activity of PML isoform I is dependent on SUMO modification, its SUMO interaction motif (SIM), and each element of its TRIM domain. Detailed analysis revealed that the punctate foci formed by individual PML isoforms differ subtly from normal ND10 in terms of composition and/or Sp100 modification. Surprisingly, deletion of the SIM motif from PML isoform I resulted in increased colocalisation with other major ND10 components in cells lacking endogenous PML. Our observations suggest that complete functionality of PML is dependent on isoform-specific C-terminal sequences acting in concert.
Collapse
Affiliation(s)
- Delphine Cuchet
- MRC-University of Glasgow Centre for Virus Research, Church Street, Glasgow G11 5JR, Scotland, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Dimov ND, Medeiros LJ, Kantarjian HM, Cortes JE, Chang KS, Bueso-Ramos CE, Ravandi F. Rapid and reliable confirmation of acute promyelocytic leukemia by immunofluorescence staining with an antipromyelocytic leukemia antibody: the M. D. Anderson Cancer Center experience of 349 patients. Cancer 2010; 116:369-76. [PMID: 19950129 DOI: 10.1002/cncr.24775] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND The authors evaluated the utility of immunofluorescence staining with an antipromyelocytic leukemia (anti-PML) antibody for patients with a suspected diagnosis of new or relapsed acute promyelocytic leukemia (APL) and correlated the findings with the results of other established diagnostic modalities. METHODS Bone marrow (BM) and/or peripheral blood (PB) smears from 349 patients in whom the diagnosis of APL was considered were assessed with the anti-PML antibody using immunofluorescence. The study group included 199 patients with confirmed APL and 150 with other conditions. The results of conventional cytogenetics, reverse transcription polymerase chain reaction (RT-PCR), and fluorescence in situ hybridization (FISH) performed on these patients were correlated with the PML results. RESULTS Among patients with confirmed APL, anti-PML antibody was positive in 182 of 184 BM and 32 of 33 PB smears. Conventional cytogenetics demonstrated t(15;17)(q22;q12) in 166 of 182 (91%) patients; 10 had a normal karyotype, 4 had insufficient mitoses to grow in culture, 1 was inconclusive, and 1 was 48, XX, +8, +8. Anti-PML staining was positive in 9 of 10 with a normal karyotype and in all 4 cases with insufficient mitoses. RT-PCR and FISH were positive for PML-retinoic acid receptor-alpha in 169 of 172 (98%) and 90 of 94 (96%) cases, respectively. Among the patients without APL, 148 of 150 (98.6%) were negative with anti-PML antibody. The sensitivity and specificity of the test were 98.9% and 98.7%, respectively. CONCLUSIONS PML immunofluorescence staining is a rapid (<4 hours turnaround time) and reliable frontline diagnostic approach that can facilitate initiation of targeted therapy, particularly in clinical settings where cytogenetic and molecular testing are not readily available.
Collapse
Affiliation(s)
- Nikolay D Dimov
- Department of Hematopathology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Tavalai N, Stamminger T. Interplay between Herpesvirus Infection and Host Defense by PML Nuclear Bodies. Viruses 2009; 1:1240-64. [PMID: 21994592 PMCID: PMC3185544 DOI: 10.3390/v1031240] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Revised: 12/10/2009] [Accepted: 12/14/2009] [Indexed: 12/17/2022] Open
Abstract
In recent studies we and others have identified the cellular proteins PML, hDaxx, and Sp100, which form a subnuclear structure known as nuclear domain 10 (ND10) or PML nuclear bodies (PML-NBs), as host restriction factors that counteract herpesviral infections by inhibiting viral replication at different stages. The antiviral function of ND10, however, is antagonized by viral regulatory proteins (e.g., ICP0 of herpes simplex virus; IE1 of human cytomegalovirus) which induce either a modification or disruption of ND10. This review will summarize the current knowledge on how viral replication is inhibited by ND10 proteins. Furthermore, herpesviral strategies to defeat this host defense mechanism are discussed.
Collapse
Affiliation(s)
- Nina Tavalai
- Institute for Clinical and Molecular Virology, University of Erlangen-Nuremberg, Schlossgarten 4, 91054 Erlangen, Germany; E-Mail:
| | - Thomas Stamminger
- Institute for Clinical and Molecular Virology, University of Erlangen-Nuremberg, Schlossgarten 4, 91054 Erlangen, Germany; E-Mail:
| |
Collapse
|
13
|
Li L, Saegusa H, Tanabe T. Deficit of heat shock transcription factor 1-heat shock 70 kDa protein 1A axis determines the cell death vulnerability in a model of spinocerebellar ataxia type 6. Genes Cells 2009; 14:1253-69. [PMID: 19817876 DOI: 10.1111/j.1365-2443.2009.01348.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Spinocerebellar ataxia type 6 (SCA6) is caused by a small expansion of polyglutamine (polyQ)-encoding CAG repeat in Ca(v)2.1 calcium channel gene. To gain insights into pathogenic mechanism of SCA6, we used HEK293 cells expressing fusion protein of enhanced green fluorescent protein and Ca(v)2.1 carboxyl terminal fragment (EGFP-Ca(v)2.1CT) [L24 and S13 cells containing 24 polyQ (disease range) and 13 polyQ (normal range), respectively] and examined their responses to some stressors. When exposed to CdCl(2), L24 cells showed lower viability than the control S13 cells and caspase-dependent apoptosis was enhanced more in L24 cells. Localization of EGFP-Ca(v)2.1CT was almost confined to the nucleus, where it existed as speckle-like structures. Interestingly, CdCl(2) treatment resulted in disruption of more promyelocytic leukemia nuclear bodies (PML-NBs) in L24 cells than in S13 cells and in cells where PML-NBs were disrupted, aggregates of EGFP-Ca(v)2.1CT became larger. Furthermore, a large number of aggregates were formed in L24 cells than in S13 cells. Results of RNAi experiments indicated that HSPA1A determined the difference against CdCl(2) toxicity. Furthermore, protein expression of heat shock transcription factor 1 (HSF1), which activates HSPA1A expression, was down-regulated in L24 cells. Therefore, HSF1-HSPA1A axis is critical for the vulnerability in L24 cells.
Collapse
Affiliation(s)
- Li Li
- Department of Pharmacology and Neurobiology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | | | | |
Collapse
|
14
|
Tavalai N, Stamminger T. New insights into the role of the subnuclear structure ND10 for viral infection. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:2207-21. [PMID: 18775455 DOI: 10.1016/j.bbamcr.2008.08.004] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2008] [Revised: 08/06/2008] [Accepted: 08/07/2008] [Indexed: 12/12/2022]
Abstract
Nuclear domains 10 (ND10), alternatively termed PML nuclear bodies (PML-NBs) or PML oncogenic domains (PODs), have been discovered approximately 15 years ago as a nuclear substructure that is targeted by a variety of viruses belonging to different viral families. This review will summarize the most important structural and functional characteristics of ND10 and its major protein constituents followed by a discussion of the current view regarding the role of this subnuclear structure for various DNA and RNA viruses with an emphasis on herpesviruses. It is concluded that accumulating evidence argues for an involvement of ND10 in host antiviral defenses either via mediating an intrinsic immune response against specific viruses or via acting as a component of the cellular interferon pathway.
Collapse
Affiliation(s)
- Nina Tavalai
- Institute for Clinical and Molecular Virology, University Erlangen-Nuremberg, Schlossgarten 4, 91054 Erlangen, Germany
| | | |
Collapse
|
15
|
Borden KLB. Pondering the puzzle of PML (promyelocytic leukemia) nuclear bodies: can we fit the pieces together using an RNA regulon? BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:2145-54. [PMID: 18616965 DOI: 10.1016/j.bbamcr.2008.06.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2008] [Revised: 06/03/2008] [Accepted: 06/10/2008] [Indexed: 12/26/2022]
Abstract
The promyelocytic leukemia protein PML and its associated nuclear bodies are hot topics of investigation. This interest arises for multiple reasons including the tight link between the integrity of PML nuclear bodies and several disease states and the impact of the PML protein and PML nuclear bodies on proliferation, apoptosis and viral infection. Unfortunately, an understanding of the molecular underpinnings of PML nuclear body function remains elusive. Here, a general overview of the PML field is provided and is extended to discuss whether some of the basic tenets of "PML-ology" are still valid. For instance, recent findings suggest that some components of PML nuclear bodies form bodies in the absence of the PML protein. Also, a new model for PML nuclear body function is proposed which provides a unifying framework for its effects on diverse biochemical pathways such as Akt signaling and the p53-Mdm2 axis. In this model, the PML protein acts as an inhibitor of gene expression post-transcriptionally via inhibiting a network node in the eIF4E RNA regulon. An example is given for how the PML RNA regulon model provided the basis for the development of a new anti-cancer strategy being tested in the clinic.
Collapse
Affiliation(s)
- Katherine L B Borden
- Institute for Research in Immunology and Cancer and Department of Pathology and Cell Biology, Université de Montréal, Montréal, Québec, Canada H4M 1J6.
| |
Collapse
|
16
|
A novel protein, Luman/CREB3 recruitment factor, inhibits Luman activation of the unfolded protein response. Mol Cell Biol 2008; 28:3952-66. [PMID: 18391022 DOI: 10.1128/mcb.01439-07] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Luman/CREB3 (also called LZIP) is an endoplasmic reticulum (ER)-bound cellular transcription factor. It has been implicated in the mammalian unfolded protein response (UPR), as well as herpes simplex virus reactivation from latency in sensory neurons. Here, we report the identification of a novel Luman recruitment factor (LRF). Like Luman, LRF is a UPR-responsive basic-region leucine zipper protein that is prone to proteasomal degradation. Being a highly unstable protein, LRF interacts with Luman through the leucine zipper region and promotes Luman degradation. LRF was found to recruit the nuclear form of Luman to discrete nuclear foci, which overlap with the nuclear receptor coactivator GRIP1 bodies, and repress the transactivation activity of Luman. Compared to LRF+/+ mouse embryonic fibroblast (MEF) cells, the levels of CHOP, EDEM, and Herp were elevated in LRF-/- MEF cells. We propose that LRF is a negative regulator of the UPR. For Luman, it may represent another level of regulation following Luman proteolytic cleavage on the ER and nuclear translocation. In addition to inducing rapid Luman turnover, LRF may repress the transactivation potential of Luman by sequestering it in the LRF nuclear bodies away from key cofactors (such as HCF-1) that are required for transcriptional activation.
Collapse
|
17
|
Bloomer WAC, VanDongen HMA, VanDongen AMJ. Activity-regulated cytoskeleton-associated protein Arc/Arg3.1 binds to spectrin and associates with nuclear promyelocytic leukemia (PML) bodies. Brain Res 2007; 1153:20-33. [PMID: 17466953 DOI: 10.1016/j.brainres.2007.03.079] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2007] [Revised: 03/13/2007] [Accepted: 03/19/2007] [Indexed: 01/23/2023]
Abstract
Activity-regulated cytoskeleton-associated protein (Arc/Arg3.1) is an immediate early gene, whose expression in the central nervous system is induced by specific patterns of synaptic activity. Arc is required for the late-phase of long-term potentiation (LTP) and memory consolidation, and has been implicated in AMPA receptor trafficking. Since Arc's molecular function remains incompletely understood, we have determined its subcellular localization in cultured hippocampal neurons and HEK 293T cells. Fluorescence microscopy experiments revealed that both endogenous and exogenous Arc protein was primarily found in the nucleus, where it concentrated in puncta associated with promyelocytic leukemia (PML) bodies, proposed sites of transcriptional regulation. Arc co-localized and interacted with the betaIV spectrin splice variant betaSpIVSigma5, a nuclear spectrin isoform associated with PML bodies and the nuclear matrix. A small region of Arc containing the coiled-coil domain is also restricted to beta-spectrin-positive puncta, while the isolated spectrin homology domain is diffusely localized. Finally, Arc and betaSpIVSigma5 synergistically increased the number of PML bodies. These results suggest that Arc functions as a spectrin-binding protein, forming a complex that may provide a role at sites of transcriptional regulation within the nucleus.
Collapse
Affiliation(s)
- Wendy A C Bloomer
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | |
Collapse
|
18
|
Ullman AJ, Reich NC, Hearing P. Adenovirus E4 ORF3 protein inhibits the interferon-mediated antiviral response. J Virol 2007; 81:4744-52. [PMID: 17301128 PMCID: PMC1900183 DOI: 10.1128/jvi.02385-06] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2006] [Accepted: 02/08/2007] [Indexed: 11/20/2022] Open
Abstract
The PML oncogenic domain (POD/ND10/PML body) is a common target of DNA viruses, which replicate their genomes in proximity to this nuclear structure. The adenovirus early protein E4 ORF3 is both necessary and sufficient to rearrange PODs from punctate bodies into track-like structures. Although multiple hypotheses exist, the precise reason for this activity has not yet been elucidated. PML, the protein responsible for nucleating PODs, is an interferon (IFN)-stimulated gene, implicating the participation of this nuclear body in an innate antiviral response. Here, we demonstrate that E4 ORF3 is critical to the replicative success of adenovirus during the IFN-induced antiviral state. When cells are pretreated with either IFN-alpha or IFN-gamma, a mutant virus that does not express E4 ORF3 is severely compromised for replication. This result suggests the functional significance of ORF3 track formation is the inhibition of a POD-mediated, antiviral mechanism. Replication of the E4 ORF3 mutant virus can be rescued following the introduction of E4 ORF3 from evolutionarily divergent adenoviruses, suggesting a conserved function for E4 ORF3 inhibition of the IFN-induced antiviral state. Furthermore, E4 ORF3 inhibition of an IFN-induced response is unrelated to the inhibition of adenovirus replication by the Mre11-Rad50-Nbs1 DNA repair complex. We propose that the evolutionarily conserved function of the adenovirus E4 ORF3 protein is the inhibition of a host interferon response to viral infection via disruption of the PML oncogenic domain.
Collapse
Affiliation(s)
- Amanda J Ullman
- Department of Molecular Genetics and Microbiology, School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | | | | |
Collapse
|
19
|
Brooks WS, Banerjee S, Crawford DF. G2E3 is a nucleo-cytoplasmic shuttling protein with DNA damage responsive localization. Exp Cell Res 2007; 313:665-76. [PMID: 17239372 PMCID: PMC1876774 DOI: 10.1016/j.yexcr.2006.11.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2006] [Revised: 11/02/2006] [Accepted: 11/10/2006] [Indexed: 11/29/2022]
Abstract
G2E3 was originally described as a G2/M-specific gene with DNA damage responsive expression. The presence of a conserved HECT domain within the carboxy-terminus of the protein indicated that it likely functions as a ubiquitin ligase or E3. Although HECT domains are known to function in this capacity for many proteins, we demonstrate that a portion of the HECT domain from G2E3 plays an important role in the dynamic subcellular localization of the protein. We have shown that G2E3 is a nucleo-cytoplasmic shuttling protein with nuclear export mediated by a novel nuclear export domain that functions independently of CRM1. In full-length G2E3, a separate region of the HECT domain suppresses the function of the NES. Additionally, G2E3 contains a nucleolar localization signal (NoLS) in its amino terminus. Localization of G2E3 to the nucleolus is a dynamic process, and the protein delocalizes from the nucleolus rapidly after DNA damage. Cell cycle phase-specific expression and highly regulated subcellular localization of G2E3 suggest a possible role in cell cycle regulation and the cellular response to DNA damage.
Collapse
Affiliation(s)
- William S. Brooks
- From the Department of Cell Biology, University of Alabama at Birmingham, Birmingham, Alabama, 35233
| | - Sami Banerjee
- From the Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama, 35233
| | - David F. Crawford
- From the Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama, 35233
- From the Department of Cell Biology, University of Alabama at Birmingham, Birmingham, Alabama, 35233
| |
Collapse
|
20
|
Everett RD, Rechter S, Papior P, Tavalai N, Stamminger T, Orr A. PML contributes to a cellular mechanism of repression of herpes simplex virus type 1 infection that is inactivated by ICP0. J Virol 2006; 80:7995-8005. [PMID: 16873256 PMCID: PMC1563828 DOI: 10.1128/jvi.00734-06] [Citation(s) in RCA: 271] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2006] [Accepted: 05/30/2006] [Indexed: 12/19/2022] Open
Abstract
Promyelocytic leukemia (PML) nuclear bodies (also known as ND10) are nuclear substructures that contain several proteins, including PML itself, Sp100, and hDaxx. PML has been implicated in many cellular processes, and ND10 are frequently associated with the replicating genomes of DNA viruses. During herpes simplex virus type 1 (HSV-1) infection, the viral regulatory protein ICP0 localizes to ND10 and induces the degradation of PML, thereby disrupting ND10 and dispersing their constituent proteins. ICP0-null mutant viruses are defective in PML degradation and ND10 disruption, and concomitantly they initiate productive infection very inefficiently. Although these data are consistent with a repressive role for PML and/or ND10 during HSV-1 infection, evidence in support of this hypothesis has been inconclusive. By use of short interfering RNA technology, we demonstrate that depletion of PML increases both gene expression and plaque formation by an ICP0-negative HSV-1 mutant, while having no effect on wild-type HSV-1. We conclude that PML contributes to a cellular antiviral repression mechanism that is countered by the activity of ICP0.
Collapse
Affiliation(s)
- Roger D Everett
- MRC Virology Unit, Church Street, Glasgow G11 5JR, Scotland, United Kingdom.
| | | | | | | | | | | |
Collapse
|
21
|
Takahashi-Fujigasaki J, Arai K, Funata N, Fujigasaki H. SUMOylation substrates in neuronal intranuclear inclusion disease. Neuropathol Appl Neurobiol 2006; 32:92-100. [PMID: 16409557 DOI: 10.1111/j.1365-2990.2005.00705.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Neuronal intranuclear inclusion disease (NIID) is a rare neurodegenerative disorder characterized pathologically by the presence of ubiquitinated intranuclear inclusions (NII) in neuronal cells. We demonstrate that NIIs in both sporadic and familial NIID contained the small ubiquitin modifier-1 (SUMO-1) and the SUMOylation substrates promyelocytic leukaemia protein (PML) and histone deacetylase 4 (HDAC4). Both PML and SUMO-1 are major components of nuclear bodies (NBs), suggesting that the NIIs in NIID, as well as the intranuclear inclusions in polyglutamine diseases, might derive from these intranuclear functional domains that serve as sites for ubiquitin-related protein degradation. HDAC4 was also a major component of the NIIs. HDACs are transcriptional corepressors that regulate histone remodelling, and NBs are thought to be sites at which the level of histone acetylation is controlled. The presence of PML, SUMO-1 and HDAC4 in NIIs suggests that transcriptional activity regulated by histone acetylation might contribute to the disease process in NIID. In addition, we showed that another SUMOylation substrate, RanGAP1 is associated with NIIs only in the familial NIID patient. This might be explained by different pathogenetic mechanisms underlying subcategories of NIID, which is very heterogeneous.
Collapse
Affiliation(s)
- J Takahashi-Fujigasaki
- Division of Neuropathology, The Jikei University School of Medicine, Tokyo, 105-8461, Japan.
| | | | | | | |
Collapse
|
22
|
Macauley MS, Errington WJ, Schärpf M, Mackereth CD, Blaszczak AG, Graves BJ, McIntosh LP. Beads-on-a-string, characterization of ETS-1 sumoylated within its flexible N-terminal sequence. J Biol Chem 2005; 281:4164-72. [PMID: 16319071 DOI: 10.1074/jbc.m510488200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Sumoylation regulates the activities of several members of the ETS transcription factor family. To provide a molecular framework for understanding this regulation, we have characterized the conjugation of Ets-1 with SUMO-1. Ets-1 is modified in vivo predominantly at a consensus sumoylation motif containing Lys-15. This lysine is located within the unstructured N-terminal segment of Ets-1 preceding its PNT domain. Using NMR spectroscopy, we demonstrate that the Ets-1 sumoylation motif associates with the substrate binding site on the SUMO-conjugating enzyme UBC9 (K(d) approximately 400 microm) and that the PNT domain is not involved in this interaction. Ets-1 with Lys-15 mutated to an arginine still binds UBC9 with an affinity similar to the wild type protein, but is no longer sumoylated. NMR chemical shift and relaxation measurements reveal that the covalent attachment of mature SUMO-1, via its flexible C-terminal Gly-97, to Lys-15 of Ets-1 does not perturb the structure or dynamic properties of either protein. Therefore sumoylated Ets-1 behaves as "beads-on-a-string" with the two proteins tethered by flexible polypeptide segments containing the isopeptide linkage. Accordingly, SUMO-1 may mediate interactions of Ets-1 with signaling or transcriptional regulatory macromolecules by acting as a structurally independent docking module, rather than through the induction of a conformational change in either protein upon their covalent linkage. We also hypothesize that the flexibility of the linking polypeptide sequence may be a general feature contributing to the recognition of SUMO-modified proteins by their downstream effectors.
Collapse
Affiliation(s)
- Matthew S Macauley
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
| | | | | | | | | | | | | |
Collapse
|
23
|
Ching RW, Dellaire G, Eskiw CH, Bazett-Jones DP. PML bodies: a meeting place for genomic loci? J Cell Sci 2005; 118:847-54. [PMID: 15731002 DOI: 10.1242/jcs.01700] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Promyelocytic leukemia (PML) bodies have been implicated in a variety of cellular processes, such as cell-cycle regulation, apoptosis, proteolysis, tumor suppression, DNA repair and transcription. Despite this, the function of PML bodies is still unknown. Direct and indirect evidence supports the hypothesis that PML bodies interact with specific genes or genomic loci. This includes the finding that the stability of PML bodies is affected by cell stress and changes in chromatin structure. PML bodies also facilitate the transcription and replication of double-stranded DNA viral genomes. Moreover, PML bodies associate with specific regions of high transcriptional activity in the cellular genome. We propose that PML bodies functionally interact with chromatin and are important for the regulation of gene expression.
Collapse
Affiliation(s)
- Reagan W Ching
- Programme in Cell Biology, Research Institute, The Hospital for Sick Children, 555 University Avenue, Toronto, ON, M5G 1X8, Canada
| | | | | | | |
Collapse
|
24
|
Mencía M, de Lorenzo V. Functional transplantation of the sumoylation machinery into Escherichia coli. Protein Expr Purif 2005; 37:409-18. [PMID: 15358364 DOI: 10.1016/j.pep.2004.07.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2004] [Revised: 07/01/2004] [Indexed: 11/24/2022]
Abstract
Modification by SUMO proteins appears to be very common in eukaryotic cells. Many proteins have been reported to be sumoylated, at least under certain circumstances, in vivo, and new examples get published every month. On the other hand, sumoylation is, in essence, a way to construct branched proteins or protein fusions. Obtention of pure sumoylated proteins from eukaryotic cells is not easy because of the dynamic nature of this modification and the large number of sumoylated proteins in vivo. Production of sumoylated proteins in vitro requires the previous purification of most of the components of the pathway, and has the typical limitations of such systems. In this paper, we describe a method to quantitatively produce sumoylated proteins in vivo in Escherichia coli as a way to obtain large quantities of specifically sumoylated target proteins with a high degree of purity, to generate fusion proteins not limited to N- or C-end additions, and to polymerize proteins by covalent linkage.
Collapse
Affiliation(s)
- Mario Mencía
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología CSIC, Campus de Cantoblanco, 28049 Madrid, Spain.
| | | |
Collapse
|
25
|
Everett RD, Murray J. ND10 components relocate to sites associated with herpes simplex virus type 1 nucleoprotein complexes during virus infection. J Virol 2005; 79:5078-89. [PMID: 15795293 PMCID: PMC1069553 DOI: 10.1128/jvi.79.8.5078-5089.2005] [Citation(s) in RCA: 174] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2004] [Accepted: 12/01/2004] [Indexed: 01/05/2023] Open
Abstract
Infections with DNA viruses commonly result in the association of viral genomes and replication compartments with cellular nuclear substructures known as promyelocytic leukemia protein (PML) nuclear bodies or ND10. While there is evidence that viral genomes can associate with preexisting ND10, we demonstrate in this study by live-cell microscopy that structures resembling ND10 form de novo and in association with viral genome complexes during the initial stages of herpes simplex virus type 1 (HSV-1) infection. Consistent with previous studies, we found that the major ND10 proteins PML, Sp100, and hDaxx are exchanged very rapidly between ND10 foci and the surrounding nucleoplasm in live cells. The dynamic nature of the individual protein molecule components of ND10 provides a mechanism by which ND10 proteins can be recruited to novel sites during virus infection. These observations explain why the genomes and replication compartments of DNA viruses that replicate in the cell nucleus are so commonly found in association with ND10. These findings are discussed with reference to the nature, location, and potential number of HSV-1 prereplication compartments and to the dynamic aspects of HSV-1 genomes and viral products during the early stages of lytic infection.
Collapse
Affiliation(s)
- Roger D Everett
- MRC Virology Unit, Institute of Virology, University of Glasgow, Church St., Glasgow G11 5JR, Scotland, United Kingdom.
| | | |
Collapse
|
26
|
Hancock R. A role for macromolecular crowding effects in the assembly and function of compartments in the nucleus. J Struct Biol 2005; 146:281-90. [PMID: 15099570 DOI: 10.1016/j.jsb.2003.12.008] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2003] [Revised: 12/18/2003] [Indexed: 11/29/2022]
Abstract
The mechanisms which cause macromolecules to form discrete compartments within the nucleus are not understood. Here, two ubiquitous compartments, nucleoli, and PML bodies, are shown to disassemble when K562 cell nuclei expand in medium of low monovalent cation concentration; their major proteins dispersed as seen by immunofluorescence and immunoelectron microscopy, and nucleolar transcript elongation fell by approximately 85%. These compartments reassembled and nucleolar transcription recovered in the same medium after adding inert, penetrating macromolecules (8 kDa polyethylene glycol (PEG), or 10.5 kDa dextran) to 12% w/v, showing that disassembly was not caused by the low cation concentration. These responses satisfy the criteria for crowding or volume exclusion effects which occur in concentrated mixtures of macromolecules; upon expansion the macromolecular concentration within the nucleus falls, and can be restored by PEG or dextran. These observations, together with evidence of a high concentration of macromolecules in the nucleus (in the range of 100mg/ml) which must cause strong crowding forces, suggest strongly that these forces play an essential role in driving the formation, and maintaining the function of nuclear compartments. This view is consistent with their dynamic and mobile nature and can provide interpretations of several unexplained observations in nuclear biology.
Collapse
Affiliation(s)
- Ronald Hancock
- Laval University Cancer Research Centre, Hôtel-Dieu Hospital, 9 rue MacMahon, Que., P.Q., Canada G1R 2J6.
| |
Collapse
|
27
|
Henson JD, Hannay JA, McCarthy SW, Royds JA, Yeager TR, Robinson RA, Wharton SB, Jellinek DA, Arbuckle SM, Yoo J, Robinson BG, Learoyd DL, Stalley PD, Bonar SF, Yu D, Pollock RE, Reddel RR. A Robust Assay for Alternative Lengthening of Telomeres in Tumors Shows the Significance of Alternative Lengthening of Telomeres in Sarcomas and Astrocytomas. Clin Cancer Res 2005. [DOI: 10.1158/1078-0432.217.11.1] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Abstract
Purpose and Experimental Design: Telomeres of tumor cells may be maintained by telomerase or by alternative lengthening of telomeres (ALT). The standard ALT assay requires Southern analysis of high molecular weight genomic DNA. We aimed to establish and validate an ALT assay suitable for archived paraffin-embedded tumors and to use it to examine the prevalence and clinical significance of ALT in various types of tumors that are often telomerase negative.
Results: To assay for ALT, we detected ALT-associated promyelocytic leukemia (PML) bodies (APBs) by combined PML immunofluorescence and telomere fluorescence in situ hybridization. APBs are PML nuclear domains containing telomeric DNA and are a known hallmark of ALT in cell lines. The APB assay concurred with the standard ALT assay in 62 of 62 tumors and showed that 35% of 101 soft tissue sarcomas (STS), 47% of 58 osteosarcomas (especially younger patients), 34% of 50 astrocytomas, and 0% of 17 papillary thyroid carcinomas were ALT positive (ALT+). The prevalence of ALT varied greatly among different STS subtypes: malignant fibrous histiocytomas, 77%; leiomyosarcomas, 62%; liposarcomas, 33%; synovial sarcomas, 9%; and rhabdomyosarcomas, 6%. ALT correlated with survival in glioblastoma multiforme and occurred more often in lower-grade astrocytomas, but ALT+ and ALT− sarcomas were equally aggressive in terms of grade and clinical outcome.
Conclusion: The APB assay for ALT is suitable for paraffin-embedded tumors. It showed that a substantial proportion of STS, osteosarcomas, and astrocytomas, but not papillary thyroid carcinomas use ALT. APB positivity correlated strongly with survival of patients with astrocytomas.
Collapse
Affiliation(s)
| | | | | | - Janice A. Royds
- 7University of Otago, Dunedin, New Zealand
- 8Royal Hallamshire Hospital, Sheffield, United Kingdom
| | | | | | | | | | | | - Jinyoung Yoo
- 10Department of Pathology, St Vincent's Hospital, Catholic University, Suwon, Kyungkido, South Korea
| | | | | | | | - S. Fiona Bonar
- 5Douglass Hanly Moir Pathology, Sydney, New South Wales, Australia
| | - Dihua Yu
- 6MD Anderson Cancer Center, Houston, Texas
| | | | | |
Collapse
|
28
|
Mollé B, Père S, Failli V, Bach I, Rétaux S. Lhx9andLhx9α: Differential Biochemical Properties and Effects on Neuronal Differentiation. DNA Cell Biol 2004; 23:761-8. [PMID: 15585134 DOI: 10.1089/dna.2004.23.761] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The Lhx9 LIM-homeodomain transcription factor and its truncated isoform Lhx9alpha are generated by alternative splicing of the Lhx9 gene. Here we investigated the differential functional properties of these two isoforms. Lhx9alpha, which lacks parts of the homeodomain, was unable to bind DNA in EMSA experiments, but was able to associate with CLIM cofactors in GST pull-down assays. In transfection experiments in PC12 cells, Lhx9alpha fusion constructs systematically showed a nuclear localization, as opposed to Lhx9 fusion constructs, which also localized to the cytoplasm. Moreover, Lhx9 increased NGF-induced neuronal differentiation of PC12 cells. Lhx9alpha, on the other hand, did not significantly increase neuronal differentiation but had an effect on the morphology of PC12 cells. Finally, as tested by RT-PCR experiments on transfected PC12 cells, Lhx9 was not able to induce the transcription of Lhx9alpha. Our results show significantly different functional properties for Lhx9 and Lhx9alpha, and suggest that Lhx9alpha can compete away limiting amounts of nuclear CLIM cofactors. Thus, Lhx9 and Lhx9alpha isoforms could be implicated in regulating various aspects of neuronal differentiation.
Collapse
Affiliation(s)
- Bertrand Mollé
- UPR 2197 "Développement, Evolution, Plasticité du Système Nerveux," Institut de Neurobiologie Alfred FESSARD, C.N.R.S, GIF-sur-YVETTE cedex, France
| | | | | | | | | |
Collapse
|
29
|
Everett RD, Zafiropoulos A. Visualization by live-cell microscopy of disruption of ND10 during herpes simplex virus type 1 infection. J Virol 2004; 78:11411-5. [PMID: 15452264 PMCID: PMC521835 DOI: 10.1128/jvi.78.20.11411-11415.2004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2004] [Accepted: 06/01/2004] [Indexed: 11/20/2022] Open
Abstract
ND10 structures are disrupted during herpes simplex virus type 1 (HSV-1) infection by viral regulatory protein ICP0. The significance of this effect remains controversial, partly because of a report that high-level expression of the major ND10 promyelocytic leukemia (PML) protein precludes ND10 disruption yet does not inhibit HSV-1 infection. Here we demonstrate dramatic reorganization of ND10 during HSV-1 infection by live-cell microscopy, even in the presence of overexpressed PML.
Collapse
Affiliation(s)
- Roger D Everett
- MRC Virology Unit, Church Street, University of Glasgow, Glasgow G11 5JR, Scotland, United Kingdom.
| | | |
Collapse
|
30
|
Ogawa H, Yu RT, Haraguchi T, Hiraoka Y, Nakatani Y, Morohashi KI, Umesono K. Nuclear structure-associated TIF2 recruits glucocorticoid receptor and its target DNA. Biochem Biophys Res Commun 2004; 320:218-25. [PMID: 15207724 DOI: 10.1016/j.bbrc.2004.05.161] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2004] [Indexed: 10/26/2022]
Abstract
Assembly of multi-protein complexes on promoter and enhancer elements is a prerequisite for onset of gene transcription. At the beginning of this process, transcription factors are thought to act as nucleating centers for complex formation through the binding of their target DNA sequences, and thereafter recruit coactivators. Here, we investigated this process of assembly by determining the distribution of the glucocorticoid receptor (GR) and its coactivator, TIF2. Both endogenously and ectopically expressed TIF2 were shown to form foci in the nucleus, and GR could be recruited to the TIF2 foci upon GR agonist but not antagonist treatment. Moreover, we show that the coactivators, p300 and PCAF, are also recruited to the TIF2 foci. The TIF2 foci could recruit GR carrying a microinjected GR responsive element. We propose that TIF2 provides a nuclear compartment that allows the assembly of multi-protein complexes required for GR-mediated gene activation.
Collapse
Affiliation(s)
- Hidesato Ogawa
- Department of Biochemistry, Institute for Virus Research, Kyoto University, Japan.
| | | | | | | | | | | | | |
Collapse
|
31
|
Takahashi Y, Lallemand-Breitenbach V, Zhu J, de Thé H. PML nuclear bodies and apoptosis. Oncogene 2004; 23:2819-24. [PMID: 15077145 DOI: 10.1038/sj.onc.1207533] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Promyelocytic leukaemia nuclear bodies (PML NBs) are structured protein complexes associated with the nuclear matrix. PML constitutes the scaffold component of NBs and recruits onto these domains a striking variety of proteins, many of which are involved in apoptosis control. Several reports have directly implicated PML in apoptosis and senescence, but the mechanisms by which these are conveyed are still largely unsettled. Recruitment of partner proteins onto NBs is regulated by PML sumolation, a specific post-translational modification also found in many NB-associated proteins. Among these, several are implicated in transcription repression or activation, like the transcriptional repressor Daxx or the transcriptional activator P53. Whether NBs constitute platforms where active sites of enzymatic modifications are carried out, as suggested for P53, sites of intranuclear protein sequestration, as proposed for Daxx or organelles specialized in catabolism, is still debated. A variety of stress-related signalling pathways dramatically modulate the formation of PML NBs, which may provide a clue as to their physiological function.
Collapse
Affiliation(s)
- Yuki Takahashi
- CNRS UPR 9051, laboratoire associé No 11 du comité de Paris de la Ligue contre le Cancer, affilié à l'université de Paris VII. Hôpital Saint-Louis, centre Hayem, 1, av. C. Vellefaux 75475 Paris Cedex 10, France
| | | | | | | |
Collapse
|
32
|
van Koningsbruggen S, Dirks RW, Mommaas AM, Onderwater JJ, Deidda G, Padberg GW, Frants RR, van der Maarel SM. FRG1P is localised in the nucleolus, Cajal bodies, and speckles. J Med Genet 2004. [DOI: 10.1136/jmg.2003.012781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
33
|
Dellaire G, Nisman R, Bazett-Jones DP. Correlative light and electron spectroscopic imaging of chromatin in situ. Methods Enzymol 2004; 375:456-78. [PMID: 14870683 DOI: 10.1016/s0076-6879(03)75028-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Affiliation(s)
- Graham Dellaire
- Programme in Cell Biology, Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | | | | |
Collapse
|
34
|
Fukuyo Y, Mogi K, Tsunematsu Y, Nakajima T. E2FBP1/hDril1 modulates cell growth through downregulation of promyelocytic leukemia bodies. Cell Death Differ 2004; 11:747-59. [PMID: 15017387 DOI: 10.1038/sj.cdd.4401412] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Promyelocytic leukemia nuclear bodies (PML-NBs) comprise multiple regulatory factors and play crucial roles in the maintenance of cellular integrity, while unregulated activation of PML-NBs induces death and premature senescence. Hence, the function of PML-NBs must be directed properly; however, the mechanism that regulates PML-NBs remains unclear. In this paper, we show that PML-NBs are disintegrated by an AT-rich interaction domain family protein E2FBP1/hDril1 through specific desumoylation of promyelocytic leukemia protein (PML) in vivo and in vitro. RNA interference-mediated downregulation of E2FBP1/hDril1 results in hyperplasis of PML-NBs and consequent commitment to PML-dependent premature senescence. Thus, the function of E2FBP1/hDril1 is required for maintenance of survival potential of the cells. Our data suggest a novel mechanism to govern cellular integrity through the modulation of nuclear depots.
Collapse
Affiliation(s)
- Y Fukuyo
- Department of Molecular Cellular Oncology and Microbiology, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| | | | | | | |
Collapse
|
35
|
Abstract
Neuronal intranuclear hyaline inclusion disease (NIHID) is a rare neurodegenerative disorder characterized pathologically by the presence of eosinophilic intranuclear inclusions in neuronal and glial cells. It has been considered to be a heterogeneous disease entity because the clinical pictures of previously described cases were highly variable. In the present review, reported NIHID cases have been categorized into three clinical subgroups according to onset and disease duration, and the clinical phenotype of each subgroup is discussed. Neuronal intranuclear inclusions (NII) in NIHID are ubiquitinated and their prevalence is inversely correlated with neuronal loss, suggesting that NII formation is a protective mechanism involving the ubiquitin-proteasome-dependent proteolytic pathway. In several polyglutamine diseases, disease-related proteins containing abnormally expanded polyglutamine tracts aggregate in neuronal nuclei, resulting in NII formation. The similarity between NII in NIHID and polyglutamine diseases suggests that they are formed during a common proteolysis-related process that takes place in the nucleus. Although the pathogenetic mechanism underlying NIHID remains unknown, the data reviewed here suggest that it might be related to accumulation of as yet unidentified abnormal proteins or dysfunction of the intranuclear ubiquitin-proteasome pathway.
Collapse
|
36
|
Affiliation(s)
- Andrew P Lieberman
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
37
|
Pountney DL, Huang Y, Burns RJ, Haan E, Thompson PD, Blumbergs PC, Gai WP. SUMO-1 marks the nuclear inclusions in familial neuronal intranuclear inclusion disease. Exp Neurol 2004; 184:436-46. [PMID: 14637113 DOI: 10.1016/j.expneurol.2003.07.004] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Neuronal intranuclear inclusion disease (NIID) is a rare neurodegenerative disorder characterized by progressive ataxia and neuronal nuclear inclusions (NIs), similar to the inclusions found in expanded CAG repeat diseases. NIID may be familial or sporadic. The cause of familial NIID is poorly understood, as no CAG expansion has been detected. We examined three cases, from two unrelated families, who had autosomal dominant NIID but normal CAG repeats in genes involved in polyglutamine neurodegenerative diseases. We found that NIs in all three cases were intensely immunopositive for SUMO-1, a protein which covalently conjugates to other proteins and targets them to the nuclear regions (nuclear bodies) responsible for nuclear proteasomal degradation. Electron microscopy demonstrated that SUMO-1 was located on the 10-nm fibrils of NIs. In cultured PC12 cells, we found that inhibition of proteasome function by specific inhibitors resulted in the appearance of SUMO-1-immunopositive nuclear inclusions. Our study suggests that recruitment of SUMO-1 modified proteins into insoluble nuclear inclusions and proteasomal dysfunction may be involved in the pathogenesis of NIs in familial NIID cases.
Collapse
Affiliation(s)
- D L Pountney
- Department of Human Physiology and Centre for Neuroscience, Flinders University, South Australia 5042, Bedford Park, Australia
| | | | | | | | | | | | | |
Collapse
|
38
|
Transidico P, Bianchi M, Capra M, Pelicci PG, Faretta M. From cells to tissues: Fluorescence confocal microscopy in the study of histological samples. Microsc Res Tech 2004; 64:89-95. [PMID: 15352079 DOI: 10.1002/jemt.20062] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Our knowledge of the genetic mechanisms controlling cell proliferation and differentiation usually originates from in vitro cultured cell line models. However, the definition of the molecular switches involved in control of homeostasis and the understanding of the changes occurring in neoplastic transformation require looking at single cells as the components of a complex tissue network. Histological examination of tissue samples can gain a substantial amount of information from high-resolution fluorescence analysis. In particular, confocal microscopy can help in the definition of functional pathways using multiparameter analysis. In this report, we present acquisition and analysis procedures to obtain high-resolution data from tissue sections. Confocal microscopy coupled to computational restoration, statistical evaluation of spatial correlations, and morphological analysis over large tissue areas were applied to colorectal samples providing a molecular fingerprint of the biological differences inferred from classical histological examination.
Collapse
Affiliation(s)
- Pietro Transidico
- Department of Experimental Oncology, European Institute of Oncology, 20141 Milan, Italy
| | | | | | | | | |
Collapse
|
39
|
Möller A, Sirma H, Hofmann TG, Staege H, Gresko E, Lüdi KS, Klimczak E, Dröge W, Will H, Schmitz ML. Sp100 is important for the stimulatory effect of homeodomain-interacting protein kinase-2 on p53-dependent gene expression. Oncogene 2003; 22:8731-7. [PMID: 14647468 DOI: 10.1038/sj.onc.1207079] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2003] [Revised: 08/02/2003] [Accepted: 08/05/2003] [Indexed: 11/09/2022]
Abstract
HIPK2 shows overlapping localization with p53 in promyelocytic leukemia (PML) nuclear bodies (PML-NBs) and functionally interacts with p53 to increase gene expression. Here we demonstrate that HIPK2 and the PML-NB resident protein Sp100 synergize for the activation of p53-dependent gene expression. Sp100 and HIPK2 interact and partially colocalize in PML-NBs. The cooperation of HIPK2 and Sp100 for the induction of p21(Waf1) is completely dependent on the presence of p53 and the kinase function of HIPK2. Downregulation of Sp100 levels by expression of siRNA does not interfere with p53-mediated transcription, but obviates the enhancing effect of HIPK2. In summary, these experiments reveal a novel function for Sp100 as a coactivator for HIPK2-mediated p53 activation.
Collapse
Affiliation(s)
- Andreas Möller
- German Cancer Research Center, Division of Immunochemistry (G0200), Im Neuenheimer Feld 280, Heidelberg D-69120, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Chen M, Schwab R, Chory J. Characterization of the requirements for localization of phytochrome B to nuclear bodies. Proc Natl Acad Sci U S A 2003; 100:14493-8. [PMID: 14612575 PMCID: PMC283619 DOI: 10.1073/pnas.1935989100] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Phytochromes are red- and far-red-sensing photoreceptors that detect the quantity, quality, and duration of light throughout the entire life cycle of plants. Phytochromes accumulate in the cytoplasm in the dark. As one of the earliest responses after light illumination, phytochromes localize to the nucleus where they become associated with discrete nuclear bodies (NBs). Here, we describe the steady-state dynamics of Arabidopsis phytochrome B (phyB) localization in response to different light conditions and define four phyB subnuclear localization patterns: diffuse nuclear localization, small and numerous NBs only, both small and large NBs, and large NBs only. We show that phyB nuclear import is not sufficient for phyB NB formation. Rather, phyB accumulation in NBs is mainly determined by the percentage of the total amount of phyB protein that is in the active phyB conformer, with large NBs always correlating with strong phyB responses. A genetic screen to identify determinants required for subnuclear localization of phyB resulted in several phyB mutants, mutants deficient in phytochrome chromophore biosynthesis, and mutations in at least one previously uninvestigated locus. This study lays the groundwork for future investigations to identify the molecular mechanisms of light-regulated partitioning of plant photoreceptors to discrete subnuclear domains.
Collapse
Affiliation(s)
- Meng Chen
- Plant Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
41
|
Eskiw CH, Dellaire G, Mymryk JS, Bazett-Jones DP. Size, position and dynamic behavior of PML nuclear bodies following cell stress as a paradigm for supramolecular trafficking and assembly. J Cell Sci 2003; 116:4455-66. [PMID: 13130097 DOI: 10.1242/jcs.00758] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The promyelocytic leukemia (PML) protein has been implicated in many cellular pathways, but it is unclear whether the accumulation of PML and other proteins into PML nuclear bodies is a regulated or random process. In this paper we have used a variety of physiological stresses, including heat stress, Cd+2 exposure and adenovirus E1A expression, as tools to study the principles underlying the assembly/disassembly, integrity and dynamic behavior of PML bodies. Using live-cell imaging and immunofluorescence microscopy, we observe that PML bodies are positionally stable over time intervals of a few hours. After stress, however, microstructures form as a result of fission or budding from the surface of 'parental' PML bodies. Since new PML bodies do not form at new locations, and the relative sizes observed before heat shock are preserved after recovery, we conclude that there are pre-determined locations for PML bodies, and that they are not random accumulations of protein. Over-expression of small ubiquitin-like modifier (SUMO-1) prevents stress-induced disassembly of PML bodies, implicating SUMO-1 as a key regulator of PML body integrity. Stress-induced fission of SUMO-1-deficient microstructures from parental PML bodies may be a mechanism to change local chromatin domain environments by the dispersal of protein factors. PML bodies may provide a useful paradigm for the dynamics and integrity of other supramolecular protein complexes involved in processes such as transcription, RNA processing DNA repair and replication.
Collapse
|
42
|
Steensma DP, Higgs DR, Fisher CA, Gibbons RJ. Acquired somatic ATRX mutations in myelodysplastic syndrome associated with alpha thalassemia (ATMDS) convey a more severe hematologic phenotype than germline ATRX mutations. Blood 2003; 103:2019-26. [PMID: 14592816 DOI: 10.1182/blood-2003-09-3360] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Acquired somatic mutations in ATRX, an X-linked gene encoding a chromatin-associated protein, were recently identified in 4 patients with the rare subtype of myelodysplastic syndrome (MDS) associated with thalassemia (ATMDS). Here we describe a series of novel point mutations in ATRX detected in archival DNA samples from marrow and/or blood of patients with ATMDS by use of denaturing high-performance liquid chromatography (DHPLC), a technique sensitive to low-level mosaicism. Two of the new mutations result in changes in amino acids altered in previously described pedigrees with germ line ATRX mutations (ATR-X syndrome), but the hematologic abnormalities were much more severe in the patients with ATMDS than in the corresponding constitutional cases. In one ATMDS case where DNA samples from several time points were available, the proportion of ATRX-mutant subclones correlated with changes in the amount of hemoglobin H. This study strengthens the link between acquired, somatic ATRX mutations and ATMDS, illustrates how molecular defects associated with MDS and other hematologic malignancies masked by somatic mosaicism may be detected by DHPLC, and shows that additional factors increase the severity of the hematologic phenotype of ATRX mutations in ATMDS.
Collapse
Affiliation(s)
- David P Steensma
- MRC Molecula Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Headington, Oxford OX3 9DS, United Kingdom.
| | | | | | | |
Collapse
|
43
|
Abstract
An organism ultimately reflects the coordinate expression of its genome. The misexpression of a gene can have catastrophic consequences for an organism, yet the mechanics of transcription is a local phenomenon within the cell nucleus. Chromosomal and nuclear position often dictate the activity of a specific gene. Transcription occurs in territories and in discrete localized foci within these territories. The proximity of a gene or trans-acting factor to heterochromatin can have profound functional significance. The organization of heterochromatin changes with cell development, thus conferring temporal changes on gene activity. The protein-protein interactions that engage the trans-acting factor also contribute to context-dependent transcription. Multi-protein assemblages known as enhanceosomes govern gene expression by local committee thus dictating regional transcription factor function. Local DNA architecture can prescribe enhancesome membership. The local bending of the double helix, typically mediated by architectural transcription factors, is often critical for stabilizing enhanceosomes formed from trans-acting proteins separated over small and large distances. The recognition element to which a transcription factor binds is of functional significance because DNA may act as an allosteric ligand influencing the conformation and thus the activity of the transactivation domain of the binding protein, as well as the recruitment of other proteins to the enhanceosome. Here, we review and attempt to integrate these local determinants of gene expression.
Collapse
Affiliation(s)
- Marta Alvarez
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | |
Collapse
|