1
|
Sharma R, Anupa A, Rathore AS. Refolding of Proteins Expressed as Inclusion Bodies in E. coli. Methods Mol Biol 2023; 2617:201-208. [PMID: 36656526 DOI: 10.1007/978-1-0716-2930-7_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Microbial-based biotherapeutics that are produced in Escherichia coli (E. coli) can be generated intracellularly in the form of inclusion bodies (IBs) or in soluble active form in periplasmic space or extracellularly. Overexpression of these biotherapeutics in E. coli leads to formation of insoluble aggregates called inclusion bodies. These IBs contain misfolded and inactive form of proteins which need to be refolded to obtain a functionally active form of proteins. Here, we discuss refolding of E. coli-based recombinant human granulocyte colony-stimulating factor (GCSF), expressed as IBs, and highlight some of the key features associated with the refolding kinetic reaction.
Collapse
Affiliation(s)
- Rashmi Sharma
- School of Interdisciplinary Research, Indian Institute of Technology Delhi, New Delhi, India
| | - Anupa Anupa
- School of Interdisciplinary Research, Indian Institute of Technology Delhi, New Delhi, India
| | - Anurag S Rathore
- School of Interdisciplinary Research, Indian Institute of Technology Delhi, New Delhi, India.
- Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi, India.
| |
Collapse
|
2
|
Eronina TB, Mikhaylova VV, Chebotareva NA, Kleymenov SY, Pivovarova AV, Kurganov BI. Combined action of chemical chaperones on stability, aggregation and oligomeric state of muscle glycogen phosphorylase b. Int J Biol Macromol 2022; 203:406-416. [PMID: 35066023 DOI: 10.1016/j.ijbiomac.2022.01.106] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/10/2022] [Accepted: 01/17/2022] [Indexed: 01/19/2023]
Abstract
Chemical chaperones are a class of small molecules, which enhance protein stability, folding, inhibit protein aggregation, and are used for long-term storage of therapeutic proteins. The combined action of chemical chaperones trehalose, betaine and lysine on stability, aggregation and oligomeric state of muscle glycogen phosphorylase b (Phb) has been studied. Dynamic light scattering data indicate that the affinity of trehalose to Phb increased in the presence of betaine or lysine at both stages (stage of nucleation and aggregate growth) of enzyme aggregation at 48 °C, in contrast, the affinity of betaine to the enzyme in the presence of lysine remained practically unchanged. According to differential scanning calorimetry and analytical ultracentrifugation data, the mixture of trehalose and betaine stabilized Phb stronger than either of them in total. Moreover, the destabilizing effect of lysine on the enzyme was almost completely compensated by trehalose and only partially by betaine. The main protective effect of the mixtures of osmolytes and lysine is associated with their influence on the dissociation/denaturation stage, which is the rate-limiting one of Phb aggregation. Thus, a pair of chaperones affects the stability, oligomeric state, and aggregation of Phb differently than individual chaperones.
Collapse
Affiliation(s)
- Tatiana B Eronina
- Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology", Russian Academy of Sciences, Leninsky pr. 33, Moscow 119071, Russia.
| | - Valeriya V Mikhaylova
- Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology", Russian Academy of Sciences, Leninsky pr. 33, Moscow 119071, Russia
| | - Natalia A Chebotareva
- Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology", Russian Academy of Sciences, Leninsky pr. 33, Moscow 119071, Russia
| | - Sergey Y Kleymenov
- Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology", Russian Academy of Sciences, Leninsky pr. 33, Moscow 119071, Russia; Koltsov's Institute of Developmental Biology, Russian Academy of Sciences, Vavilova 26, Moscow 119991, Russia
| | - Anastasia V Pivovarova
- Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology", Russian Academy of Sciences, Leninsky pr. 33, Moscow 119071, Russia
| | - Boris I Kurganov
- Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology", Russian Academy of Sciences, Leninsky pr. 33, Moscow 119071, Russia
| |
Collapse
|
3
|
Javanshad R, Venter AR. Effects of amino acid additives on protein solubility - insights from desorption and direct electrospray ionization mass spectrometry. Analyst 2021; 146:6592-6604. [PMID: 34586125 DOI: 10.1039/d1an01392k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Naturally occurring amino acids have been broadly used as additives to improve protein solubility and inhibit aggregation. In this study, improvements in protein signal intensity obtained with the addition of L-serine, and structural analogs, to the desorption electrospray ionization mass spectrometry (DESI-MS) spray solvent were measured. The results were interpreted at the hand of proposed mechanisms of solution additive effects on protein solubility and dissolution. DESI-MS allows for these processes to be studied efficiently using dilute concentrations of additives and small amounts of proteins, advantages that represent real benefits compared to classical methods of studying protein stability and aggregation. We show that serine significantly increases the protein signal in DESI-MS when native proteins are undergoing unfolding during the dissolution process with an acidic solvent system (p-value = 0.0001), or with ammonium bicarbonate under denaturing conditions for proteins with high isoelectric points (p-value = 0.001). We establish that a similar increase in the protein signal cannot be observed with direct ESI-MS, and the observed increase is therefore not related to ionization processes or changes in the physical properties of the bulk solution. The importance of the presence of serine during protein conformational changes while undergoing dissolution is demonstrated through comparisons between the analyses of proteins deposited in native or unfolded states and by using native state-preserving and denaturing desorption solvents. We hypothesize that direct, non-covalent interactions involving all three functional groups of serine are involved in the beneficial effect on protein solubility and dissolution. Supporting evidence for a direct interaction include a reduction in efficacy with D-serine or the racemic mixture, indicating a non-bulk-solution physical property effect; insensitivity to the sample surface type or relative placement of serine addition; and a reduction in efficacy with any modifications to the serine structure, most notably the carboxyl functional group. An alternative hypothesis, also supported by some of our observations, could involve the role of serine clusters in the mechanism of solubility enhancement. Our study demonstrates the capability of DESI-MS together with complementary ESI-MS experiments as a novel tool for understanding protein solubility and dissolution and investigating the mechanism of action for solubility-enhancing additives.
Collapse
Affiliation(s)
- Roshan Javanshad
- Department of Chemistry, Western Michigan University, Kalamazoo, MI 49008-5413, USA.
| | - Andre R Venter
- Department of Chemistry, Western Michigan University, Kalamazoo, MI 49008-5413, USA.
| |
Collapse
|
4
|
Abstract
Vitrification is an alternative to cryopreservation by freezing that enables hydrated living cells to be cooled to cryogenic temperatures in the absence of ice. Vitrification simplifies and frequently improves cryopreservation because it eliminates mechanical injury from ice, eliminates the need to find optimal cooling and warming rates, eliminates the importance of differing optimal cooling and warming rates for cells in mixed cell type populations, eliminates the need to find a frequently imperfect compromise between solution effects injury and intracellular ice formation, and can enable chilling injury to be "outrun" by using rapid cooling without a risk of intracellular ice formation. On the other hand, vitrification requires much higher concentrations of cryoprotectants than cryopreservation by freezing, which introduces greater risks of both osmotic damage and cryoprotectant toxicity. Fortunately, a large number of remedies for the latter problem have been discovered over the past 35 years, and osmotic damage can in most cases be eliminated or adequately controlled by paying careful attention to cryoprotectant introduction and washout techniques. Vitrification therefore has the potential to enable the superior and convenient cryopreservation of a wide range of biological systems (including molecules, cells, tissues, organs, and even some whole organisms), and it is also increasingly recognized as a successful strategy for surviving harsh environmental conditions in nature. But the potential of vitrification is sometimes limited by an insufficient understanding of the complex physical and biological principles involved, and therefore a better understanding may not only help to improve present outcomes but may also point the way to new strategies that may be yet more successful in the future. This chapter accordingly describes the basic principles of vitrification and indicates the broad potential biological relevance of this alternative method of cryopreservation.
Collapse
|
5
|
Response to crowded conditions reveals compact nucleus for amyloid formation of folded protein. QRB DISCOVERY 2021. [PMID: 37529678 PMCID: PMC10392690 DOI: 10.1017/qrd.2020.17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Abstract
Although the consequences of the crowded cell environments may affect protein folding, function and misfolding reactions, these processes are often studied in dilute solutions in vitro. We here used biophysical experiments to investigate the amyloid fibril formation process of the fish protein apo-β-parvalbumin in solvent conditions that mimic steric and solvation aspects of the in vivo milieu. Apo-β-parvalbumin is a folded protein that readily adopts an amyloid state via a nucleation–elongation mechanism. Aggregation experiments in the presence of macromolecular crowding agents (probing excluded volume, entropic effects) as well as small molecule osmolytes (probing solvation, enthalpic effects) revealed that both types of agents accelerate overall amyloid formation, but the elongation step was faster with macromolecular crowding agents but slower in the presence of osmolytes. The observations can be explained by the steric effects of excluded volume favoring assembled states and that amyloid nucleation does not involve monomer unfolding. In contrast, the solvation effects due to osmolyte presence promote nucleation but not elongation. Therefore, the amyloid-competent nuclei must be compact with less osmolytes excluded from the surface than either the folded monomers or amyloid fibers. We conclude that, in contrast to other amyloidogenic folded proteins, amyloid formation of apo-β-parvalbumin is accelerated by crowded cell-like conditions due to a nucleation process that does not involve large-scale protein unfolding.
Collapse
|
6
|
Tyagi A, Kamal MA, Poddar NK. Integrated Pathways of COX-2 and mTOR: Roles in Cell Sensing and Alzheimer's Disease. Front Neurosci 2020; 14:693. [PMID: 32742252 PMCID: PMC7364283 DOI: 10.3389/fnins.2020.00693] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 06/08/2020] [Indexed: 12/12/2022] Open
Abstract
Cyclooxygenases (COX) are enzymes catalyzing arachidonic acid into prostanoids. COX exists in three isoforms: COX-1, 2, and 3. COX-1 and COX-2 have been widely studied in order to explore and understand their involvement in Alzheimer’s disease (AD), a progressive neuroinflammatory dementia. COX-2 was traditionally viewed to be expressed only under pathological conditions and to have detrimental effects in AD pathophysiology and neurodegeneration. However, an increasing number of reports point to much more complex roles of COX-2 in AD. Mammalian/mechanistic target of rapamycin (mTOR) has been considered as a hub which integrates multiple signaling cascades, some of which are also involved in AD progression. COX-2 and mTOR are both involved in environmental sensing, growth, and metabolic processes of the cell. They are also known to act in cooperation in many different cancers and thus, their role together in normal cellular functions as well as AD has been explored in this review. Some of the therapeutic approaches targeting COX-2 and mTOR in AD and cancer are also discussed.
Collapse
Affiliation(s)
- Arti Tyagi
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| | - Mohammad A Kamal
- King Fahad Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Enzymoics, Hebersham, NSW, Australia
| | | |
Collapse
|
7
|
Revalorization of Tunisian wild Amaranthaceae halophytes: Nutritional composition variation at two different phenotypes stages. J Food Compost Anal 2020. [DOI: 10.1016/j.jfca.2020.103463] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Metzger KF, Padutsch W, Pekarsky A, Kopp J, Voloshin AM, Kühnel H, Maurer M. IGF1 inclusion bodies: A QbD based process approach for efficient USP as well as early DSP unit operations. J Biotechnol 2020; 312:23-34. [DOI: 10.1016/j.jbiotec.2020.02.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 02/04/2020] [Accepted: 02/26/2020] [Indexed: 12/20/2022]
|
9
|
Bandyopadhyay A, Bose I, Chattopadhyay K. Osmolytes ameliorate the effects of stress in the absence of the heat shock protein Hsp104 in Saccharomyces cerevisiae. PLoS One 2019; 14:e0222723. [PMID: 31536559 PMCID: PMC6752772 DOI: 10.1371/journal.pone.0222723] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 09/05/2019] [Indexed: 12/24/2022] Open
Abstract
Aggregation of the prion protein has strong implications in the human prion disease. Sup35p is a yeast prion, and has been used as a model protein to study the disease mechanism. We have studied the pattern of Sup35p aggregation inside live yeast cells under stress, by using confocal microscopy, fluorescence activated cell sorting and western blotting. Heat shock proteins are a family of proteins that are produced by yeast cells in response to exposure to stressful conditions. Many of the proteins behave as chaperones to combat stress-induced protein misfolding and aggregation. In spite of this, yeast also produce small molecules called osmolytes during stress. In our work, we tried to find the reason as to why yeast produce osmolytes and showed that the osmolytes are paramount to ameliorate the long-term effects of lethal stress in Saccharomyces cerevisiae, either in the presence or absence of Hsp104p.
Collapse
Affiliation(s)
- Arnab Bandyopadhyay
- Structural Biology & Bio-Informatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Indrani Bose
- Department of Biology, Western Carolina University, Cullowhee, North Carolina, United States of America
- * E-mail: (KC); (IB)
| | - Krishnananda Chattopadhyay
- Structural Biology & Bio-Informatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
- * E-mail: (KC); (IB)
| |
Collapse
|
10
|
Sharma T, Sharma C, Sankhyan A, Bedi SP, Bhatnagar S, Khanna N, Gautam V, Sethi S, Vrati S, Tiwari A. Serodiagnostic evaluation of recombinant CdtB of S. Typhi as a potential candidate for acute typhoid. Immunol Res 2019; 66:503-512. [PMID: 29931558 DOI: 10.1007/s12026-018-9009-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Typhoid fever caused by human restricted Salmonella typhi presents a considerable health burden on developing South-Asian nations like India. The suboptimal sensitivity and specificity associated with culture-based isolation of etiological agent and the extensively used surface antigen-based serological assays often lead to misdiagnosis and inappropriate antimicrobial treatment. The increasing reports of the emergence of resistant strains and undefined disease burden signify the critical need for an inexpensive, reliable, easy-to-use, and highly sensitive diagnostic test for typhoid fever. Utilizing S. typhi-specific and immunogenic antigens in sero-diagnostic assays could lead to precise diagnosis of acute typhoid and prompt treatment. In this study, we report cloning, expression, and purification of recombinant Cytolethal distending toxin subunit B (CdtB) of S. typhi, which is reported to be highly specific, immunogenic, and expressed only upon S. typhi infection. We further evaluated the purified recombinant CdtB for its diagnostic potential in an IgM-based indirect ELISA format using 33 human samples. Twenty-one serum samples from blood culture confirmed cases (n = 21) of typhoid and 12 samples from healthy controls (n = 12) were tested. The assay showed sensitivity of 100% and specificity of 83.3% respectively with positive and negative predictive values of 91.3 and 100% respectively. Efficient detection of specific IgM antibodies indicates that CdtB could be highly valuable in sero-diagnosis of acute typhoid and rapid screening of clinical samples.
Collapse
Affiliation(s)
- Tarang Sharma
- Centre for Bio-design & Diagnostics, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Chandresh Sharma
- Centre for Bio-design & Diagnostics, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Anurag Sankhyan
- Centre for Bio-design & Diagnostics, Translational Health Science and Technology Institute, Faridabad, Haryana, India.,Central Research Institute, Kasauli, Himachal Pradesh, India
| | - Sanjiv Pal Bedi
- Department of Experimental Medicine & Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Shinjini Bhatnagar
- Paediatric Biology Centre, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Navin Khanna
- International Centre for Genetic Engineering & Biotechnology, New Delhi, India
| | - Vikas Gautam
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Sunil Sethi
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Sudhanshu Vrati
- Regional Centre for Biotechnology, Faridabad, Haryana, India
| | - Ashutosh Tiwari
- Centre for Bio-design & Diagnostics, Translational Health Science and Technology Institute, Faridabad, Haryana, India. .,Department of Experimental Medicine & Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India.
| |
Collapse
|
11
|
Rozentsvet OA, Nesterov VN, Bogdanova ES, Tabalenkova GN, Zakhozhiy IG, Popov AV. Effect of Saline Soils on the Functional State of Species of the Genus Artemisia. BIOL BULL+ 2019. [DOI: 10.1134/s1062359019030099] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
12
|
Javanshad R, Honarvar E, Venter AR. Addition of Serine Enhances Protein Analysis by DESI-MS. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:694-703. [PMID: 30771107 DOI: 10.1007/s13361-018-02129-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 12/21/2018] [Accepted: 12/27/2018] [Indexed: 05/18/2023]
Abstract
Previous studies have suggested that the loss in sensitivity of DESI-MS for large molecules such as proteins is due to the poor dissolution during the short time scale of desorption and ionization. An investigation into the effect of serine as a solvent additive leads to the interesting observation that there is a concentration-dependent improvement in protein signal intensity when micromolar to low millimolar concentrations of serine is combined with a suitable co-additive in DESI spray. This effect, however, was not observed during similar ESI-MS experiments, where the same solvents and proteins were sprayed directly into the MS inlet. This suggests that the mechanism of signal improvement in DESI is associated with the desorption step of proteins, possibly by facilitating dissolution or improving solubility of proteins on the surface in the solvent micro-layer formed during DESI. Other than poor dissolution, cation adduction such as by sodium ions is also a major contributing factor to the mass-dependent loss in sensitivity in both ESI and DESI, leading to an increase in limits of detection for larger proteins. The adduction becomes a more pressing issue in native-state studies of proteins, as lower charge states are more susceptible to adduction. Previous studies have shown that addition of amino acids to the working spray solution during ESI-MS reduces sodium adduction and can help in stabilization of native-state proteins. Similar to the observed reduction in sodium adducts during native-state ESI-MS, when serine is added to the desorbing spray in DESI-MS, the removal of up to 10 mM NaCl is shown. A selection of proteins with high and low pI and molecular weights was analyzed to investigate the effects of serine on signal intensity by improvements in protein solubility and adduct removal. Graphical Abstract.
Collapse
Affiliation(s)
- Roshan Javanshad
- Department of Chemistry, Western Michigan University, Kalamazoo, MI, 49008-5413, USA
| | - Elahe Honarvar
- Department of Chemistry, Western Michigan University, Kalamazoo, MI, 49008-5413, USA
| | - Andre R Venter
- Department of Chemistry, Western Michigan University, Kalamazoo, MI, 49008-5413, USA.
| |
Collapse
|
13
|
Anumalla B, Prabhu NP. Glutamate Induced Thermal Equilibrium Intermediate and Counteracting Effect on Chemical Denaturation of Proteins. J Phys Chem B 2018; 122:1132-1144. [PMID: 29272129 DOI: 10.1021/acs.jpcb.7b10561] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
When organisms are subjected to stress conditions, one of their adaptive responses is accumulation of small organic molecules called osmolytes. These osmolytes affect the structure and stability of the biological macromolecules including proteins. The present study examines the effect of a negatively charged amino acid osmolyte, glutamate (Glu), on two model proteins, ribonuclease A (RNase A) and α-lactalbumin (α-LA), which have positive and negative surface charges at pH 7, respectively. These proteins follow two-state unfolding transitions during both heat and chemical induced denaturation processes. The addition of Glu stabilizes the proteins against temperature and induces an early equilibrium intermediate during unfolding. The stability is found to be enthalpy-driven, and the free energy of stabilization is more for α-LA compared to RNase A. The decrease in the partial molar volume and compressibility of both of the proteins in the presence of Glu suggests that the proteins attain a more compact state through surface hydration which could provide a more stable conformation. This is also supported by molecule dynamic simulation studies which demonstrate that the water density around the proteins is increased upon the addition of Glu. Further, the intermediates could be completely destabilized by lower concentrations (∼0.5 M) of guanidinium chloride and salt. However, urea subverts the Glu-induced intermediate formed by α-LA, whereas it only slightly destabilizes in the case of RNase A which has a positive surface charge and could possess charge-charge interactions with Glu. This suggests that, apart from hydration, columbic interactions might also contribute to the stability of the intermediate. Gdm-induced denaturation of RNase A and α-LA in the absence and the presence of Glu at different temperatures was carried out. These results also show the Glu-induced stabilization of both of the proteins; however, all of the unfolding transitions followed two-state transitions during chemical denaturation. The extent of stability exerted by Glu is higher for RNase A at higher temperature, whereas it provides more stability for α-LA at lower temperature. Thus, the experiments indicate that Glu induces a thermal equilibrium intermediate and increases the thermodynamic stability of proteins irrespective of their surface charges. The extent of stability varies between the proteins in a temperature-dependent manner.
Collapse
Affiliation(s)
- Bramhini Anumalla
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad , Hyderabad 500 046, India
| | - N Prakash Prabhu
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad , Hyderabad 500 046, India
| |
Collapse
|
14
|
Rani A, Venkatesu P. Changing relations between proteins and osmolytes: a choice of nature. Phys Chem Chem Phys 2018; 20:20315-20333. [DOI: 10.1039/c8cp02949k] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The stabilization and destabilization of the protein in the presence of any additive is mainly attributed to its preferential exclusion from protein surface and its preferential binding to the protein surface, respectively.
Collapse
Affiliation(s)
- Anjeeta Rani
- Department of Chemistry
- University of Delhi
- Delhi 110 007
- India
| | | |
Collapse
|
15
|
Malo de Molina P, Alvarez F, Frick B, Wildes A, Arbe A, Colmenero J. Investigation of the dynamics of aqueous proline solutions using neutron scattering and molecular dynamics simulations. Phys Chem Chem Phys 2017; 19:27739-27754. [PMID: 28984889 DOI: 10.1039/c7cp05474b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We applied quasielastic neutron scattering (QENS) techniques to samples with two different contrasts (deuterated solute/hydrogenated solvent and the opposite label) to selectively study the component dynamics of proline/water solutions. Results on diluted and concentrated solutions (31 and 6 water molecules/proline molecule, respectively) were analyzed in terms of the susceptibility and considering a recently proposed model for water dynamics [Arbe et al., Phys. Rev. Lett., 2016, 117, 185501] which includes vibrations and the convolution of localized motions and diffusion. We found that proline molecules not only reduce the average diffusion coefficient of water but also extend the time/frequency range of the crossover region ('cage') between the vibrations and purely diffusive behavior. For the high proline concentration we also found experimental evidence of water heterogeneous dynamics and a distribution of diffusion coefficients. Complementary molecular dynamics simulations show that water molecules start to perform rotational diffusion when they escape the cage regime but before the purely diffusive behavior is established. The rotational diffusion regime is also retarded by the presence of proline molecules. On the other hand, a strong coupling between proline and water diffusive dynamics which persists with decreasing temperature is directly observed using QENS. Not only are the temperature dependences of the diffusion coefficients of both components the same, but their absolute values also approach each other with increasing proline concentration. We compared our results with those reported using other techniques, in particular using dielectric spectroscopy (DS). A simple approach based on molecular hydrodynamics and a molecular treatment of DS allows rationalizing the a priori puzzling inconsistency between QENS and dielectric results regarding the dynamic coupling of the two components. The interpretation proposed is based on general grounds and therefore should be applicable to other biomolecular solutions.
Collapse
Affiliation(s)
- Paula Malo de Molina
- Centro de Física de Materiales (CFM) (CSIC-UPV/EHU) - Materials Physics Center (MPC), Paseo Manuel de Lardizabal 5, 20018 San Sebastián, Spain.
| | | | | | | | | | | |
Collapse
|
16
|
Improvement in the production of the human recombinant enzyme N-acetylgalactosamine-6-sulfatase (rhGALNS) in Escherichia coli using synthetic biology approaches. Sci Rep 2017; 7:5844. [PMID: 28724898 PMCID: PMC5517531 DOI: 10.1038/s41598-017-06367-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 06/20/2017] [Indexed: 01/16/2023] Open
Abstract
Previously, we demonstrated production of an active recombinant human N-acetylgalactosamine-6-sulfatase (rhGALNS) enzyme in Escherichia coli as a potential therapeutic alternative for mucopolysaccharidosis IVA. However, most of the rhGALNS produced was present as protein aggregates. Here, several methods were investigated to improve production and activity of rhGALNS. These methods involved the use of physiologically-regulated promoters and alternatives to improve protein folding including global stress responses (osmotic shock), overexpression of native chaperones, and enhancement of cytoplasmic disulfide bond formation. Increase of rhGALNS activity was obtained when a promoter regulated under σs was implemented. Additionally, improvements were observed when osmotic shock was applied. Noteworthy, overexpression of chaperones did not have any effect on rhGALNS activity, suggesting that the effect of osmotic shock was probably due to a general stress response and not to the action of an individual chaperone. Finally, it was observed that high concentrations of sucrose in conjunction with the physiological-regulated promoter proUmod significantly increased the rhGALNS production and activity. Together, these results describe advances in the current knowledge on the production of human recombinant enzymes in a prokaryotic system such as E. coli, and could have a significant impact on the development of enzyme replacement therapies for lysosomal storage diseases.
Collapse
|
17
|
Qu H, Yan H, Lu H, Donkin SS, Ajuwon KM. Heat stress in pigs is accompanied by adipose tissue-specific responses that favor increased triglyceride storage. J Anim Sci 2017; 94:1884-96. [PMID: 27285686 DOI: 10.2527/jas.2015-0084] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Heat stress (HS) negatively affects all aspects of performance in pigs. Although certain tissue-specific responses in the liver, skeletal muscle, and intestine are known, there is paucity of information on responses within the adipose tissue. Therefore, the objective of this study was to delineate adipose tissue responses during HS in pigs. Thirty crossbred (Ossabaw × Duroc × Landrace) pigs were assigned to 3 treatments for 7 d. Treatments were 1) control and libitum fed (CON) with room temperature set at 20°C ± 1°C, 2) pair fed (PF) with room temperature as the CON treatment but pair fed to HS pigs, and 3) HS with room temperature 35°C ± 1°C and ad libitum access to feed. Compared with CON pigs, HS pigs had decreased feed intake and elevated skin temperature and respiration rate ( < 0.01). Blood urea nitrogen was higher ( = 0.01) in HS pigs compared with CON pigs only in males. In both subcutaneous and mesenteric adipose tissue, mRNA abundance of phosphoenolpyruvate carboxykinase (PCK1) was more elevated ( < 0.01) in HS groups compared with the CON and PF groups. Heat stress also caused increased heat shock protein 70 (HSP70; = 0.067) and CCAT/enhancer-binding homologous protein (CHOP) content ( < 0.05) in the mesenteric fat compared with the CON treatment. In conclusion, induction of PCK1 expression in adipose tissue by HS suggests elevated glyceroneogenesis might be involved in the increased fat storage in pigs under HS.
Collapse
|
18
|
Wu Y, Teng N, Li S. Effects of macromolecular crowding and osmolyte on human Tau fibrillation. Int J Biol Macromol 2016; 90:27-36. [DOI: 10.1016/j.ijbiomac.2015.11.091] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 11/13/2015] [Accepted: 11/29/2015] [Indexed: 10/22/2022]
|
19
|
Fonin AV, Uversky VN, Kuznetsova IM, Turoverov KK. Protein folding and stability in the presence of osmolytes. Biophysics (Nagoya-shi) 2016. [DOI: 10.1134/s0006350916020056] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
20
|
In vitro refolding with simultaneous purification of recombinant human parathyroid hormone (rhPTH 1–34) from Escherichia coli directed by protein folding size exclusion chromatography (PF-SEC): implication of solution additives and their role on aggregates and renaturation. Anal Bioanal Chem 2015; 408:217-29. [DOI: 10.1007/s00216-015-9097-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 10/01/2015] [Indexed: 11/26/2022]
|
21
|
Singh A, Upadhyay V, Upadhyay AK, Singh SM, Panda AK. Protein recovery from inclusion bodies of Escherichia coli using mild solubilization process. Microb Cell Fact 2015; 14:41. [PMID: 25889252 PMCID: PMC4379949 DOI: 10.1186/s12934-015-0222-8] [Citation(s) in RCA: 299] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 03/06/2015] [Indexed: 11/13/2022] Open
Abstract
Formation of inclusion bodies in bacterial hosts poses a major challenge for large scale recovery of bioactive proteins. The process of obtaining bioactive protein from inclusion bodies is labor intensive and the yields of recombinant protein are often low. Here we review the developments in the field that are targeted at improving the yield, as well as quality of the recombinant protein by optimizing the individual steps of the process, especially solubilization of the inclusion bodies and refolding of the solubilized protein. Mild solubilization methods have been discussed which are based on the understanding of the fact that protein molecules in inclusion body aggregates have native-like structure. These methods solubilize the inclusion body aggregates while preserving the native-like protein structure. Subsequent protein refolding and purification results in high recovery of bioactive protein. Other parameters which influence the overall recovery of bioactive protein from inclusion bodies have also been discussed. A schematic model describing the utility of mild solubilization methods for high throughput recovery of bioactive protein has also been presented.
Collapse
Affiliation(s)
- Anupam Singh
- Product Development Cell, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| | - Vaibhav Upadhyay
- Product Development Cell, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| | - Arun Kumar Upadhyay
- Product Development Cell, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| | - Surinder Mohan Singh
- Product Development Cell, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| | - Amulya Kumar Panda
- Product Development Cell, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
22
|
Slama I, Abdelly C, Bouchereau A, Flowers T, Savouré A. Diversity, distribution and roles of osmoprotective compounds accumulated in halophytes under abiotic stress. ANNALS OF BOTANY 2015; 115:433-47. [PMID: 25564467 PMCID: PMC4332610 DOI: 10.1093/aob/mcu239] [Citation(s) in RCA: 358] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 09/19/2014] [Accepted: 10/21/2014] [Indexed: 05/19/2023]
Abstract
BACKGROUND AND AIMS Osmolytes are low-molecular-weight organic solutes, a broad group that encompasses a variety of compounds such as amino acids, tertiary sulphonium and quaternary ammonium compounds, sugars and polyhydric alcohols. Osmolytes are accumulated in the cytoplasm of halophytic species in order to balance the osmotic potential of the Na(+) and Cl(-) accumulated in the vacuole. The advantages of the accumulation of osmolytes are that they keep the main physiological functions of the cell active, the induction of their biosynthesis is controlled by environmental cues, and they can be synthesized at all developmental stages. In addition to their role in osmoregulation, osmolytes have crucial functions in protecting subcellular structures and in scavenging reactive oxygen species. SCOPE This review discusses the diversity of osmolytes among halophytes and their distribution within taxonomic groups, the intrinsic and extrinsic factors that influence their accumulation, and their role in osmoregulation and osmoprotection. Increasing the osmolyte content in plants is an interesting strategy to improve the growth and yield of crops upon exposure to salinity. Examples of transgenic plants as well as exogenous applications of some osmolytes are also discussed. Finally, the potential use of osmolytes in protein stabilization and solvation in biotechnology, including the pharmaceutical industry and medicine, are considered.
Collapse
Affiliation(s)
- Inès Slama
- Laboratoire des Plantes Extremophiles, Centre de Biotechnologie de Borj-Cedria (CBBC), BP 901, Hammam-Lif 2050, Tunisia, UMR 1349 IGEPP, INRA/Agrocampus Ouest/Université de Rennes 1, Domaine de la Motte, BP 35327, 35653 Le Rheu Cedex, France, School of Life Sciences, University of Sussex, Falmer, Brighton, Sussex BN1 9QG, UK and Sorbonne Universités, UPMC Université Paris 06, Adaptation de Plantes aux Contraintes Environnementales, URF5, Case 156, 4 place Jussieu, F-75252 Paris cedex 05, France
| | - Chedly Abdelly
- Laboratoire des Plantes Extremophiles, Centre de Biotechnologie de Borj-Cedria (CBBC), BP 901, Hammam-Lif 2050, Tunisia, UMR 1349 IGEPP, INRA/Agrocampus Ouest/Université de Rennes 1, Domaine de la Motte, BP 35327, 35653 Le Rheu Cedex, France, School of Life Sciences, University of Sussex, Falmer, Brighton, Sussex BN1 9QG, UK and Sorbonne Universités, UPMC Université Paris 06, Adaptation de Plantes aux Contraintes Environnementales, URF5, Case 156, 4 place Jussieu, F-75252 Paris cedex 05, France
| | - Alain Bouchereau
- Laboratoire des Plantes Extremophiles, Centre de Biotechnologie de Borj-Cedria (CBBC), BP 901, Hammam-Lif 2050, Tunisia, UMR 1349 IGEPP, INRA/Agrocampus Ouest/Université de Rennes 1, Domaine de la Motte, BP 35327, 35653 Le Rheu Cedex, France, School of Life Sciences, University of Sussex, Falmer, Brighton, Sussex BN1 9QG, UK and Sorbonne Universités, UPMC Université Paris 06, Adaptation de Plantes aux Contraintes Environnementales, URF5, Case 156, 4 place Jussieu, F-75252 Paris cedex 05, France
| | - Tim Flowers
- Laboratoire des Plantes Extremophiles, Centre de Biotechnologie de Borj-Cedria (CBBC), BP 901, Hammam-Lif 2050, Tunisia, UMR 1349 IGEPP, INRA/Agrocampus Ouest/Université de Rennes 1, Domaine de la Motte, BP 35327, 35653 Le Rheu Cedex, France, School of Life Sciences, University of Sussex, Falmer, Brighton, Sussex BN1 9QG, UK and Sorbonne Universités, UPMC Université Paris 06, Adaptation de Plantes aux Contraintes Environnementales, URF5, Case 156, 4 place Jussieu, F-75252 Paris cedex 05, France
| | - Arnould Savouré
- Laboratoire des Plantes Extremophiles, Centre de Biotechnologie de Borj-Cedria (CBBC), BP 901, Hammam-Lif 2050, Tunisia, UMR 1349 IGEPP, INRA/Agrocampus Ouest/Université de Rennes 1, Domaine de la Motte, BP 35327, 35653 Le Rheu Cedex, France, School of Life Sciences, University of Sussex, Falmer, Brighton, Sussex BN1 9QG, UK and Sorbonne Universités, UPMC Université Paris 06, Adaptation de Plantes aux Contraintes Environnementales, URF5, Case 156, 4 place Jussieu, F-75252 Paris cedex 05, France
| |
Collapse
|
23
|
Borzova VA, Markossian KA, Kara DA, Chebotareva NA, Makeeva VF, Poliansky NB, Muranov KO, Kurganov BI. Quantification of anti-aggregation activity of chaperones: a test-system based on dithiothreitol-induced aggregation of bovine serum albumin. PLoS One 2013; 8:e74367. [PMID: 24058554 PMCID: PMC3769246 DOI: 10.1371/journal.pone.0074367] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2012] [Accepted: 08/03/2013] [Indexed: 12/22/2022] Open
Abstract
The methodology for quantification of the anti-aggregation activity of protein and chemical chaperones has been elaborated. The applicability of this methodology was demonstrated using a test-system based on dithiothreitol-induced aggregation of bovine serum albumin at 45°C as an example. Methods for calculating the initial rate of bovine serum albumin aggregation (v agg) have been discussed. The comparison of the dependences of v agg on concentrations of intact and cross-linked α-crystallin allowed us to make a conclusion that a non-linear character of the dependence of v agg on concentration of intact α-crystallin was due to the dynamic mobility of the quaternary structure of α-crystallin and polydispersity of the α-crystallin-target protein complexes. To characterize the anti-aggregation activity of the chemical chaperones (arginine, arginine ethyl ester, arginine amide and proline), the semi-saturation concentration [L]0.5 was used. Among the chemical chaperones studied, arginine ethyl ester and arginine amide reveal the highest anti-aggregation activity ([L]0.5 = 53 and 58 mM, respectively).
Collapse
Affiliation(s)
- Vera A. Borzova
- Department of Molecular Organization of Biological Structures, Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow, Russia
| | - Kira A. Markossian
- Department of Molecular Organization of Biological Structures, Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow, Russia
| | - Dmitriy A. Kara
- Department of Biochemistry, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Natalia A. Chebotareva
- Department of Molecular Organization of Biological Structures, Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow, Russia
| | - Valentina F. Makeeva
- Department of Molecular Organization of Biological Structures, Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow, Russia
| | - Nikolay B. Poliansky
- Department of Chemical and Biological Processes Kinetics, Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Konstantin O. Muranov
- Department of Chemical and Biological Processes Kinetics, Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Boris I. Kurganov
- Department of Molecular Organization of Biological Structures, Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
24
|
Bhavsar RD, Prasad S, Roy I. Effect of osmolytes on the fibrillation of HypF-N. Biochimie 2013; 95:2190-3. [PMID: 23911865 DOI: 10.1016/j.biochi.2013.07.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 07/22/2013] [Indexed: 10/26/2022]
Abstract
We have studied the effect of a series of stabilizing and destabilizing osmolytes on the fibrillation pattern of a model amyloidogenic protein, HypF-N. Under mildly denaturing conditions, HypF-N forms cross β-sheet structures, characteristic of amyloid fibrils. In the presence of all stabilizing osmolytes except proline, fibrillation of HypF-N is inhibited. Notably, fibrillation kinetics is retarded at subdenaturing concentrations of chaotropes. In case of proline, fibrillation of HypF-N is accelerated. Thus, the changes during exposure of a protein to denaturing conditions in the presence of osmolyes cannot be extrapolated from their role as anti-fibrillation agents.
Collapse
Affiliation(s)
- Rupen D Bhavsar
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab 160 062, India
| | | | | |
Collapse
|
25
|
Tretyakova T, Shushanyan M, Partskhaladze T, Makharadze M, van Eldik R, Khoshtariya DE. Simplicity within the complexity: bilateral impact of DMSO on the functional and unfolding patterns of α-chymotrypsin. Biophys Chem 2013; 175-176:17-27. [PMID: 23524288 DOI: 10.1016/j.bpc.2013.02.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2013] [Revised: 02/05/2013] [Accepted: 02/09/2013] [Indexed: 10/27/2022]
Abstract
New understanding of the fundamental links between protein stability, conformational flexibility and function, can be gained through synergic studies on their catalytic and folding/unfolding properties under the influence of stabilizing/destabilizing additives. We explored an impact of dimethyl sulfoxide (DMSO), the moderate effector of multilateral action, on the kinetic (functional) and thermodynamic (thermal unfolding) patterns of a hydrolytic enzyme, α-chymotrypsin (α-CT), over a wide range of additive concentrations, 0-70% (v/v). Both the calorimetric and kinetic data exhibited rich behavior pointing to the complex interplay of global/local stability (and flexibility) patterns. The complex action of DMSO is explained through the negative and positive preferential solvation motifs that prevail for the extreme opposite, native-like and unfolded states, respectively, implying essential stabilization of compact domains by enhancement of interfacial water networks and destabilization of a flexible active site by direct binding of DMSO to the unoccupied specific positions intended for elongated polypeptide substrates.
Collapse
Affiliation(s)
- Tatyana Tretyakova
- Institute for Biophysics and Bionanosciences at the Department of Physics, I. Javakhishvili Tbilisi State University, I. Chavchavadze Ave. 3, 0128 Tbilisi, Georgia
| | | | | | | | | | | |
Collapse
|
26
|
Song W, Wang F, Savini M, Ake A, di Ronza A, Sardiello M, Segatori L. TFEB regulates lysosomal proteostasis. Hum Mol Genet 2013; 22:1994-2009. [PMID: 23393155 DOI: 10.1093/hmg/ddt052] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Loss-of-function diseases are often caused by destabilizing mutations that lead to protein misfolding and degradation. Modulating the innate protein homeostasis (proteostasis) capacity may lead to rescue of native folding of the mutated variants, thereby ameliorating the disease phenotype. In lysosomal storage disorders (LSDs), a number of highly prevalent alleles have missense mutations that do not impair the enzyme's catalytic activity but destabilize its native structure, resulting in the degradation of the misfolded protein. Enhancing the cellular folding capacity enables rescuing the native, biologically functional structure of these unstable mutated enzymes. However, proteostasis modulators specific for the lysosomal system are currently unknown. Here, we investigate the role of the transcription factor EB (TFEB), a master regulator of lysosomal biogenesis and function, in modulating lysosomal proteostasis in LSDs. We show that TFEB activation results in enhanced folding, trafficking and lysosomal activity of a severely destabilized glucocerebrosidase (GC) variant associated with the development of Gaucher disease (GD), the most common LSD. TFEB specifically induces the expression of GC and of key genes involved in folding and lysosomal trafficking, thereby enhancing both the pool of mutated enzyme and its processing through the secretory pathway. TFEB activation also rescues the activity of a β-hexosaminidase mutant associated with the development of another LSD, Tay-Sachs disease, thus suggesting general applicability of TFEB-mediated proteostasis modulation to rescue destabilizing mutations in LSDs. In summary, our findings identify TFEB as a specific regulator of lysosomal proteostasis and suggest that TFEB may be used as a therapeutic target to rescue enzyme homeostasis in LSDs.
Collapse
Affiliation(s)
- Wensi Song
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX 77005, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Roman SG, Chebotareva NA, Kurganov BI. Concentration dependence of chaperone-like activities of α-crystallin, αB-crystallin and proline. Int J Biol Macromol 2012; 50:1341-5. [DOI: 10.1016/j.ijbiomac.2012.03.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 03/16/2012] [Accepted: 03/22/2012] [Indexed: 01/03/2023]
|
28
|
Chemical assistance in refolding of bacterial inclusion bodies. Biochem Res Int 2011; 2011:631607. [PMID: 21822494 PMCID: PMC3148444 DOI: 10.1155/2011/631607] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Accepted: 05/27/2011] [Indexed: 11/17/2022] Open
Abstract
Escherichia coli is one of the most widely used hosts for the production of recombinant proteins but insoluble expression of heterologous proteins is a major bottleneck in production of recombinant proteins in E. coli. In vitro refolding of inclusion body into proteins with native conformations is a solution for this problem but there is a need for optimization of condition for each protein specifically. Several approaches have been described for in vitro refolding; most of them involve the use of additives for assisting correct folding. Cosolutes play a major role in refolding process and can be classified according to their function as aggregation suppressors and folding enhancers. This paper presents a review of additives that are used in refolding process of insoluble recombinant proteins in small scale and industrial processes.
Collapse
|
29
|
Kopecká J, Krijt J, Raková K, Kožich V. Restoring assembly and activity of cystathionine β-synthase mutants by ligands and chemical chaperones. J Inherit Metab Dis 2011; 34:39-48. [PMID: 20490928 PMCID: PMC3026675 DOI: 10.1007/s10545-010-9087-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Revised: 02/28/2010] [Accepted: 03/19/2010] [Indexed: 11/28/2022]
Abstract
Misfolding and aggregation of mutant enzymes have been proposed to play role in the pathogenesis of homocystinuria due to cystathionine β-synthase (CBS) deficiency. Chemical chaperones have been recently shown to facilitate proper assembly of several CBS mutants. To asses the number of patients that may respond to chaperone therapy, we examined the effect of selected CBS ligands and osmolytes on assembly and activity of 27 CBS mutants that represent 70% of known CBS alleles. The mutant enzymes were expressed in a bacterial system, and their properties were assessed by native Western blotting and sensitive liquid chromatography tandem mass spectrometry (LC-MS/MS) assay, respectively. We studied the chaperoning activity of δ-aminolevulinic acid (δ-ALA)-a heme precursor-and of three osmolytes betaine, 2-aminoethanesulfonic acid (taurine), and glycerol. Fourteen mutants responded by at least 30% increase in the amount of correctly assembled tetramers and enzymatic activity to the coexpressional presence of either 0.5 mM δ-ALA, 100 mM betaine, and/or 750 mM glycerol. Eight of these mutants (p.R266K, p.P49L, p.R125Q, p.K102N, p.R369C, p.V180A, p.P78R, p.S466L) were rescuable by all of these three substances. Four mutants showed increased formation of tetramers that was not accompanied by changes in activity. Topology of mutations appeared to determine the chaperone responsiveness, as 11 of 14 solvent-exposed mutations were substantially more responsive than three of 13 buried mutations. This study identified chaperone-responsive mutants that represent 56 of 713 known patient-derived CBS alleles and may serve as a basis for exploring pharmacological approaches aimed at correcting misfolding in homocystinuria.
Collapse
Affiliation(s)
- Jana Kopecká
- Institute of Inherited Metabolic Disorders, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Ke Karlovu 2, 128 08 Praha 2, Czech Republic
| | - Jakub Krijt
- Institute of Inherited Metabolic Disorders, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Ke Karlovu 2, 128 08 Praha 2, Czech Republic
| | - Kateřina Raková
- Institute of Inherited Metabolic Disorders, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Ke Karlovu 2, 128 08 Praha 2, Czech Republic
| | - Viktor Kožich
- Institute of Inherited Metabolic Disorders, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Ke Karlovu 2, 128 08 Praha 2, Czech Republic
| |
Collapse
|
30
|
Eronina TB, Chebotareva NA, Bazhina SG, Makeeva VF, Kleymenov SY, Kurganov BI. Effect of proline on thermal inactivation, denaturation and aggregation of glycogen phosphorylase b from rabbit skeletal muscle. Biophys Chem 2009; 141:66-74. [DOI: 10.1016/j.bpc.2008.12.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2008] [Revised: 12/22/2008] [Accepted: 12/22/2008] [Indexed: 11/25/2022]
|
31
|
Lu D, Liu Z. Oscillatory molecular driving force for protein folding at high concentration: a molecular simulation. J Phys Chem B 2008; 112:2686-93. [PMID: 18266355 DOI: 10.1021/jp076940o] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This paper presents a Langevin dynamics simulation that suggests a novel way to fold protein at high concentration, a fundamental issue in neurodegenerative diseases in vivo and the production of recombinant proteins in vitro. The simulation indicates that the folding of a coarse-grained beta-barrel protein at high concentration follows the "collapse-rearrangement" mechanism but it yields products of various forms, including single proteins in the native, misfolded, and uncollapsed forms and protein aggregates. Misfolded and uncollapased proteins are the "nucleus" of the aggregates that also encapsulate some correctly folded proteins (native proteins). An optimum hydrophobic interaction strength (epsilon*(p)) between the hydrophobic beads of the model protein, which results from a compromise between the kinetics of collapse and rearrangement, is identified for use in increasing the rate of folding over aggregating. Increased protein concentration hinders the structural transitions in both collapse and rearrangement and thus favors aggregation. A new method for protein folding at high concentration is proposed, which uses an oscillatory molecular driving force (epsilon*(p)) to promote the dissociation of aggregates in the low epsilon*(p) regime while promoting folding at a high epsilon*(p). The advantage of this method in enhancing protein folding while depressing aggregation is illustrated by a comparison with the methods based on direct dilution or applying a denaturant gradient.
Collapse
Affiliation(s)
- Diannan Lu
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | | |
Collapse
|
32
|
Bajorunaite E, Sereikaite J, Bumelis VA. l-Arginine Suppresses Aggregation of Recombinant Growth Hormones in Refolding Process from E. coli Inclusion Bodies. Protein J 2007; 26:547-55. [PMID: 17823856 DOI: 10.1007/s10930-007-9096-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
L-Arginine was used to suppress the aggregation of recombinant mink and porcine growth hormones in the refolding process from E. coli inclusion bodies by solubilization-dilution protocol at high protein concentration and pH 8.0. The influence of L-arginine concentration on the renaturation yield of both proteins was investigated. L-Arginine effectively suppressed the precipitation of growth hormones during dilution, but did not inhibit soluble oligomers formation. The results of mink and porcine growth hormones purification from 4 g of biomass are presented.
Collapse
Affiliation(s)
- Egle Bajorunaite
- Department of Chemistry and Bioengineering, Faculty of Fundamental Sciences, Vilnius Gediminas Technical University, Sauletekio al. 11, 10223, Vilnius-40, Lithuania
| | | | | |
Collapse
|
33
|
McLain SE, Soper AK, Terry AE, Watts A. Structure and Hydration of l-Proline in Aqueous Solutions. J Phys Chem B 2007; 111:4568-80. [PMID: 17419611 DOI: 10.1021/jp068340f] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The structure and hydration of L-proline in aqueous solution have been investigated using a combination of neutron diffraction with isotopic substitution, empirical potential structure refinement modeling, and small-angle neutron scattering at three concentrations, 1:10, 1:15, and 1:20 proline/water mole ratios. In each solution the carboxylate oxygen atoms from proline accept less than two hydrogen bonds from the surrounding water solvent and the amine hydrogen atoms donate less than one hydrogen bond to the surrounding water molecules. The solute-solute radial distribution functions indicate relatively weak interactions between proline molecules, and significant clustering or aggregation of proline is absent at all these concentrations. The spatial density distributions for the hydration of the COO- group in proline show a similar shape to that found previously in L-glutamic acid in aqueous solution but with a reduced coordination number.
Collapse
Affiliation(s)
- Sylvia E McLain
- ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0QX, United Kingdom.
| | | | | | | |
Collapse
|
34
|
Xia Y, Park YD, Mu H, Zhou HM, Wang XY, Meng FG. The protective effects of osmolytes on arginine kinase unfolding and aggregation. Int J Biol Macromol 2007; 40:437-43. [PMID: 17173966 DOI: 10.1016/j.ijbiomac.2006.10.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2006] [Revised: 10/30/2006] [Accepted: 10/30/2006] [Indexed: 11/28/2022]
Abstract
Osmolytes are a series of different kinds of small molecules that can maintain the correct conformation of protein by acting as molecular chaperons. In this study, the protective effects of four compatible osmolytes, i.e., proline, sucrose, DMSO and glycerol, were studied during arginine kinase (EC 2.7.3.3) unfolding and aggregation. The results showed that all the osmolytes applied in this study obviously prevented AK unfolding and inactivation that was due to a GdnHCl denaturant by reducing the inactivation rate constants (k(i)), increasing the transition free energy changes (DeltaDeltaG(i)) and increasing the value for the midpoint of denaturation (C(m)). Furthermore, the osmolytes remarkably prevented AK aggregation in a concentration-dependent manner during AK refolding. Our results strongly indicated that osmolytes were not only metabolism substrates, but they were also important compounds with significant physiological protective functions for proteins, especially in some extremely harsh environments.
Collapse
Affiliation(s)
- Yong Xia
- College of Life Science, Shandong Agricultural University, Shandong, Taian 271018, PR China
| | | | | | | | | | | |
Collapse
|
35
|
Kim SH, Zhou HM, Yan YB. Effects of hydroxypropyl cyclodextrins on the reactivation of SDS-denatured aminoacylase. Int J Biol Macromol 2007; 40:76-82. [PMID: 16828862 DOI: 10.1016/j.ijbiomac.2006.05.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2006] [Revised: 05/19/2006] [Accepted: 05/29/2006] [Indexed: 11/21/2022]
Abstract
Cyclodextrins are natural-occurring circular oligosaccharides with an internal hydrophobic cavity and external hydrophilic edges. Because cyclodextrins bind with protein aromatic residues, they can prevent protein aggregation, and their ability to bind with detergents enables them to act as stripping reagents to release proteins from protein-detergent complexes. In this research, we investigated the effects of three hydroxypropyl cyclodextrins (HPCDs) on the refolding of aminoacylase from SDS-denatured states. It was found that the three HPCDs could effectively assist aminoacylase reactivation though they have different abilities. HP-gamma-CD, which has the largest cavity among the three HPCDs, was the most efficient one. Spectroscopic results further indicated that the secondary structure recovery of aminoacylase could be completed with the help of low concentrations of HPCDs. However, the activity of the released protein could not fully recover even though high concentrations of HPCDs were used. The concentration-dependent effects of HPCDs also indicated that cyclodextrins could also act as folding assistants in addition to acting as stripping reagents during the refolding of detergent-denatured proteins.
Collapse
Affiliation(s)
- Sung-Hye Kim
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing, China
| | | | | |
Collapse
|
36
|
Su JT, Kim SH, Yan YB. Dissecting the pretransitional conformational changes in aminoacylase I thermal denaturation. Biophys J 2006; 92:578-87. [PMID: 17071653 PMCID: PMC1751394 DOI: 10.1529/biophysj.106.093666] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Aminoacylase I (ACYI) catalyzes the stereospecific hydrolysis of L-acylamino acids and is generally assumed to be involved in the final step of the degradation of intracellular N-acetylated proteins. Apart from its crucial functions in intracellular amino acid metabolism, ACYI also has substantial commercial importance for the optical resolution of N-acylated DL-amino acids. As a zinc-dependent enzyme, ACYI is quite stable against heat-induced denaturation and can be regarded as a thermostable enzyme with an optimal temperature for activity of approximately 65 degrees C. In this research, the sequential events in ACYI thermal denaturation were investigated by a combination of spectroscopic methods and related resolution-enhancing techniques. Interestingly, the results from fluorescence and infrared (IR) spectroscopy clearly indicated that a pretransitional stage existed at temperatures from 50 degrees C to 66 degrees C. The thermal unfolding of ACYI might be a three-state process involving an aggregation-prone intermediate appearing at approximately 68 degrees C. The pretransitional structural changes involved the partial unfolding of the solvent-exposed beta-sheet structures and the transformation of about half of the Class I Trp fluorophores to Class II. Our results also suggested that the usage of resolution-enhancing techniques could provide valuable information of the step-wise unfolding of proteins.
Collapse
Affiliation(s)
- Jing-Tan Su
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing, China
| | | | | |
Collapse
|
37
|
Kim SH, Zhang J, Jiang Y, Zhou HM, Yan YB. Assisting the reactivation of guanidine hydrochloride-denatured aminoacylase by hydroxypropyl cyclodextrins. Biophys J 2006; 91:686-93. [PMID: 16632505 PMCID: PMC1483089 DOI: 10.1529/biophysj.106.081968] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2006] [Accepted: 04/06/2006] [Indexed: 11/18/2022] Open
Abstract
Cyclodextrin is a water-soluble circular oligosaccharide with a cylinder shape characterized by exterior hydrophilic rims and an interior hydrophobic cavity, which makes it an ideal additive to prevent proteins from aggregating during refolding. In this research, three hydroxypropyl cyclodextrins (HPCDs), HP-alpha-, beta-, and gamma-CD, were used to investigate the molecular mechanism of their effects on assisting aminoacylase refolding. The aggregation and reactivation experiments suggested that at moderate concentrations, HPCDs could suppress aggregation and assist aminoacylase refolding in a concentration-dependent manner, and HP-beta-CD was the most efficient of the three HPCDs. Low concentrations of HP-alpha-CD and high concentrations of HP-gamma-CD promoted off-pathway aggregation. Spectroscopic studies indicated that the hydrophobic exposure of the unstructured species in the refolded solutions was gradually reduced by the three HPCDs with the efficiency HP-beta-CD > HP-gamma-CD > HP-alpha-CD. Furthermore, the fast phase of aminoacylase reactivation was slowed down by the addition of 75 mM HP-beta- and gamma-CD, but no significant effect was observed for HP-alpha-CD. The dissimilarity in the effects of the three HPCDs suggested that the internal cavity size played a crucial role in their antiaggregation ability. Further analysis suggested that the observations might be much more complicated than expected because of the various types of interactions between cyclodextrins and proteins in addition to their ability to bind to protein aromatic residues.
Collapse
Affiliation(s)
- Sung-Hye Kim
- Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing 100084, Peoples Republic of China
| | | | | | | | | |
Collapse
|