1
|
Molecular bases of rice grain size and quality for optimized productivity. Sci Bull (Beijing) 2023; 68:314-350. [PMID: 36710151 DOI: 10.1016/j.scib.2023.01.026] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/30/2022] [Accepted: 01/16/2023] [Indexed: 01/19/2023]
Abstract
The accomplishment of further optimization of crop productivity in grain yield and quality is a great challenge. Grain size is one of the crucial determinants of rice yield and quality; all of these traits are typical quantitative traits controlled by multiple genes. Research advances have revealed several molecular and developmental pathways that govern these traits of agronomical importance. This review provides a comprehensive summary of these pathways, including those mediated by G-protein, the ubiquitin-proteasome system, mitogen-activated protein kinase, phytohormone, transcriptional regulators, and storage product biosynthesis and accumulation. We also generalize the excellent precedents for rice variety improvement of grain size and quality, which utilize newly developed gene editing and conventional gene pyramiding capabilities. In addition, we discuss the rational and accurate breeding strategies, with the aim of better applying molecular design to breed high-yield and superior-quality varieties.
Collapse
|
2
|
Liu J, Wu MW, Liu CM. Cereal Endosperms: Development and Storage Product Accumulation. ANNUAL REVIEW OF PLANT BIOLOGY 2022; 73:255-291. [PMID: 35226815 DOI: 10.1146/annurev-arplant-070221-024405] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The persistent triploid endosperms of cereal crops are the most important source of human food and animal feed. The development of cereal endosperms progresses through coenocytic nuclear division, cellularization, aleurone and starchy endosperm differentiation, and storage product accumulation. In the past few decades, the cell biological processes involved in endosperm formation in most cereals have been described. Molecular genetic studies performed in recent years led to the identification of the genes underlying endosperm differentiation, regulatory network governing storage product accumulation, and epigenetic mechanism underlying imprinted gene expression. In this article, we outline recent progress in this area and propose hypothetical models to illustrate machineries that control aleurone and starchy endosperm differentiation, sugar loading, and storage product accumulations. A future challenge in this area is to decipher the molecular mechanisms underlying coenocytic nuclear division, endosperm cellularization, and programmed cell death.
Collapse
Affiliation(s)
- Jinxin Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China;
| | - Ming-Wei Wu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China;
| | - Chun-Ming Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China;
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- School of Advanced Agricultural Sciences, Peking University, Beijing, China
| |
Collapse
|
3
|
A critical review on structural properties and formation mechanism of heterogeneous starch granules in cereal endosperm lacking starch branching enzyme. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105434] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
4
|
Li F, Chen X, Yu X, Chen M, Lu W, Wu Y, Xiong F. Novel insights into the effect of drought stress on the development of root and caryopsis in barley. PeerJ 2020; 8:e8469. [PMID: 32030325 PMCID: PMC6996498 DOI: 10.7717/peerj.8469] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 12/27/2019] [Indexed: 11/30/2022] Open
Abstract
Drought is a common natural disaster in barley production, which restricts the growth and development of barley roots and caryopses seriously, thereby decreasing yield and debasing grain quality. However, mechanisms for how drought stress affects barley caryopses and roots development under drought stress are unclear. In this paper, Suluomai1 was treated with drought from flowering to caryopses mature stage. The morphological and structural changes in roots growth and caryopses development of barley were investigated. Drought stress increased root/shoot ratio and eventually led to the 20.16% reduction of ear weight and 7.75% reduction of 1,000-grain weight by affecting the biomass accumulation of roots and caryopses. The barley roots under drought had more lateral roots while the vessel number and volume of roots decreased. Meanwhile, drought stress accelerated the maturation of caryopses, resulting in a decrease in the accumulation of starch but a significant increase of protein accumulation in barley endosperm. There was a significantly positive correlation (0.76) between the area of root vessel and the relative area of protein in endosperm cells under normal condition and drought increased the correlation coefficient (0.81). Transcriptome analysis indicated that drought induced differential expressions of genes in caryopses were mainly involved in encoding storage proteins and protein synthesis pathways. In general, drought caused changes in the morphology and structure of barley roots, and the roots conveyed stress signals to caryopses, inducing differential expression of genes related to protein biosynthesis, ultimately leading to the increase in the accumulation of endosperm protein. The results not only deepen the study on drought mechanism of barley, but also provide theoretical basis for molecular breeding, high-yield cultivation and quality improvement in barley.
Collapse
Affiliation(s)
- Fali Li
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Joint International Research Laboratory of Agriculture & Agri-Product Safety of the Ministry of Education/College of Biological Sciences and Technology, Yangzhou University, Yangzhou, China
| | - Xinyu Chen
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Joint International Research Laboratory of Agriculture & Agri-Product Safety of the Ministry of Education/College of Biological Sciences and Technology, Yangzhou University, Yangzhou, China
| | - Xurun Yu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Joint International Research Laboratory of Agriculture & Agri-Product Safety of the Ministry of Education/College of Biological Sciences and Technology, Yangzhou University, Yangzhou, China
| | - Mingxin Chen
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Joint International Research Laboratory of Agriculture & Agri-Product Safety of the Ministry of Education/College of Biological Sciences and Technology, Yangzhou University, Yangzhou, China
| | - Wenyi Lu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Joint International Research Laboratory of Agriculture & Agri-Product Safety of the Ministry of Education/College of Biological Sciences and Technology, Yangzhou University, Yangzhou, China
| | - Yunfei Wu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Joint International Research Laboratory of Agriculture & Agri-Product Safety of the Ministry of Education/College of Biological Sciences and Technology, Yangzhou University, Yangzhou, China
| | - Fei Xiong
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Joint International Research Laboratory of Agriculture & Agri-Product Safety of the Ministry of Education/College of Biological Sciences and Technology, Yangzhou University, Yangzhou, China
| |
Collapse
|
5
|
Chou HL, Tian L, Washida H, Fukuda M, Kumamaru T, Okita TW. The rice storage protein mRNAs as a model system for RNA localization in higher plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 284:203-211. [PMID: 31084873 DOI: 10.1016/j.plantsci.2019.04.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/09/2019] [Accepted: 04/15/2019] [Indexed: 06/09/2023]
Abstract
The transport and targeting of mRNAs to specific intracellular locations is a ubiquitous process in prokaryotic and eukaryotic organisms. Despite the prevalent nature of RNA localization in guiding development, differentiation, cellular movement and intracellular organization of biochemical activities, only a few examples exist in higher plants. Here, we summarize past studies on mRNA-based protein targeting to specific subdomains of the cortical endoplasmic reticulum (ER) using the rice storage protein mRNAs as a model. Such studies have demonstrated that there are multiple pathways of RNA localization to the cortical ER that are controlled by cis-determinants (zipcodes) on the mRNA. These zipcode sequences are recognized by specific RNA binding proteins organized into multi-protein complexes. The available evidence suggests mRNAs are transported to their destination sites by co-opting membrane trafficking factors. Lastly, we discuss the major gaps in our knowledge on RNA localization and how information on the targeting of storage protein mRNAs can be used to further our understanding on how plant mRNAs are organized into regulons to facilitate protein localization and formation of multi-protein complexes.
Collapse
Affiliation(s)
- Hong-Li Chou
- Institute of Biological Chemistry, Washington State University, Pullman, WA, 99164-6340, United States
| | - Li Tian
- Institute of Biological Chemistry, Washington State University, Pullman, WA, 99164-6340, United States
| | - Haruhiko Washida
- Institute of Biological Chemistry, Washington State University, Pullman, WA, 99164-6340, United States
| | - Masako Fukuda
- Institute of Biological Chemistry, Washington State University, Pullman, WA, 99164-6340, United States; Faculty of Agriculture, Kyushu University, 744 Motooka Nishi-ku, Fukuoka, 819-0395, Japan
| | - Toshihiro Kumamaru
- Faculty of Agriculture, Kyushu University, 744 Motooka Nishi-ku, Fukuoka, 819-0395, Japan
| | - Thomas W Okita
- Institute of Biological Chemistry, Washington State University, Pullman, WA, 99164-6340, United States.
| |
Collapse
|
6
|
Takaiwa F, Wakasa Y, Hayashi S, Kawakatsu T. An overview on the strategies to exploit rice endosperm as production platform for biopharmaceuticals. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 263:201-209. [PMID: 28818376 DOI: 10.1016/j.plantsci.2017.07.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 07/10/2017] [Accepted: 07/11/2017] [Indexed: 05/22/2023]
Abstract
Cereal seed has been utilized as production platform for high-value biopharmaceutical proteins. Especially, protein bodies (PBs) in seeds are not only natural specialized storage organs of seed storage proteins (SSPs), but also suitable intracellular deposition compartment for recombinant proteins. When various recombinant proteins were produced as secretory proteins by attaching N terminal ER signal peptide and C terminal KDEL endoplasmic reticulum (ER) retention signal or as fusion proteins with SSPs, high amounts of recombinant proteins can be predominantly accumulated in the PBs. Recombinant proteins bioencapsulated in PBs exhibit high resistance to digestive enzymes in gastrointestinal tract than other intracellular compartments and are highly stable at ambient temperature, thus allowing oral administration of PBs containing recombinant proteins as oral drugs or functional nutrients in cost-effective minimum processed formulation. In this review, we would like to address key factors determining accumulation levels of recombinant proteins in PBs. Understanding of bottle neck parts and improvement of specific deposition to PBs result in much higher levels of production of high quality recombinant proteins.
Collapse
Affiliation(s)
- Fumio Takaiwa
- Plant Molecular Farming Unit, Division of Biotechnology, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Kannondai 2-1-2, Tsukuba, Ibaraki 305-8602, Japan.
| | - Yuhya Wakasa
- Plant Molecular Farming Unit, Division of Biotechnology, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Kannondai 2-1-2, Tsukuba, Ibaraki 305-8602, Japan
| | - Shimpei Hayashi
- Plant Molecular Farming Unit, Division of Biotechnology, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Kannondai 2-1-2, Tsukuba, Ibaraki 305-8602, Japan
| | - Taiji Kawakatsu
- Plant Molecular Farming Unit, Division of Biotechnology, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Kannondai 2-1-2, Tsukuba, Ibaraki 305-8602, Japan
| |
Collapse
|
7
|
Fukuda M, Kawagoe Y, Murakami T, Washida H, Sugino A, Nagamine A, Okita TW, Ogawa M, Kumamaru T. The Dual Roles of the Golgi Transport 1 (GOT1B): RNA Localization to the Cortical Endoplasmic Reticulum and the Export of Proglutelin and α-Globulin from the Cortical ER to the Golgi. PLANT & CELL PHYSIOLOGY 2016; 57:2380-2391. [PMID: 27565205 DOI: 10.1093/pcp/pcw154] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 08/23/2016] [Indexed: 06/06/2023]
Abstract
The rice glup2 lines are characterized by their abnormally high levels of endosperm 57 kDa proglutelins and of the luminal chaperone binding protein (BiP), features characteristic of a defect within the endoplasmic reticulum (ER). To elucidate the underlying genetic basis, the glup2 locus was identified by map based cloning. DNA sequencing of the genomes of three glup2 alleles and wild type demonstrated that the underlying genetic basis was mutations in the Golgi transport 1 (GOT1B) coding sequence. This conclusion was further validated by restoration of normal proglutelin levels in a glup2 line complemented by a GOT1B gene. Microscopic analyses indicated the presence of proglutelin-α-globulin-containing intracisternal granules surrounded by prolamine inclusions within the ER lumen. As assessed by in situ reverse transcriptase polymerase chain reaction (RT-PCR) analysis of developing endosperm sections, prolamine and α-globulin RNAs were found to be mis-targeted from their usual sites on the protein body ER to the cisternal ER, the normal sites of proglutelin synthesis. Our results indicate that GLUP2/GOT1B has a dual role during rice endosperm development. It is required for localization of prolamine and α-globulin RNAs to the protein body ER and for efficient export of proglutelin and α-globulin proteins from the ER to the Golgi apparatus.
Collapse
Affiliation(s)
- Masako Fukuda
- Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan
| | - Yasushi Kawagoe
- National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8602, Japan
- Deceased
| | | | - Haruhiko Washida
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164-6340, USA
- Present address: U-TEC Corporation, 648-1 Matsukasa, Yamatokoriyama, Nara 639-1124, Japan
| | - Aya Sugino
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164-6340, USA
| | - Ai Nagamine
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164-6340, USA
| | - Thomas W Okita
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164-6340, USA
| | - Masahiro Ogawa
- Department of General Education, Yamaguchi Prefectural University, Yamaguchi 753-8502, Japan
| | | |
Collapse
|
8
|
Tian L, Okita TW. mRNA-based protein targeting to the endoplasmic reticulum and chloroplasts in plant cells. CURRENT OPINION IN PLANT BIOLOGY 2014; 22:77-85. [PMID: 25282588 DOI: 10.1016/j.pbi.2014.09.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 08/06/2014] [Accepted: 09/15/2014] [Indexed: 05/12/2023]
Abstract
The targeting of proteins to subcellular organelles is specified by the presence of signal/leader peptide sequences normally located on the N-terminus. In the past two decades, messenger RNA (mRNA) localization, a pathway driven by cis-acting localization elements within the RNA sequence, has emerged as an alternative mechanism for protein targeting to specific locations in the cytoplasm, on the endoplasmic reticulum or to mitochondria and chloroplasts. In this review, we will summarize studies on mRNA-based protein targeting to the endoplasmic reticulum and chloroplast within plant cells.
Collapse
Affiliation(s)
- Li Tian
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164, USA
| | - Thomas W Okita
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164, USA.
| |
Collapse
|
9
|
Differential targeting of VDAC3 mRNA isoforms influences mitochondria morphology. Proc Natl Acad Sci U S A 2014; 111:8991-6. [PMID: 24889622 DOI: 10.1073/pnas.1402588111] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Intracellular targeting of mRNAs has recently emerged as a prevalent mechanism to control protein localization. For mitochondria, a cotranslational model of protein import is now proposed in parallel to the conventional posttranslational model, and mitochondrial targeting of mRNAs has been demonstrated in various organisms. Voltage-dependent anion channels (VDACs) are the most abundant proteins in the outer mitochondrial membrane and the major transport pathway for numerous metabolites. Four nucleus-encoded VDACs have been identified in Arabidopsis thaliana. Alternative cleavage and polyadenylation generate two VDAC3 mRNA isoforms differing by their 3' UTR. By using quantitative RT-PCR and in vivo mRNA visualization approaches, the two mRNA variants were shown differentially associated with mitochondria. The longest mRNA presents a 3' extension named alternative UTR (aUTR) that is necessary and sufficient to target VDAC3 mRNA to the mitochondrial surface. Moreover, aUTR is sufficient for the mitochondrial targeting of a reporter transcript, and can be used as a tool to target an unrelated mRNA to the mitochondrial surface. Finally, VDAC3-aUTR mRNA variant impacts mitochondria morphology and size, demonstrating the role of mRNA targeting in mitochondria biogenesis.
Collapse
|
10
|
Tian L, Dai LL, Yin ZJ, Fukuda M, Kumamaru T, Dong XB, Xu XP, Qu LQ. Small GTPase Sar1 is crucial for proglutelin and α-globulin export from the endoplasmic reticulum in rice endosperm. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:2831-45. [PMID: 23682119 PMCID: PMC3697955 DOI: 10.1093/jxb/ert128] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Rice seed storage proteins glutelin and α-globulin are synthesized in the endoplasmic reticulum (ER) and deposited in protein storage vacuoles (PSVs). Sar1, a small GTPase, acts as a molecular switch to regulate the assembly of coat protein complex II, which exports secretory protein from the ER to the Golgi apparatus. To reveal the route by which glutelin and α-globulin exit the ER, four putative Sar1 genes (OsSar1a/b/c/d) were cloned from rice, and transgenic rice were generated with Sar1 overexpressed or suppressed by RNA interference (RNAi) specifically in the endosperm under the control of the rice glutelin promoter. Overexpression or suppression of any OsSar1 did not alter the phenotype. However, simultaneous knockdown of OsSar1a/b/c resulted in floury and shrunken seeds, with an increased level of glutelin precursor and decreased level of the mature α- and β-subunit. OsSar1abc RNAi endosperm generated numerous, spherical, novel protein bodies with highly electron-dense matrixes containing both glutelin and α-globulin. Notably, the novel protein bodies were surrounded by ribosomes, showing that they were derived from the ER. Some of the ER-derived dense protein bodies were attached to a blebbing structure containing prolamin. These results indicated that OsSar1a/b/c play a crucial role in storage proteins exiting from the ER, with functional redundancy in rice endosperm, and glutelin and α-globulin transported together from the ER to the Golgi apparatus by a pathway mediated by coat protein complex II.
Collapse
Affiliation(s)
- Lihong Tian
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
| | - Ling Ling Dai
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
| | - Zhi Jie Yin
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
| | - Masako Fukuda
- Faculty of Agriculture, Kyushu University, Fukuoka 812–8581, Japan
| | | | - Xiang Bai Dong
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
| | - Xiu Ping Xu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
| | - Le Qing Qu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
11
|
Fukuda M, Wen L, Satoh-Cruz M, Kawagoe Y, Nagamura Y, Okita TW, Washida H, Sugino A, Ishino S, Ishino Y, Ogawa M, Sunada M, Ueda T, Kumamaru T. A guanine nucleotide exchange factor for Rab5 proteins is essential for intracellular transport of the proglutelin from the Golgi apparatus to the protein storage vacuole in rice endosperm. PLANT PHYSIOLOGY 2013; 162:663-74. [PMID: 23580596 PMCID: PMC3668061 DOI: 10.1104/pp.113.217869] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Rice (Oryza sativa) glutelins are synthesized on the endoplasmic reticulum as a precursor, which are then transported via the Golgi to protein storage vacuoles (PSVs), where they are proteolytically processed into acidic and basic subunits. The glutelin precursor mutant6 (glup6) accumulates abnormally large amounts of proglutelin. Map-base cloning studies showed that glup6 was a loss-of-function mutant of guanine nucleotide exchange factor (GEF), which activates Rab GTPase, a key regulator of membrane trafficking. Immunofluorescence studies showed that the transport of proglutelins and α-globulins to PSV was disrupted in glup6 endosperm. Secreted granules of glutelin and α-globulin were readily observed in young glup6 endosperm, followed by the formation of large dilated paramural bodies (PMBs) containing both proteins as the endosperm matures. The PMBs also contained membrane biomarkers for the Golgi and prevacuolar compartment as well as the cell wall component, β-glucan. Direct evidence was gathered showing that GLUP6/GEF activated in vitro GLUP4/Rab5 as well as several Arabidopsis (Arabidopsis thaliana) Rab5 isoforms to the GTP-bound form. Therefore, loss-of-function mutations in GEF or Rab5 disrupt the normal transport of proglutelin from the Golgi to PSVs, resulting in the initial extracellular secretion of these proteins followed, in turn, by the formation of PMBs. Overall, our results indicate that GLUP6/GEF is the activator of Rab5 GTPase and that the cycling of GTP- and GDP-bound forms of this regulatory protein is essential for the intracellular transport of proglutelin and α-globulin from the Golgi to PSVs and in the maintenance of the general structural organization of the endomembrane system in rice seeds.
Collapse
|
12
|
Lung SC, Yanagisawa M, Chuong SDX. Recent progress in the single-cell C4 photosynthesis in terrestrial plants. ACTA ACUST UNITED AC 2012. [DOI: 10.1007/s11515-012-9248-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Medioni C, Mowry K, Besse F. Principles and roles of mRNA localization in animal development. Development 2012; 139:3263-76. [PMID: 22912410 DOI: 10.1242/dev.078626] [Citation(s) in RCA: 158] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Intracellular targeting of mRNAs has long been recognized as a means to produce proteins locally, but has only recently emerged as a prevalent mechanism used by a wide variety of polarized cell types. Localization of mRNA molecules within the cytoplasm provides a basis for cell polarization, thus underlying developmental processes such as asymmetric cell division, cell migration, neuronal maturation and embryonic patterning. In this review, we describe and discuss recent advances in our understanding of both the regulation and functions of RNA localization during animal development.
Collapse
Affiliation(s)
- Caroline Medioni
- Institute of Biology Valrose, University of Nice-Sophia Antipolis/UMR7277 CNRS/UMR1091 INSERM, Parc Valrose, 06108 Nice Cedex 2, France
| | | | | |
Collapse
|
14
|
Washida H, Sugino A, Doroshenk KA, Satoh-Cruz M, Nagamine A, Katsube-Tanaka T, Ogawa M, Kumamaru T, Satoh H, Okita TW. RNA targeting to a specific ER sub-domain is required for efficient transport and packaging of α-globulins to the protein storage vacuole in developing rice endosperm. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 70:471-9. [PMID: 22168839 DOI: 10.1111/j.1365-313x.2011.04880.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Studies focusing on the targeting of RNAs that encode rice storage proteins, prolamines and glutelins to specific sub-domains of the endoplasmic reticulum (ER), as well as mis-localization studies of other storage protein RNAs, indicate a close relationship between the ER site of RNA translation and the final site of protein deposition in the endomembrane system in developing rice endosperm. In addition to prolamine and glutelin, rice accumulates smaller amounts of α-globulins, which are deposited together with glutelin in the protein storage vacuole (PSV). In situ RT-PCR analysis revealed that α-globulin RNAs are not distributed to the cisternal ER as expected for a PSV-localized protein, but instead are targeted to the protein body-ER (PB-ER) by a regulated process requiring cis-sorting sequences. Sequence alignments with putative maize δ-zein cis-localization elements identified several candidate regulatory sequences that may be responsible for PB-ER targeting. Immunocytochemical analysis confirmed the presence of α-globulin on the periphery of the prolamine protein bodies and packaging in Golgi-associated dense vesicles, as well as deposition and storage within peripheral regions of the PSV. Mis-targeting of α-globulin RNAs to the cisternal ER dramatically alters the spatial arrangement of α-globulin and glutelin within the PSV, with the accompanying presence of numerous small α-globulin particles in the cytoplasm. These results indicate that α-globulin RNA targeting to the PB-ER sub-domain is essential for efficient transport of α-globulins to the PSV and its spatial arrangement in the PSV. Such RNA localization prevents potential deleterious protein-protein interactions, in addition to performing a role in protein targeting.
Collapse
Affiliation(s)
- Haruhiko Washida
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164-6340, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Doroshenk KA, Crofts AJ, Morris RT, Wyrick JJ, Okita TW. RiceRBP: A Resource for Experimentally Identified RNA Binding Proteins in Oryza sativa. FRONTIERS IN PLANT SCIENCE 2012; 3:90. [PMID: 22645600 PMCID: PMC3355793 DOI: 10.3389/fpls.2012.00090] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 04/20/2012] [Indexed: 05/05/2023]
Abstract
RNA binding proteins (RBPs) play an important role not only in nuclear gene expression, but also in cytosolic events, including RNA transport, localization, translation, and stability. Although over 200 RBPs are predicted from the Arabidopsis genome alone, relatively little is known about these proteins in plants as many exhibit no homology to known RBPs in other eukaryotes. Furthermore, RBPs likely have low expression levels making them difficult to identify and study. As part of our continuing efforts to understand plant cytosolic gene expression and the factors involved, we employed a combination of affinity chromatography and proteomic techniques to enrich for low abundance RBPs in developing rice seed. Our results have been compiled into RiceRBP (http://www.bioinformatics2.wsu.edu/RiceRBP), a database that contains 257 experimentally identified proteins, many of which have not previously been predicted to be RBPs. For each of the identified proteins, RiceRBP provides information on transcript and protein sequence, predicted protein domains, details of the experimental identification, and whether antibodies have been generated for public use. In addition, tools are available to analyze expression patterns for the identified genes, view phylogentic relationships and search for orthologous proteins. RiceRBP is a valuable tool for the community in the study of plant RBPs.
Collapse
Affiliation(s)
- Kelly A. Doroshenk
- Institute of Biological Chemistry, Washington State UniversityPullman, WA, USA
| | | | - Robert T. Morris
- School of Molecular Biosciences, Center for Reproductive Biology, Washington State UniversityPullman, WA, USA
| | - John J. Wyrick
- School of Molecular Biosciences, Center for Reproductive Biology, Washington State UniversityPullman, WA, USA
| | - Thomas W. Okita
- Institute of Biological Chemistry, Washington State UniversityPullman, WA, USA
- *Correspondence: Thomas W. Okita, Institute of Biological Chemistry, Washington State University, Pullman, WA 99164-6340, USA. e-mail:
| |
Collapse
|
16
|
Nagamine A, Matsusaka H, Ushijima T, Kawagoe Y, Ogawa M, Okita TW, Kumamaru T. A role for the cysteine-rich 10 kDa prolamin in protein body I formation in rice. PLANT & CELL PHYSIOLOGY 2011; 52:1003-16. [PMID: 21521743 PMCID: PMC3110882 DOI: 10.1093/pcp/pcr053] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The rice prolamins consist of cysteine-rich 10 kDa (CysR10), 14 kDa (CysR14) and 16 kDa (CysR16) molecular species and a cysteine-poor 13 kDa (CysP13) polypeptide. These storage proteins form protein bodies (PBs) composed of single spherical intracisternal inclusions assembled within the lumen of the rough endoplasmic reticulum. Immunofluorescence and immunoelectron microscopy demonstrated that CysR10 and CysP13 were asymmetrically distributed within the PBs, with the former concentrated at the electron-dense center core region and the latter distributed mainly to the electron-lucent peripheral region. These results together with temporal expression data showed that the formation of prolamin-containing PB-I in the wild-type endosperm was initiated by the accumulation of CysR10 to form the center core. In mutants deficient for cysteine-rich prolamins, the typical PB-I structures containing the electron-dense center core were not observed, and instead were replaced by irregularly shaped, electron-lucent, hypertrophied PBs. Similar, deformed PBs were observed in a CysR10 RNA interference plant line. These results suggest that CysR10, through its formation of the central core and its possible interaction with other cysteine-rich prolamins, is required for tight packaging of the proteins into a compact spherical structure.
Collapse
Affiliation(s)
- Ai Nagamine
- Institute of Genetic Resources, Faculty of Agriculture, Kyushu University, Hakozaki, Fukuoka, 812-8581 Japan
| | - Hiroaki Matsusaka
- Institute of Genetic Resources, Faculty of Agriculture, Kyushu University, Hakozaki, Fukuoka, 812-8581 Japan
| | - Tomokazu Ushijima
- Institute of Genetic Resources, Faculty of Agriculture, Kyushu University, Hakozaki, Fukuoka, 812-8581 Japan
| | - Yasushi Kawagoe
- Division of Plant Sciences, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8602 Japan
| | - Masahiro Ogawa
- Organization for General Education, Yamaguchi Prefectural University, Sakurabatake, Yamaguchi, 753-8502, Japan
| | - Thomas W. Okita
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164-6340, USA
| | - Toshihiro Kumamaru
- Institute of Genetic Resources, Faculty of Agriculture, Kyushu University, Hakozaki, Fukuoka, 812-8581 Japan
- *Corresponding author: E-mail, ; Fax, +81-92-642-3058
| |
Collapse
|
17
|
Gidda SK, Shockey JM, Falcone M, Kim PK, Rothstein SJ, Andrews DW, Dyer JM, Mullen RT. Hydrophobic-domain-dependent protein-protein interactions mediate the localization of GPAT enzymes to ER subdomains. Traffic 2011; 12:452-72. [PMID: 21214700 DOI: 10.1111/j.1600-0854.2011.01160.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The endoplasmic reticulum (ER) is a dynamic organelle that consists of numerous regions or 'subdomains' that have discrete morphological features and functional properties. Although it is generally accepted that these subdomains differ in their protein and perhaps lipid compositions, a clear understanding of how they are assembled and maintained has not been well established. We previously demonstrated that two diacylglycerol acyltransferase enzymes (DGAT1 and DGAT2) from tung tree (Vernicia fordii) were located in different subdomains of ER, but the mechanisms responsible for protein targeting to these subdomains were not elucidated. Here we extend these studies by describing two glycerol-3-phosphate acyltransferase-like (GPAT) enzymes from tung tree, GPAT8 and GPAT9, that both colocalize with DGAT2 in the same ER subdomains. Measurement of protein-protein interactions using the split-ubiquitin assay revealed that GPAT8 interacts with itself, GPAT9 and DGAT2, but not with DGAT1. Furthermore, mutational analysis of GPAT8 revealed that the protein's first predicted hydrophobic region, which contains an amphipathic helix-like motif, is required for interaction with DGAT2 and for DGAT2-dependent colocalization in ER subdomains. Taken together, these results suggest that the regulation and organization of ER subdomains is mediated at least in part by higher-ordered, hydrophobic-domain-dependent homo- and hetero-oligomeric protein-protein interactions.
Collapse
Affiliation(s)
- Satinder K Gidda
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Morris RT, Doroshenk KA, Crofts AJ, Lewis N, Okita TW, Wyrick JJ. RiceRBP: a database of experimentally identified RNA-binding proteins in Oryza sativa L. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2011; 180:204-11. [PMID: 21421362 DOI: 10.1016/j.plantsci.2010.08.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Revised: 07/29/2010] [Accepted: 08/06/2010] [Indexed: 05/08/2023]
Abstract
RNA-binding proteins play critical roles at multiple steps during gene expression, including mRNA transport and translation. mRNA transport is particularly important in rice (Oryza sativa L.) in order to ensure the proper localization of the prolamine and glutelin seed storage proteins. However, relatively little information is available about RNA-binding proteins that have been isolated or characterized in plants. The RiceRBP database is a novel resource for the analysis of RNA-binding proteins in rice. RiceRBP contains 257 experimentally identified RNA-binding proteins, which are derived from at least 221 distinct rice genes. Many of the identified proteins catalogued in RiceRBP had not previously been annotated or predicted to bind RNA. RiceRBP provides tools to facilitate the analysis of the identified RNA-binding proteins, including information about predicted protein domains, phylogenetic relationships, and expression patterns of the identified genes. Importantly, RiceRBP also contains tools to search and analyze predicted RNA-binding protein orthologs in other plant species. We anticipate that the data and analysis tools provided by RiceRBP should facilitate the study of plant RNA-binding proteins. RiceRBP is available at http://www.bioinformatics2.wsu.edu/RiceRBP.
Collapse
Affiliation(s)
- Robert T Morris
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, WA 99164, USA
| | | | | | | | | | | |
Collapse
|
19
|
Crofts AJ, Crofts N, Whitelegge JP, Okita TW. Isolation and identification of cytoskeleton-associated prolamine mRNA binding proteins from developing rice seeds. PLANTA 2010; 231:1261-76. [PMID: 20217123 DOI: 10.1007/s00425-010-1125-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Accepted: 02/10/2010] [Indexed: 05/08/2023]
Abstract
The messenger RNA of the rice seed storage protein prolamine is targeted to the endoplasmic reticulum (ER) membranes surrounding prolamine protein bodies via a mechanism, which is dependent upon both RNA sorting signals and the actin cytoskeleton. In this study we have used an RNA bait corresponding to the previously characterized 5'CDS prolamine cis-localization sequence for the capture of RNA binding proteins (RBPs) from cytoskeleton-enriched fractions of developing rice seed. In comparison to a control RNA, the cis-localization RNA bait sequence led to the capture of a much larger number of proteins, 18 of which have been identified by tandem mass spectrometry. Western blots demonstrate that several of the candidate proteins analyzed to date show good to excellent specificity for binding to cis-localization sequences over the control RNA bait. Temporal expression studies showed that steady state protein levels for one RNA binding protein, RBP-A, paralleled prolamine gene expression. Immunoprecipitation studies showed that RBP-A is bound to prolamine and glutelin RNAs in vivo, supporting a direct role in storage protein gene expression. Using confocal immunofluorescence microscopy, RBP-A was found to be distributed to multiple compartments in the cell. In addition to the nucleus, RBP-A co-localizes with microtubules and is associated with cortical ER membranes. Collectively, these results indicate that employing a combination of in vitro binding and in vivo binding and localization studies is a valid strategy for the identification of putative prolamine mRNA binding proteins, such as RBP-A, which play a role in controlling expression of storage protein mRNAs in the cytoplasm.
Collapse
Affiliation(s)
- Andrew J Crofts
- Institute of Biological Chemistry, Washington State University, Clark Hall, Room #299, 100 Dairy Road, Pullman, WA 99164-6340, USA.
| | | | | | | |
Collapse
|
20
|
Washida H, Sugino A, Kaneko S, Crofts N, Sakulsingharoj C, Kim D, Choi SB, Hamada S, Ogawa M, Wang C, Esen A, Higgins TJV, Okita TW. Identification of cis-localization elements of the maize 10-kDa delta-zein and their use in targeting RNAs to specific cortical endoplasmic reticulum subdomains. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 60:146-155. [PMID: 19508424 DOI: 10.1111/j.1365-313x.2009.03944.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The RNAs for the storage proteins of rice (Oryza sativa), prolamines and glutelins, which are stored as inclusions in the lumen of the endoplasmic reticulum (ER) and storage vacuoles, respectively, are targeted by specific cis-localization elements to distinct subdomains of the cortical ER. Glutelin RNA has one or more cis-localization elements (zip codes) at the 3' end of the RNA, whereas prolamine has two cis-elements; one located in the 5' end of the coding sequence and a second residing in the 3'-untranslated region (UTR). We had earlier demonstrated that the RNAs for the maize zeins ('prolamine' class) are localized to the spherical protein body ER (PB-ER) in developing maize endosperm. As the PB-ER localization of the 10-kDa delta-zein RNA is maintained in developing rice seeds, we determined the number and proximate location of their cis-localization elements by expressing GFP fusions containing various zein RNA sequences in transgenic rice and analyzing their spatial distribution on the cortical ER by in situ RT-PCR and confocal microscopy. Four putative cis-localization elements were identified; three in the coding sequences and one in the 3'-UTR. Two of these zip codes are required for restricted localization to the PB-ER. Using RNA targeting determinants we show, by mis-targeting the storage protein RNAs from their normal destination on the cortical ER, that the coded proteins are redirected from their normal site of deposition. Targeting of RNA to distinct cortical ER subdomains may be the underlying basis for the variable use of the ER lumen or storage vacuole as the final storage deposition site of storage proteins among flowering plant species.
Collapse
Affiliation(s)
- Haruhiko Washida
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164-6340, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Doroshenk KA, Crofts AJ, Morris RT, Wyrick JJ, Okita TW. Proteomic Analysis of Cytoskeleton-Associated RNA Binding Proteins in Developing Rice Seed. J Proteome Res 2009; 8:4641-53. [DOI: 10.1021/pr900537p] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Kelly A. Doroshenk
- Institute of Biological Chemistry, School of Molecular Biosciences, Washington State University, Pullman, Washington 99164 and Department of Natural Sciences, Akita International University, 193-2 Okutsubakidai, Tsubakigawa, Yuwa Akita-city, Akita 010-1211, Japan
| | - Andrew J. Crofts
- Institute of Biological Chemistry, School of Molecular Biosciences, Washington State University, Pullman, Washington 99164 and Department of Natural Sciences, Akita International University, 193-2 Okutsubakidai, Tsubakigawa, Yuwa Akita-city, Akita 010-1211, Japan
| | - Robert T. Morris
- Institute of Biological Chemistry, School of Molecular Biosciences, Washington State University, Pullman, Washington 99164 and Department of Natural Sciences, Akita International University, 193-2 Okutsubakidai, Tsubakigawa, Yuwa Akita-city, Akita 010-1211, Japan
| | - John J. Wyrick
- Institute of Biological Chemistry, School of Molecular Biosciences, Washington State University, Pullman, Washington 99164 and Department of Natural Sciences, Akita International University, 193-2 Okutsubakidai, Tsubakigawa, Yuwa Akita-city, Akita 010-1211, Japan
| | - Thomas W. Okita
- Institute of Biological Chemistry, School of Molecular Biosciences, Washington State University, Pullman, Washington 99164 and Department of Natural Sciences, Akita International University, 193-2 Okutsubakidai, Tsubakigawa, Yuwa Akita-city, Akita 010-1211, Japan
| |
Collapse
|
22
|
Conley AJ, Joensuu JJ, Menassa R, Brandle JE. Induction of protein body formation in plant leaves by elastin-like polypeptide fusions. BMC Biol 2009; 7:48. [PMID: 19664215 PMCID: PMC3224952 DOI: 10.1186/1741-7007-7-48] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Accepted: 08/07/2009] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Elastin-like polypeptides are synthetic biopolymers composed of a repeating pentapeptide 'VPGXG' sequence that are valuable for the simple non-chromatographic purification of recombinant proteins. In addition, elastin-like polypeptide fusions have been shown to enhance the accumulation of a range of different recombinant proteins in plants, thus addressing the major limitation of plant-based expression systems, which is a low production yield. This study's main objectives were to determine the general utility of elastin-like polypeptide protein fusions in various intracellular compartments and to elucidate elastin-like polypeptide's mechanism of action for increasing recombinant protein accumulation in the endoplasmic reticulum of plants. RESULTS The effect of elastin-like polypeptide fusions on the accumulation of green fluorescent protein targeted to the cytoplasm, chloroplasts, apoplast, and endoplasmic reticulum was evaluated. The endoplasmic reticulum was the only intracellular compartment in which an elastin-like polypeptide tag was shown to significantly enhance recombinant protein accumulation. Interestingly, endoplasmic reticulum-targeted elastin-like polypeptide fusions induced the formation of a novel type of protein body, which may be responsible for elastin-like polypeptide's positive effect on recombinant protein accumulation by excluding the heterologous protein from normal physiological turnover. Although expressed in the leaves of plants, these novel protein bodies appeared similar in size and morphology to the prolamin-based protein bodies naturally found in plant seeds. The elastin-like polypeptide-induced protein bodies were highly mobile organelles, exhibiting various dynamic patterns of movement throughout the cells, which were dependent on intact actin microfilaments and a functional actomyosin motility system. CONCLUSION An endoplasmic reticulum-targeted elastin-like polypeptide fusion approach provides an effective strategy for depositing large amounts of concentrated heterologous protein within the limited space of the cell via storage in stable protein bodies. Furthermore, encapsulation of recombinant proteins into physiologically inert organelles can function to insulate the protein from normal cellular mechanisms, thus limiting unnecessary stress to the host cell. Since elastin-like polypeptide is a mammalian-derived protein, this study demonstrates that plant seed-specific factors are not required for the formation of protein bodies in vegetative plant tissues, suggesting that the endoplasmic reticulum possesses an intrinsic ability to form protein body-like accretions in eukaryotic cells when overexpressing particular proteins.
Collapse
Affiliation(s)
- Andrew J Conley
- Department of Biology, University of Western Ontario, London, ON, Canada
- Southern Crop Protection and Food Research Centre, Agriculture and Agri- Food Canada, London, ON, Canada
| | - Jussi J Joensuu
- Southern Crop Protection and Food Research Centre, Agriculture and Agri- Food Canada, London, ON, Canada
- VTT Technical Research Centre of Finland, Espoo, Finland
| | - Rima Menassa
- Southern Crop Protection and Food Research Centre, Agriculture and Agri- Food Canada, London, ON, Canada
| | - Jim E Brandle
- Southern Crop Protection and Food Research Centre, Agriculture and Agri- Food Canada, London, ON, Canada
- Vineland Research and Innovation Centre, Vineland Station, ON, Canada
| |
Collapse
|
23
|
Wang W, Meng B, Ge X, Song S, Yang Y, Yu X, Wang L, Hu S, Liu S, Yu J. Proteomic profiling of rice embryos from a hybrid rice cultivar and its parental lines. Proteomics 2008; 8:4808-21. [DOI: 10.1002/pmic.200701164] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
24
|
Ma L, Xie B, Hong Z, Verma DPS, Zhang Z. A novel RNA-binding protein associated with cell plate formation. PLANT PHYSIOLOGY 2008; 148:223-34. [PMID: 18621982 PMCID: PMC2528124 DOI: 10.1104/pp.108.120527] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Accepted: 07/07/2008] [Indexed: 05/20/2023]
Abstract
Building a cell plate during cytokinesis in plant cells requires the participation of a number of proteins in a multistep process. We previously identified phragmoplastin as a cell plate-specific protein involved in creating a tubulovesicular network at the cell plate. We report here the identification and characterization of a phragmoplastin-interacting protein, PHIP1, in Arabidopsis (Arabidopsis thaliana). It contains multiple functional motifs, including a lysine-rich domain, two RNA recognition motifs, and three CCHC-type zinc fingers. Polypeptides with similar motif structures were found only in plant protein databases, but not in the sequenced prokaryotic, fungal, and animal genomes, suggesting that PHIP1 represents a plant-specific RNA-binding protein. In addition to phragmoplastin, two Arabidopsis small GTP-binding proteins, Rop1 and Ran2, are also found to interact with PHIP1. The zinc fingers of PHIP1 were not required for its interaction with Rop1 and phragmoplastin, but they may participate in its binding with the Ran2 mRNA. Immunofluorescence, in situ RNA hybridization, and green fluorescent protein tagging experiments showed the association of PHIP1 with the forming cell plate during cytokinesis. Taken together, our data suggest that PHIP1 is a novel RNA-binding protein and may play a unique role in the polarized mRNA transport to the vicinity of the cell plate.
Collapse
Affiliation(s)
- Lian Ma
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | | | | | | | | |
Collapse
|
25
|
Message on the web: mRNA and ER co-trafficking. Trends Cell Biol 2008; 18:68-76. [DOI: 10.1016/j.tcb.2007.11.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2007] [Revised: 11/26/2007] [Accepted: 11/26/2007] [Indexed: 12/20/2022]
|
26
|
Molina MI, Circosta A, Añón MC, Petruccelli S. Mature Amaranthus hypochondriacus seeds contain non-processed 11S precursors. PHYTOCHEMISTRY 2008; 69:58-65. [PMID: 17714748 DOI: 10.1016/j.phytochem.2007.07.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2007] [Revised: 06/08/2007] [Accepted: 07/03/2007] [Indexed: 05/16/2023]
Abstract
Amaranth is a dicotyledonous plant whose major seed storage proteins are globulins and glutelins. An unique feature of amaranth seeds is the presence of a fraction named albumin-2, that is extractable with water only after an exhaustive extraction of globulins and albumin-1. In this work, we tested the hypothesis that albumin-2 fraction could be constituted by a non-processed 11S globulin (proglobulin). To this end, the gene encoding the amaranth 11S subunit was cloned and expressed in Escherichia coli. Subsequently, the recombinant proglobulin and albumin-2 purified from seeds were treated with a sunflower vacuolar processing enzyme (VPE). A 55 kDa component of albumin-2 was specifically cleaved into 38 and 17-15 kDa polypeptides, as a consequence of this endoproteolytic cleavage a change of the oligomeric state from trimeric to hexameric was observed. Amaranth 11S globulin fraction was not modified under these proteolysis conditions. Using VPE-specific antibodies, it was shown that amaranth expresses a 57 kDa VPE, and that both developing and mature amaranth seeds have VPE activity, although the increase of this activity during amaranth seed development is higher than that observed for sunflower seeds. These results confirm the presence of unprocessed 11S precursors in mature amaranth seeds; this phenomenon cannot, however, be attributed to low VPE activity during developing of amaranth seeds.
Collapse
Affiliation(s)
- María Isabel Molina
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), calle 47 y 116, 1900- La Plata, Argentina
| | | | | | | |
Collapse
|
27
|
Bove J, Hord CLH, Mullen MA. The blossoming of RNA biology: Novel insights from plant systems. RNA (NEW YORK, N.Y.) 2006; 12:2035-46. [PMID: 17053084 PMCID: PMC1664721 DOI: 10.1261/rna.303806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Affiliation(s)
- Jérôme Bove
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.
| | | | | |
Collapse
|