1
|
Zhang B, Wan H, Maierwufu M, Liu Q, Li T, He Y, Wang X, Liu G, Hong X, Feng Q. STAT3 ameliorates truncated tau-induced cognitive deficits. Neural Regen Res 2024; 19:915-922. [PMID: 37843229 PMCID: PMC10664106 DOI: 10.4103/1673-5374.382253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 05/15/2023] [Accepted: 06/29/2023] [Indexed: 10/17/2023] Open
Abstract
Proteolytic cleavage of tau by asparagine endopeptidase (AEP) creates tau-N368 fragments, which may drive the pathophysiology associated with synaptic dysfunction and memory deterioration in the brain of Alzheimer's disease patients. Nonetheless, the molecular mechanisms of truncated tau-induced cognitive deficits remain unclear. Evidence suggests that signal transduction and activator of transcription-3 (STAT3) is associated with modulating synaptic plasticity, cell apoptosis, and cognitive function. Using luciferase reporter assays, electrophoretic mobility shift assays, western blotting, and immunofluorescence, we found that human tau-N368 accumulation inhibited STAT3 activity by suppressing STAT3 translocation into the nucleus. Overexpression of STAT3 improved tau-N368-induced synaptic deficits and reduced neuronal loss, thereby improving the cognitive deficits in tau-N368 mice. Moreover, in tau-N368 mice, activation of STAT3 increased N-methyl-D-aspartic acid receptor levels, decreased Bcl-2 levels, reversed synaptic damage and neuronal loss, and thereby alleviated cognitive deficits caused by tau-N368. Taken together, STAT3 plays a critical role in truncated tau-related neuropathological changes. This indicates a new mechanism behind the effect of tau-N368 on synapses and memory deficits. STAT3 can be used as a new molecular target to treat tau-N368-induced protein pathology.
Collapse
Affiliation(s)
- Bingge Zhang
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Huali Wan
- Department of Laboratory Medicine, Guangdong Provincial, People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, China
| | - Maimaitijiang Maierwufu
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Qian Liu
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Ting Li
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Ye He
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xin Wang
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Gongping Liu
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xiaoyue Hong
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Hubei, Wuhan, Hubei Province, China
| | - Qiong Feng
- Department of Pathology, Wuhan Children’s Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
2
|
Zhang C, Yang L, Yang X, Gao Q, Qu Y, Wu L. Design, synthesis, and biological evaluation of novel napabucasin-melatonin hybrids as potent STAT3 inhibitors. Bioorg Chem 2023; 136:106541. [PMID: 37062104 DOI: 10.1016/j.bioorg.2023.106541] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/09/2023] [Accepted: 04/09/2023] [Indexed: 04/18/2023]
Abstract
The current work developed diverse novel napabucasin-melatonin hybrids as potent STAT3 inhibitors. Several biological studies have suggested many compounds demonstrating potent inhibition against different tumor cells. Among these, compound 7e depicted enhanced inhibition against HepG2, MDA-MB-231, and A549 cells than napabucasin, with IC50 values of 1.06, 1.38, and 1.3 µM, respectively. Based on fluorescence polarization analysis, compound 7e was bound to the SH2 domain in STAT3, with an IC50 value of 12.95 µM. Molecular docking further confirmed the 7e binding mode inside the SH2 domain of STAT3. Further mechanistic studies indicated that 7e inhibited the activation of STAT3 (Y705), and thus reduced the expression of STAT3 downstream genes (CyclinD1, Bcl-2 and c-Myc) instead of affecting p-STAT1 expression. Meanwhile, the phosphorylation levels of its upstream kinases JAK2 and bypass kinase Erk1/2 remain unaffected. Simultaneously, 7e induced cancer cell apoptosis in a concentration-dependent manner. Significantly, 20 mg/kg (i.p.) compound 7e suppressed the mouse HepG2 xenograft development in vivo without body weight loss, suggesting that it could be an effective antitumor agent.
Collapse
Affiliation(s)
- Chong Zhang
- School of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Limin Yang
- School of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Xiaojuan Yang
- School of Pharmacy, Xinxiang University, Xinxiang 453003, China
| | - Qinghe Gao
- School of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China.
| | - Yan Qu
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China.
| | - Liqiang Wu
- School of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China.
| |
Collapse
|
3
|
The Role of Natural Products as Inhibitors of JAK/STAT Signaling Pathways in Glioblastoma Treatment. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7838583. [PMID: 36193062 PMCID: PMC9526628 DOI: 10.1155/2022/7838583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/28/2022] [Accepted: 08/23/2022] [Indexed: 11/18/2022]
Abstract
The permeability of glioblastoma, as well as its escaping the immune system, makes them one of the most deadly human malignancies. By avoiding programmed cell death (apoptosis), unlimited cell growth and metastatic ability could dramatically affect the immune system. Genetic mutations, epigenetic changes, and overexpression of oncogenes can cause this process. On the other hand, the blood-brain barrier (BBB) and intratumor heterogeneity are important factors causing resistance to therapy. Several signaling pathways have been identified in this field, including the Janus tyrosine kinase (JAK) converter and signal transducer and activator of transcription (STAT) activator pathways, which are closely related. In addition, the JAK/STAT signaling pathway contributes to a wide array of tumorigenesis functions, including replication, anti-apoptosis, angiogenesis, and immune suppression. Introducing this pathway as the main tumorigenesis and treatment resistance center can give a better understanding of how it operates. In light of this, it is an important goal in treating many disorders, particularly cancer. The inhibition of this signaling pathway is being considered an approach to the treatment of glioblastoma. The use of natural products alternatively to conventional therapies is another area of research interest among researchers. Some natural products that originate from plants or natural sources can interfere with JAK/STAT signaling in human malignant cells, also by stopping the progression and phosphorylation of JAK/STAT, inducing apoptosis, and stopping the cell cycle. Natural products are a viable alternative to conventional chemotherapy because of their cost-effectiveness, wide availability, and almost no side effects.
Collapse
|
4
|
Iliev P, Hanke D, Page BDG. STAT Protein Thermal Shift Assays to Monitor Protein-Inhibitor Interactions. Chembiochem 2022; 23:e202200039. [PMID: 35698729 DOI: 10.1002/cbic.202200039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 06/09/2022] [Indexed: 11/06/2022]
Abstract
STAT3 protein is a sought-after drug target as it plays a key role in the progression of cancer. Many STAT3 inhibitors (STAT3i) have been reported, but accumulating evidence suggests many of these act as off-target/indirect inhibitors of STAT signaling. Herein, we describe the STAT protein thermal shift assay (PTSA) as a novel target engagement tool, which we used to test the binding of known STAT3i to STAT3 and STAT1. This revealed STATTIC, BP-1-102, and Cpd188 destabilized both STATs and produced unique migratory patterns on SDS-PAGE gels, suggesting covalent protein modifications. Mass spectrometry experiments confirmed these compounds are nonspecifically alkylating STATs, as well as an unrelated protein, NUDT5. These experiments have highlighted the benefits of PTSA to investigate interactions with STAT proteins and helped reveal novel reactivity of Cpd188. The described PTSA represents a promising chemical biology tool that could be applied to an array of other protein targets.
Collapse
Affiliation(s)
- Petar Iliev
- The University of British Columbia, Pharmaceutical Sciences, CANADA
| | - Danielle Hanke
- The University of British Columbia, Pharmaceutical Sciences, CANADA
| | - Brent D G Page
- The University of British Columbia, Faculty of Pharmaceutical Sciences, 2405 Wesbrook Mall, V6T1Z3, Vancouver, CANADA
| |
Collapse
|
5
|
Parakh S, Ernst M, Poh AR. Multicellular Effects of STAT3 in Non-small Cell Lung Cancer: Mechanistic Insights and Therapeutic Opportunities. Cancers (Basel) 2021; 13:6228. [PMID: 34944848 PMCID: PMC8699548 DOI: 10.3390/cancers13246228] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 12/12/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is the most common type of lung cancer and accounts for 85% of lung cancer cases. Aberrant activation of the Signal Transducer and Activator of Transcription 3 (STAT3) is frequently observed in NSCLC and is associated with a poor prognosis. Pre-clinical studies have revealed an unequivocal role for tumor cell-intrinsic and extrinsic STAT3 signaling in NSCLC by promoting angiogenesis, cell survival, cancer cell stemness, drug resistance, and evasion of anti-tumor immunity. Several STAT3-targeting strategies have also been investigated in pre-clinical models, and include preventing upstream receptor/ligand interactions, promoting the degradation of STAT3 mRNA, and interfering with STAT3 DNA binding. In this review, we discuss the molecular and immunological mechanisms by which persistent STAT3 activation promotes NSCLC development, and the utility of STAT3 as a prognostic and predictive biomarker in NSCLC. We also provide a comprehensive update of STAT3-targeting therapies that are currently undergoing clinical evaluation, and discuss the challenges associated with these treatment modalities in human patients.
Collapse
Affiliation(s)
- Sagun Parakh
- Department of Medical Oncology, The Olivia Newton-John Cancer and Wellness Centre, Austin Health, Heidelberg, VIC 3084, Australia;
- Tumor Targeting Laboratory, The Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC 3086, Australia;
| | - Matthias Ernst
- School of Cancer Medicine, La Trobe University, Melbourne, VIC 3086, Australia;
- Cancer and Inflammation Laboratory, The Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia
| | - Ashleigh R. Poh
- School of Cancer Medicine, La Trobe University, Melbourne, VIC 3086, Australia;
- Cancer and Inflammation Laboratory, The Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia
| |
Collapse
|
6
|
Abstract
The carbazole class is made up of heterocyclically structured compounds first isolated from coal tar. Their structural motif is preponderant in different synthetic materials and naturally occurring alkaloids extracted from the taxonomically related higher plants of the genus Murraya, Glycosmis, and Clausena from the Rutaceae family. Concerning the biological activity of these compounds, many research groups have assessed their antiproliferative action of carbazoles on different types of tumoral cells, such as breast, cervical, ovarian, hepatic, oral cavity, and small-cell lung cancer, and underlined their potential effects against psoriasis. One of the principal mechanisms likely involved in these effects is the ability of carbazoles to target the JAK/STATs pathway, considered essential for cell differentiation, proliferation, development, apoptosis, and inflammation. In this review, we report the studies carried out, over the years, useful to synthesize compounds with carbazole moiety designed to target these kinds of kinases.
Collapse
|
7
|
Yin Y, Qu L, Zhu D, Wu Y, Zhou X. Effect of SOCS3 on apoptosis of human trophoblasts via adjustment of the JAK2/STAT3 signaling pathway in preterm birth. Transl Pediatr 2021; 10:1637-1646. [PMID: 34295778 PMCID: PMC8261589 DOI: 10.21037/tp-21-39] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 05/12/2021] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND The expression of suppressor of cytokine signaling 3 (SOCS3) was induced by interleukin-6 (IL-6) in preterm placental tissues. However, its role in IL-6 induced apoptosis of trophoblast cells derived from preterm placental tissues remains to be elucidated. METHODS Primary cytotrophoblasts from human preterm placental tissues were used to stably knock down and overexpress the level of SOCS3 by corresponding lentiviral vectors and the expression of SOCS3 was validated by quantitative reverse transcription polymerase chain reaction (qRT-PCR) and Western blot. The effect of SOCS3 overexpression or knockdown on the proliferation and apoptosis of IL-6 treated human cytotrophoblasts were determined by Cell Counting Kit-8 (CCK8) assay and Annexin-V/Propidium Iodide (PI) double-staining assay, respectively. Based on it, we detected the proteins associated with the Janus Tyrosine Kinase (JAK)/Signal Transducer and Activator of Transcription (STAT) pathway and apoptosis, such as JAK2, p-JAK2, STAT3, p-STAT3, B-cell lymphoma-2 (Bcl-2) and BCL2-associated X (Bax) by Western blot. RESULTS IL-6-treatment resulted in significant apoptosis of human cytotrophoblasts. Overexpressing SOCS3 in the cytotrophoblasts reduced cell apoptosis, while the knockdown of SCOS3 had the opposite effects. Further analyses showed that SOCS3 overexpression inhibited JAK2 and STAT3 phosphorylation, which was induced by IL-6 stimulation. CONCLUSIONS SOCS3 plays a protective role in human preterm placental tissue-derived cytotrophoblasts from IL-6 induced apoptosis by feedback inhibition of JAK2/STAT3 signaling.
Collapse
Affiliation(s)
- Yin Yin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lin Qu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Dicong Zhu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Yang Wu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xin Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
8
|
Wang X, Wu K, Fang L, Yang X, Zheng N, Du Z, Lu Y, Xie Z, Liu Z, Zuo Z, Ye F. Discovery of N-substituted sulfamoylbenzamide derivatives as novel inhibitors of STAT3 signaling pathway based on Niclosamide. Eur J Med Chem 2021; 218:113362. [PMID: 33774344 DOI: 10.1016/j.ejmech.2021.113362] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 02/22/2021] [Accepted: 02/27/2021] [Indexed: 11/18/2022]
Abstract
Signal transducer and activator of transcription 3 (STAT3) has been confirmed as an attractive therapeutic target for cancer therapy. Herein, we designed and synthesized a series of N-substituted Sulfamoylbenzamide STAT3 inhibitors based on small-molecule STAT3 inhibitor Niclosamide. Compound B12, the best active compound of this series, was identified as an inhibitor of IL-6/STAT3 signaling with an IC50 of 0.61-1.11 μM in MDA-MB-231, HCT-116 and SW480 tumor cell lines with STAT3 overexpression, by inhibiting the phosphorylation of STAT3 of Tyr705 residue and the expression of STAT3 downstream genes, inducing apoptosis and inhibiting the migration of cancer cells. Furthermore, in vivo study revealed that compound B12 suppressed the MDA-MB-231 xenograft tumor growth in nude mice at the dose of 30 mg/kg (i.g.), which has better antitumor activity than the positive control Niclosamide. More importantly, B12 is an orally bioavailable anticancer agent as a promising candidate for further development.
Collapse
Affiliation(s)
- Xuebao Wang
- Department of Colorectal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Kaiqi Wu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Longcheng Fang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xiaojiao Yang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Nan Zheng
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Zongxuan Du
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Ying Lu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Zixin Xie
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Zhiguo Liu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Zhigui Zuo
- Department of Colorectal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| | - Faqing Ye
- Department of Colorectal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| |
Collapse
|
9
|
Li N, Ou J, Bao N, Chen C, Shi Z, Chen L, Sun J. Design, synthesis and biological evaluation of novel plumbagin derivatives as potent antitumor agents with STAT3 inhibition. Bioorg Chem 2020; 104:104208. [DOI: 10.1016/j.bioorg.2020.104208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/15/2020] [Accepted: 08/25/2020] [Indexed: 12/20/2022]
|
10
|
STAT3 transcription factor as target for anti-cancer therapy. Pharmacol Rep 2020; 72:1101-1124. [PMID: 32880101 DOI: 10.1007/s43440-020-00156-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 08/23/2020] [Accepted: 08/25/2020] [Indexed: 12/17/2022]
Abstract
STATs constitute a large family of transcription activators and transducers of signals that have an important role in many cell functions as regulation of proliferation and differentiation of the cell also regulation of apoptosis and angiogenesis. STAT3 as a member of that family, recently was discovered to have a vital role in progression of different types of cancers. The activation of STAT3 was observed to regulate multiple gene functions during cancer-like cell proliferation, differentiation, apoptosis, metastasis, inflammation, immunity, cell survival, and angiogenesis. The inhibition of STAT3 activation has been an important target for cancer therapy. Inhibitors of STAT3 have been used for a long time for treatment of many types of cancers like leukemia, melanoma, colon, and renal cancer. In this review article, we summarize and discuss different drugs inhibiting the action of STAT3 and used in treatment of different types of cancer.
Collapse
|
11
|
Feng KR, Wang F, Shi XW, Tan YX, Zhao JY, Zhang JW, Li QH, Lin GQ, Gao D, Tian P. Design, synthesis and biological evaluation of novel potent STAT3 inhibitors based on BBI608 for cancer therapy. Eur J Med Chem 2020; 201:112428. [DOI: 10.1016/j.ejmech.2020.112428] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/24/2020] [Accepted: 05/05/2020] [Indexed: 12/17/2022]
|
12
|
Bose S, Banerjee S, Mondal A, Chakraborty U, Pumarol J, Croley CR, Bishayee A. Targeting the JAK/STAT Signaling Pathway Using Phytocompounds for Cancer Prevention and Therapy. Cells 2020; 9:E1451. [PMID: 32545187 PMCID: PMC7348822 DOI: 10.3390/cells9061451] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/07/2020] [Accepted: 06/08/2020] [Indexed: 02/07/2023] Open
Abstract
Cancer is a prevalent cause of mortality around the world. Aberrated activation of Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling pathway promotes tumorigenesis. Natural agents, including phytochemicals, exhibit potent anticancer activities via various mechanisms. However, the therapeutic potency of phytoconstituents as inhibitors of JAK/STAT signaling against cancer has only come into focus in recent days. The current review highlights phytochemicals that can suppress the JAK/STAT pathway in order to impede cancer cell growth. Various databases, such as PubMed, ScienceDirect, Web of Science, SpringerLink, Scopus, and Google Scholar, were searched using relevant keywords. Once the authors were in agreement regarding the suitability of a study, a full-length form of the relevant article was obtained, and the information was gathered and cited. All the complete articles that were incorporated after the literature collection rejection criteria were applied were perused in-depth and material was extracted based on the importance, relevance, and advancement of the apprehending of the JAK/STAT pathway and their relation to phytochemicals. Based on the critical and comprehensive analysis of literature presented in this review, phytochemicals from diverse plant origins exert therapeutic and cancer preventive effects, at least in part, through regulation of the JAK/STAT pathway. Nevertheless, more preclinical and clinical research is necessary to completely comprehend the capability of modulating JAK/STAT signaling to achieve efficient cancer control and treatment.
Collapse
Affiliation(s)
- Sankhadip Bose
- Department of Pharmacognosy, Bengal School of Technology, Chuchura 712 102, India;
| | - Sabyasachi Banerjee
- Department of Phytochemistry, Gupta College of Technological Sciences, Asansol 713 301, India; (S.B.); (U.C.)
| | - Arijit Mondal
- Department of Pharmaceutical Chemistry, Bengal College of Pharmaceutical Technology, Dubrajpur 731 123, India
| | - Utsab Chakraborty
- Department of Phytochemistry, Gupta College of Technological Sciences, Asansol 713 301, India; (S.B.); (U.C.)
| | - Joshua Pumarol
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA; (J.P.); (C.R.C.)
| | - Courtney R. Croley
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA; (J.P.); (C.R.C.)
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA; (J.P.); (C.R.C.)
| |
Collapse
|
13
|
Arshad S, Naveed M, Ullia M, Javed K, Butt A, Khawar M, Amjad F. Targeting STAT-3 signaling pathway in cancer for development of novel drugs: Advancements and challenges. Genet Mol Biol 2020; 43:e20180160. [PMID: 32167126 PMCID: PMC7198026 DOI: 10.1590/1678-4685-gmb-2018-0160] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Accepted: 10/20/2018] [Indexed: 12/25/2022] Open
Abstract
Signal transducers and activators of transcription 3 (STAT-3) is a transcription
factor that regulates the gene expression of several target genes. These factors
are activated by the binding of cytokines and growth factors with STAT-3
specific receptors on cell membrane. Few years ago, STAT-3 was considered an
acute phase response element having several cellular functions such as
inflammation, cell survival, invasion, metastasis and proliferation, genetic
alteration, and angiogenesis. STAT-3 is activated by several types of
inflammatory cytokines, carcinogens, viruses, growth factors, and oncogenes.
Thus, the STAT3 pathway is a potential target for cancer therapeutics. Abnormal
STAT-3 activity in tumor development and cellular transformation can be targeted
by several genomic and pharmacological methodologies. An extensive review of the
literature has been conducted to emphasize the role of STAT-3 as a unique cancer
drug target. This review article discusses in detail the wide range of STAT-3
inhibitors that show antitumor effects both in vitro and
in vivo. Thus, targeting constitutive STAT-3 signaling is a
remarkable therapeutic methodology for tumor progression. Finally, current
limitations, trials and future perspectives of STAT-3 inhibitors are also
critically discussed.
Collapse
Affiliation(s)
- Sundas Arshad
- University of Lahore, Department of Allied Health Sciences, Gujrat Campus, Pakistan
| | - Muhammad Naveed
- University of Central Punjab, Faculty of life sciences, Department of Biotechnology, Lahore, Pakistan
| | - Mahad Ullia
- University of Gujrat, Department of Biochemistry and Biotechnology Sialkot sub Campus, Pakistan
| | - Khadija Javed
- University of Gujrat, Department of Biochemistry and Biotechnology Sialkot sub Campus, Pakistan
| | - Ayesha Butt
- University of Gujrat, Department of Biochemistry and Biotechnology Sialkot sub Campus, Pakistan
| | - Masooma Khawar
- University of Gujrat, Department of Biochemistry and Biotechnology Sialkot sub Campus, Pakistan
| | - Fazeeha Amjad
- University of Gujrat, Department of Biochemistry and Biotechnology Sialkot sub Campus, Pakistan
| |
Collapse
|
14
|
Chen Q, Lv J, Yang W, Xu B, Wang Z, Yu Z, Wu J, Yang Y, Han Y. Targeted inhibition of STAT3 as a potential treatment strategy for atherosclerosis. Theranostics 2019; 9:6424-6442. [PMID: 31588227 PMCID: PMC6771242 DOI: 10.7150/thno.35528] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 07/10/2019] [Indexed: 02/06/2023] Open
Abstract
Atherosclerosis is the main pathological basis of ischemic cardiovascular and cerebrovascular diseases and has attracted more attention in recent years. Multiple studies have demonstrated that the signal transducer and activator of transcription 3 (STAT3) plays essential roles in the process of atherosclerosis. Moreover, aberrant STAT3 activation has been shown to contribute to the occurrence and development of atherosclerosis. Therefore, the study of STAT3 inhibitors has gradually become a focal research topic. In this review, we describe the crucial roles of STAT3 in endothelial cell dysfunction, macrophage polarization, inflammation, and immunity during atherosclerosis. STAT3 in mitochondria is mentioned as well. Then, we present a summary and classification of STAT3 inhibitors, which could offer potential treatment strategies for atherosclerosis. Furthermore, we enumerate some of the problems that have interfered with the development of mature therapies utilizing STAT3 inhibitors to treat atherosclerosis. Finally, we propose ideas that may help to solve these problems to some extent. Collectively, this review may be useful for developing future STAT3 inhibitor therapies for atherosclerosis.
Collapse
|
15
|
Erdman VV, Nasibullin TR, Tuktarova IA, Somova RS, Mustafina OE. Association Analysis of Polymorphic Gene Variants in the JAK/STAT Signaling Pathway with Aging and Longevity. RUSS J GENET+ 2019. [DOI: 10.1134/s1022795419050077] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
16
|
Robinson RL, Sharma A, Bai S, Heneidi S, Lee TJ, Kodeboyina SK, Patel N, Sharma S. Comparative STAT3-Regulated Gene Expression Profile in Renal Cell Carcinoma Subtypes. Front Oncol 2019; 9:72. [PMID: 30863721 PMCID: PMC6399114 DOI: 10.3389/fonc.2019.00072] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 01/25/2019] [Indexed: 12/15/2022] Open
Abstract
Renal cell carcinomas (RCC) are heterogeneous and can be further classified into three major subtypes including clear cell, papillary and chromophobe. Signal transducer and activator of transcription 3 (STAT3) is commonly hyperactive in many cancers and is associated with cancer cell proliferation, invasion, migration, and angiogenesis. In renal cell carcinoma, increased STAT3 activation is associated with increased metastasis and worse survival outcomes, but clinical trials targeting the STAT3 signaling pathway have shown varying levels of success in different RCC subtypes. Using RNA-seq data from The Cancer Genome Atlas (TCGA), we compared expression of 32 STAT3 regulated genes in 3 RCC subtypes. Our results indicate that STAT3 activation plays the most significant role in clear cell RCC relative to the other subtypes, as half of the evaluated genes were upregulated in this subtype. MMP9, BIRC5, and BCL2 were upregulated and FOS was downregulated in all three subtypes. Several genes including VEGFA, VIM, MYC, ITGB4, ICAM1, MMP1, CCND1, STMN1, TWIST1, and PIM2 had variable expression in RCC subtypes and are potential therapeutic targets for personalized medicine.
Collapse
Affiliation(s)
- Rebekah L Robinson
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Ashok Sharma
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States.,Department of Population Health Sciences, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Shan Bai
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Saleh Heneidi
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Tae Jin Lee
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Sai Karthik Kodeboyina
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Nikhil Patel
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Shruti Sharma
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States.,Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| |
Collapse
|
17
|
Khanam R, Hejazi II, Shahabuddin S, Bhat AR, Athar F. Pharmacokinetic evaluation, molecular docking and in vitro biological evaluation of 1, 3, 4-oxadiazole derivatives as potent antioxidants and STAT3 inhibitors. J Pharm Anal 2018; 9:133-141. [PMID: 31011470 PMCID: PMC6460303 DOI: 10.1016/j.jpha.2018.12.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 12/01/2018] [Accepted: 12/04/2018] [Indexed: 02/06/2023] Open
Abstract
1, 3, 4-Oxadiazole derivatives (4a–5f) were previously synthesized to investigate their anticancer properties. However, studies relating to their antioxidant potential and signal transducer and activator of transcription (STAT) inhibition have not been performed. We investigated previously synthesized 1, 3, 4-oxadiazole derivatives (4a–5f) for various radical scavenging properties using several in vitro antioxidant assays and also for direct inhibition of STAT3 through molecular docking. The data obtained from various antioxidant assays such as 2, 2,-diphenyl-1-picrylhydrazyl radical (DPPH), nitric oxide, hydrogen peroxide, and superoxide anion radical revealed that among all the derivatives, compound 5e displayed high antioxidant activities than the standard antioxidant L-ascorbic acid. Additionally, the total reduction assay and antioxidant capacity assay further confirmed the antioxidant potential of compound 5e. Furthermore, the molecular docking studies performed for all derivatives along with the standard inhibitor STX-0119 showed that binding energy released in direct binding with the SH2 domain of STAT3 was the highest for compound 5e (-9.91kcal/mol). Through virtual screening, compound 5e was found to exhibit optimum competency in inhibiting STAT3 activity. Compound 5e decreased the activation of STAT3 as observed with Western blot. In brief, compound 5e was identified as a potent antioxidant agent and STAT3 inhibitor and effective agent for cancer treatment.
Collapse
Affiliation(s)
- Rashmin Khanam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Iram I Hejazi
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Syed Shahabuddin
- Research Centre for Nano-Materials and Energy Technology (RCNMET), School of Science and Technology, Sunway University, 47500 Selangor, Malaysia
| | - Abdul R Bhat
- Department of Chemistry, Sri Pratap College, Cluster University, Srinagar 190001, India
| | - Fareeda Athar
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| |
Collapse
|
18
|
West AJ, Tsui V, Stylli SS, Nguyen HPT, Morokoff AP, Kaye AH, Luwor RB. The role of interleukin-6-STAT3 signalling in glioblastoma. Oncol Lett 2018; 16:4095-4104. [PMID: 30250528 PMCID: PMC6144698 DOI: 10.3892/ol.2018.9227] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 04/26/2018] [Indexed: 12/18/2022] Open
Abstract
Glioblastoma is the most common type of malignant brain tumor among adults and is currently a non-curable disease due primarily to its highly invasive phenotype, and the lack of successful current therapies. Despite surgical resection and post-surgical treatment patients ultimately develop recurrence of the tumour. Several signalling molecules have been implicated in the development, progression and aggressiveness of glioblastoma. The present study reviewed the role of interleukin (IL)-6, a cytokine known to be important in activating several pro-oncogenic signaling pathways in glioblastoma. The current study particularly focused on the contribution of IL-6 in recurrent glioblastoma, with particular focus on glioblastoma stem cells and resistance to therapy.
Collapse
Affiliation(s)
- Alice J West
- Department of Surgery, The University of Melbourne, The Royal Melbourne Hospital, Parkville, VIC 3050, Australia
| | - Vanessa Tsui
- Department of Surgery, The University of Melbourne, The Royal Melbourne Hospital, Parkville, VIC 3050, Australia
| | - Stanley S Stylli
- Department of Surgery, The University of Melbourne, The Royal Melbourne Hospital, Parkville, VIC 3050, Australia.,Department of Neurosurgery, The Royal Melbourne Hospital, Parkville, VIC 3050, Australia
| | - Hong P T Nguyen
- Department of Surgery, The University of Melbourne, The Royal Melbourne Hospital, Parkville, VIC 3050, Australia
| | - Andrew P Morokoff
- Department of Surgery, The University of Melbourne, The Royal Melbourne Hospital, Parkville, VIC 3050, Australia.,Department of Neurosurgery, The Royal Melbourne Hospital, Parkville, VIC 3050, Australia
| | - Andrew H Kaye
- Department of Surgery, The University of Melbourne, The Royal Melbourne Hospital, Parkville, VIC 3050, Australia.,Department of Neurosurgery, The Royal Melbourne Hospital, Parkville, VIC 3050, Australia
| | - Rodney B Luwor
- Department of Surgery, The University of Melbourne, The Royal Melbourne Hospital, Parkville, VIC 3050, Australia
| |
Collapse
|
19
|
A novel small molecular STAT3 inhibitor, 5Br-6b, induces apoptosis and inhibits migration in colorectal cancer cells. Anticancer Drugs 2018; 29:402-410. [DOI: 10.1097/cad.0000000000000605] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
20
|
Discovery of new benzensulfonamide derivatives as tripedal STAT3 inhibitors. Eur J Med Chem 2018; 151:752-764. [DOI: 10.1016/j.ejmech.2018.03.053] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 03/16/2018] [Accepted: 03/17/2018] [Indexed: 01/08/2023]
|
21
|
Chen Y, Ji M, Zhang S, Xue N, Xu H, Lin S, Chen X. Bt354 as a new STAT3 signaling pathway inhibitor against triple negative breast cancer. J Drug Target 2018; 26:920-930. [DOI: 10.1080/1061186x.2018.1452244] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yue Chen
- State Key laboratory of Bioactive Substances and Functions of Natural Medicines, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ming Ji
- State Key laboratory of Bioactive Substances and Functions of Natural Medicines, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shen Zhang
- State Key laboratory of Bioactive Substances and Functions of Natural Medicines, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Nina Xue
- State Key laboratory of Bioactive Substances and Functions of Natural Medicines, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Heng Xu
- State Key laboratory of Bioactive Substances and Functions of Natural Medicines, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Songwen Lin
- State Key laboratory of Bioactive Substances and Functions of Natural Medicines, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoguang Chen
- State Key laboratory of Bioactive Substances and Functions of Natural Medicines, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
22
|
Orlova A, Wingelhofer B, Neubauer HA, Maurer B, Berger-Becvar A, Keserű GM, Gunning PT, Valent P, Moriggl R. Emerging therapeutic targets in myeloproliferative neoplasms and peripheral T-cell leukemia and lymphomas. Expert Opin Ther Targets 2017; 22:45-57. [PMID: 29148847 PMCID: PMC5743003 DOI: 10.1080/14728222.2018.1406924] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Introduction: Hematopoietic neoplasms are often driven by gain-of-function mutations of the JAK-STAT pathway together with mutations in chromatin remodeling and DNA damage control pathways. The interconnection between the JAK-STAT pathway, epigenetic regulation or DNA damage control is still poorly understood in cancer cell biology. Areas covered: Here, we focus on a broader description of mutational insights into myeloproliferative neoplasms and peripheral T-cell leukemia and lymphomas, since sequencing efforts have identified similar combinations of driver mutations in these diseases covering different lineages. We summarize how these pathways might be interconnected in normal or cancer cells, which have lost differentiation capacity and drive oncogene transcription. Expert opinion: Due to similarities in driver mutations including epigenetic enzymes, JAK-STAT pathway activation and mutated checkpoint control through TP53, we hypothesize that similar therapeutic approaches could be of benefit in these diseases. We give an overview of how driver mutations in these malignancies contribute to hematopoietic cancer initiation or progression, and how these pathways can be targeted with currently available tools.
Collapse
Affiliation(s)
- Anna Orlova
- a Institute of Animal Breeding and Genetics , University of Veterinary Medicine Vienna , Vienna , Austria.,b Ludwig Boltzmann Institute for Cancer Research , Vienna , Austria
| | - Bettina Wingelhofer
- a Institute of Animal Breeding and Genetics , University of Veterinary Medicine Vienna , Vienna , Austria.,b Ludwig Boltzmann Institute for Cancer Research , Vienna , Austria
| | - Heidi A Neubauer
- a Institute of Animal Breeding and Genetics , University of Veterinary Medicine Vienna , Vienna , Austria.,b Ludwig Boltzmann Institute for Cancer Research , Vienna , Austria
| | - Barbara Maurer
- c Institute of Pharmacology and Toxicology , University of Veterinary Medicine Vienna , Vienna , Austria
| | - Angelika Berger-Becvar
- g Department of Chemical & Physical Sciences , University of Toronto Mississauga , Mississauga , Canada.,h Department of Chemistry , University of Toronto , Toronto , Canada
| | - György Miklós Keserű
- d Medicinal Chemistry Research Group, Research Centre for Natural Sciences , Hungarian Academy of Sciences , Budapest , Hungary
| | - Patrick T Gunning
- g Department of Chemical & Physical Sciences , University of Toronto Mississauga , Mississauga , Canada.,h Department of Chemistry , University of Toronto , Toronto , Canada
| | - Peter Valent
- e Department of Internal Medicine I, Division of Hematology and Hemostaseology , Medical University of Vienna , Vienna , Austria.,f Ludwig Boltzmann-Cluster Oncology , Medical University of Vienna , Vienna , Austria
| | - Richard Moriggl
- a Institute of Animal Breeding and Genetics , University of Veterinary Medicine Vienna , Vienna , Austria.,b Ludwig Boltzmann Institute for Cancer Research , Vienna , Austria.,i Medical University Vienna , Vienna , Austria
| |
Collapse
|
23
|
Helicteric Acid, Oleanic Acid, and Betulinic Acid, Three Triterpenes from Helicteres angustifolia L., Inhibit Proliferation and Induce Apoptosis in HT-29 Colorectal Cancer Cells via Suppressing NF- κB and STAT3 Signaling. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:5180707. [PMID: 28331523 PMCID: PMC5346361 DOI: 10.1155/2017/5180707] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 02/08/2017] [Indexed: 12/26/2022]
Abstract
Colorectal cancer (CRC) is one of the most common malignancies and most frequent cause of cancer death worldwide. The activation of both NF-κB and STAT3 signaling and the crosstalk between them play an important role in colorectal tumor. Helicteres angustifolia L. is a type of commonly used Chinese medicinal herb and possesses a wide variety of biological activities. In the present study, we investigate the effects of three triterpenes from H. angustifolia (HT) such as helicteric acid (HA), oleanic acid (OA), and betulinic acid (BA), on inhibiting CRC progression. Our results showed that HT extracts could decrease proliferation and induce apoptosis in HT-29 colorectal cancer cells. Moreover, HT extracts could suppress LPS-triggered phosphorylation of IKK, IκB, and NF-κB, attenuate IL-6-induced phosphorylation of JAK2 and STAT3, and suppress the expression of c-Myc, cyclin-D1, and BCL-xL, the downstream gene targets of NF-κB and STAT3. Therefore, HT extracts showed potent therapeutic and antitumor effects on CRC via inhibiting NF-κB and STAT3 signaling.
Collapse
|
24
|
Ferraz ERA, Fernandes AS, Salviano I, Felzenszwalb I, Mencalha AL. Investigation of the mutagenic and genotoxic activities of LLL-3, a STAT3 inhibitor. Drug Chem Toxicol 2017; 40:30-35. [PMID: 28140701 DOI: 10.3109/01480545.2016.1167901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
LLL-3, an anthracene derived compound, has been shown to be a promising therapeutic agent for the treatment of some kinds of cancer such as chronic myeloid leukemia and glioblastoma. However, no data regarding the toxic properties of this compound have yet been described in the literature. The present work aimed to investigate the mutagenic and genotoxic activities of LLL-3 using the TA97, TA98, TA100, TA102 and TA104 Salmonella/microsome strains for the Ames test and the micronucleus assay with the mouse macrophage cell line RAW 264.7. The findings showed that LLL-3, at doses of 0.001, 0.01, 0.1, 1.0 and 10.0 μg/plate, did not induce mutagenic activity in the Salmonella strains used under the conditions tested, and nor did it present genotoxicity in RAW 264.7 cells, at 10.0, 100.0 and 1000.0 μg/mL doses. Moreover, it is important to point out that the mitotic index of the cells decreased after exposure to LLL-3 under the same conditions tested, which may suggest some cytostatic effect, since this compound acts by inhibiting STAT3. Since most drugs used in the treatment of cancer present mutagenic activity as an adverse effect, these results suggest that LLL-3 is a promising drug for cancer therapy.
Collapse
Affiliation(s)
- E R A Ferraz
- a Environmental Mutagenesis Laboratory, Department of Biophysics and Biometry, Roberto Alcantra Gomes Biology Institute, University of the State of Rio de Janeiro , Rio de Janeiro , RJ , Brazil.,b School of Pharmacy, Fluminense Federal University , Niteroi , RJ , Brazil , and
| | - A S Fernandes
- a Environmental Mutagenesis Laboratory, Department of Biophysics and Biometry, Roberto Alcantra Gomes Biology Institute, University of the State of Rio de Janeiro , Rio de Janeiro , RJ , Brazil
| | - I Salviano
- c Laboratory of Cancer Biology , Department of Biophysics and Biometry, Roberto Alcantra Gomes Biology Institute, University of the State of Rio de Janeiro , Rio de Janeiro , RJ , Brazil
| | - I Felzenszwalb
- a Environmental Mutagenesis Laboratory, Department of Biophysics and Biometry, Roberto Alcantra Gomes Biology Institute, University of the State of Rio de Janeiro , Rio de Janeiro , RJ , Brazil
| | - A L Mencalha
- c Laboratory of Cancer Biology , Department of Biophysics and Biometry, Roberto Alcantra Gomes Biology Institute, University of the State of Rio de Janeiro , Rio de Janeiro , RJ , Brazil
| |
Collapse
|
25
|
Furtek SL, Matheson CJ, Backos DS, Reigan P. Evaluation of quantitative assays for the identification of direct signal transducer and activator of transcription 3 (STAT3) inhibitors. Oncotarget 2016; 7:77998-78008. [PMID: 27793003 PMCID: PMC5363639 DOI: 10.18632/oncotarget.12868] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 10/13/2016] [Indexed: 12/22/2022] Open
Abstract
In many forms of cancer the signal transducer and activator of transcription 3 (STAT3) transcription factor remains constitutively active, driving cancer survival and progression. The critical role of STAT3 in tumorigenesis has prompted a campaign of drug discovery programs to identify small molecules that disrupt the function of STAT3, with more recent efforts focusing on direct STAT3 inhibition. There are two target binding sites for direct STAT3 inhibitors: the SH2 dimerization domain and the DNA-binding domain. An in vitro fluorescence polarization assay, using recombinant STAT3 protein, has successfully identified compounds that target the SH2 domain; however, no assay has been reported to identify inhibitors that bind the DNA-binding domain. The lack of such a quantitative assay has limited the identification and development of STAT3 DNA-binding domain inhibitors. Here, we report a modified DNA-binding ELISA to incorporate recombinant STAT3 protein to evaluate small molecules that prevent STAT3-DNA binding. The concomitant use of the ELISA and fluorescence polarization assay enables the classification of direct STAT3 inhibitors by their site of action. Our data provide further support that niclosamide inhibits STAT3 through interaction with the DNA-binding domain. Furthermore, the ELISA can support medicinal chemistry efforts by identifying DNA-binding domain inhibitors and allowing the determination of an IC50 value, supporting the ranking of inhibitors and development of structure-activity relationships. Therefore, we propose a tandem evaluation approach to identify small molecules that target the SH2 domain or the DNA-binding domain of STAT3, which allows for quantitative evaluation of candidate STAT3 inhibitors.
Collapse
Affiliation(s)
- Steffanie L. Furtek
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Christopher J. Matheson
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Donald S. Backos
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Philip Reigan
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| |
Collapse
|
26
|
Zhang W, Ma T, Li S, Yang Y, Guo J, Yu W, Kong L. Antagonizing STAT3 activation with benzo[b]thiophene 1, 1-dioxide based small molecules. Eur J Med Chem 2016; 125:538-550. [PMID: 27718470 DOI: 10.1016/j.ejmech.2016.09.068] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 09/20/2016] [Accepted: 09/21/2016] [Indexed: 01/10/2023]
Abstract
STAT3 is an attractive therapeutic target for cancer therapy. However, due to low potency or poor druggability, none of its inhibitors are clinically available. Herein, a series of aminobenzo[b]thiophene 1, 1-dioxides with good drug-likeness properties were designed, synthesized and evaluated as STAT3 inhibitors. Most of them exhibited higher antitumor activity than the small-molecule STAT3 inhibitor, Stattic. Compound 15 was the most potent and had an IC50 range in 0.33-0.75 μM in various cancer cell lines. The overexpressed and IL-6 induced phosphorylation levels of STAT3 were both inhibited by 15 without influencing the phosphorylation levels of the upstream kinases Src and Jak2. 15 also suppressed the expressions of STAT3 downstream gene, Bcl-2. 15 effectively increased the ROS levels of cancer cells, induced cancer cell apoptosis and abolished the colony formation ability of cancer cells without affecting bypass kinase p-Erk. Furthermore, 15in vivo induced significant antitumor responses, and exhibited less toxicity than Doxorubicin. Together, this study described a class of new STAT3 inhibitors as antitumor agents.
Collapse
Affiliation(s)
- Wenda Zhang
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Ting Ma
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Shanshan Li
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Yanwei Yang
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Jianpeng Guo
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Wenying Yu
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China.
| | - Lingyi Kong
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China.
| |
Collapse
|
27
|
Stat3 contributes to cancer progression by regulating Jab1/Csn5 expression. Oncogene 2016; 36:1069-1079. [PMID: 27524414 PMCID: PMC5311075 DOI: 10.1038/onc.2016.271] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 06/04/2016] [Accepted: 06/22/2016] [Indexed: 12/12/2022]
Abstract
Our previous studies demonstrated that Jab1/Csn5 overexpression is correlated with low survival rates in cancer patients, including nasopharyngeal carcinoma (NPC), breast cancer and hepatocellular carcinoma, and contributes to NPC's resistance to radiotherapy and cisplatin by regulating DNA damage and repair pathways. However, the molecular mechanism by which Jab1/Csn5 expression is upregulated in NPCs has yet to be determined. In the present study, we identified the upstream regulator of Jab1/Csn5 expression and demonstrated its role in intrinsic resistance of NPC cells to treatment with cisplatin. Signal transducer and activator of transcription-3 (Stat3) expression correlates with and contributes to Jab1/Csn5 transcription. Consistently, silencing of Stat3 in tumors reduced Jab1/Csn5 expression, thereby sensitizing NPC cells to cisplatin-induced apoptosis both in vitro and in vivo. Mechanistically, Stat3 transcriptionally regulated Jab1/Csn5. Furthermore, high mRNA expression levels of Stat3 or Jab1 in colon cancer, breast cancer and glioblastoma are associated with significantly shorter survival times from the R2 online database. These findings identify a novel Stat3-Jab1/Csn5 signaling axis in cancer pathogenesis with therapeutic and prognostic relevance.
Collapse
|
28
|
Kang J, Chong SJF, Ooi VZQ, Vali S, Kumar A, Kapoor S, Abbasi T, Hirpara JL, Loh T, Goh BC, Pervaiz S. Overexpression of Bcl-2 induces STAT-3 activation via an increase in mitochondrial superoxide. Oncotarget 2016; 6:34191-205. [PMID: 26430964 PMCID: PMC4741445 DOI: 10.18632/oncotarget.5763] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 09/07/2015] [Indexed: 01/28/2023] Open
Abstract
We recently reported a novel interaction between Bcl-2 and Rac1 and linked that to the ability of Bcl-2 to induce a pro-oxidant state in cancer cells. To gain further insight into the functional relevance of this interaction, we utilized computer simulation based on the protein pathway dynamic network created by Cellworks Group Inc. STAT3 was identified among targets that positively correlated with Rac1 and/or Bcl-2 expression levels. Validating this, the activation level of STAT3, as marked by p-Tyr705, particularly in the mitochondria, was significantly higher in Bcl-2-overexpressing cancer cells. Bcl-2-induced STAT3 activation was a function of GTP-loaded Rac1 and NADPH oxidase (Nox)-dependent increase in intracellular superoxide (O2•−). Furthermore, ABT199, a BH-3 specific inhibitor of Bcl-2, as well as silencing of Bcl-2 blocked STAT3 phosphorylation. Interestingly, while inhibiting intracellular O2•− blocked STAT3 phosphorylation, transient overexpression of wild type STAT3 resulted in a significant increase in mitochondrial O2•− production, which was rescued by the functional mutants of STAT3 (Y705F). Notably, a strong correlation between the expression and/or phosphorylation of STAT3 and Bcl-2 was observed in primary tissues derived from patients with different sub-sets of B cell lymphoma. These data demonstrate the presence of a functional crosstalk between Bcl-2, Rac1 and activated STAT3 in promoting a permissive redox milieu for cell survival. Results also highlight the potential utility of a signature involving Bcl-2 overexpression, Rac1 activation and STAT3 phosphorylation for stratifying clinical lymphomas based on disease severity and chemoresistance.
Collapse
Affiliation(s)
- Jia Kang
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Stephen Jun Fei Chong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Vignette Zi Qi Ooi
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | | | - Ansu Kumar
- Cellworks Research India Private Limited, Bangalore, India
| | - Shweta Kapoor
- Cellworks Research India Private Limited, Bangalore, India
| | | | - Jayshree L Hirpara
- Experimental Therapeutics Program, Cancer Science Institute, Singapore, Singapore
| | - Thomas Loh
- Department of Otolaryngology, National University Healthcare System, Singapore, Singapore
| | - Boon Cher Goh
- Experimental Therapeutics Program, Cancer Science Institute, Singapore, Singapore
| | - Shazib Pervaiz
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore.,National University Cancer Institute, NUHS, Singapore, Singapore.,School of Biomedical Sciences, Curtin University, Perth, Australia
| |
Collapse
|
29
|
Zimmers TA, Fishel ML, Bonetto A. STAT3 in the systemic inflammation of cancer cachexia. Semin Cell Dev Biol 2016; 54:28-41. [PMID: 26860754 PMCID: PMC4867234 DOI: 10.1016/j.semcdb.2016.02.009] [Citation(s) in RCA: 161] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 02/04/2016] [Indexed: 02/07/2023]
Abstract
Weight loss is diagnostic of cachexia, a debilitating syndrome contributing mightily to morbidity and mortality in cancer. Most research has probed mechanisms leading to muscle atrophy and adipose wasting in cachexia; however cachexia is a truly systemic phenomenon. Presence of the tumor elicits an inflammatory response and profound metabolic derangements involving not only muscle and fat, but also the hypothalamus, liver, heart, blood, spleen and likely other organs. This global response is orchestrated in part through circulating cytokines that rise in conditions of cachexia. Exogenous Interleukin-6 (IL6) and related cytokines can induce most cachexia symptomatology, including muscle and fat wasting, the acute phase response and anemia, while IL-6 inhibition reduces muscle loss in cancer. Although mechanistic studies are ongoing, certain of these cachexia phenotypes have been causally linked to the cytokine-activated transcription factor, STAT3, including skeletal muscle wasting, cardiac dysfunction and hypothalamic inflammation. Correlative studies implicate STAT3 in fat wasting and the acute phase response in cancer cachexia. Parallel data in non-cancer models and disease states suggest both pathological and protective functions for STAT3 in other organs during cachexia. STAT3 also contributes to cancer cachexia through enhancing tumorigenesis, metastasis and immune suppression, particularly in tumors associated with high prevalence of cachexia. This review examines the evidence linking STAT3 to multi-organ manifestations of cachexia and the potential and perils for targeting STAT3 to reduce cachexia and prolong survival in cancer patients.
Collapse
Affiliation(s)
- Teresa A Zimmers
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, United States; Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202, United States; IU Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, United States; IUPUI Center for Cachexia Research Innovation and Therapy, Indiana University School of Medicine, Indianapolis, IN 46202, United States.
| | - Melissa L Fishel
- IU Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, United States; Department of Pediatrics, Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, United States; Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, United States.
| | - Andrea Bonetto
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, United States; IU Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, United States; IUPUI Center for Cachexia Research Innovation and Therapy, Indiana University School of Medicine, Indianapolis, IN 46202, United States.
| |
Collapse
|
30
|
Mesquita LM, Herrera F, Esteves CV, Lamosa P, André V, Mateus P, Delgado R. Inhibition of the STAT3 Protein by a Dinuclear Macrocyclic Complex. Inorg Chem 2016; 55:3589-98. [PMID: 26999534 DOI: 10.1021/acs.inorgchem.6b00116] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A new diethylenetriamine-derived macrocycle bearing 2-methylpyridyl arms and containing m-xylyl spacers, L, was prepared, and its dinuclear copper(II) and zinc(II) complexes were used as receptors for the recognition in aqueous solution of a phosphorylated peptide derived from a sequence of the STAT3 protein. A detailed study of the acid-base behavior of L and of its complexation properties as well as of the association of the phosphorylated peptide to the receptor was carried out by potentiometry in aqueous solution at 298.2 K and I = 0.10 M in KNO3. The data revealed that the receptor forms stable associations with several protonated forms of the substrate, with constant values ranging from 3.32 to 4.25 log units. The affinity of the receptor for the phosphorylated substrate studied is higher at a pH value where the receptor is mainly in the [Cu2L](4+) form and the pY residue of the substrate is in the dianionic form (pH 6.55). These results, also supported by (31)P NMR studies, showed that the phosphopeptide is bound through the phosphoryl group in a bridging mode. Additionally, the receptor inhibited binding between active (phosphorylated) STAT3 and its target DNA sequence in a dose-dependent manner (IC50 63 ± 3.4 μM) in human nuclear extracts in vitro. Treatment of whole cells with the inhibitor revealed that it is bioactive in living cells and has oncostatic properties that could be interesting for the fight against cancer and other pathologies involving the STAT3 protein.
Collapse
Affiliation(s)
- Lígia M Mesquita
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa , Avenida da República, 2780-157 Oeiras, Portugal
| | - Federico Herrera
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa , Avenida da República, 2780-157 Oeiras, Portugal
| | - Catarina V Esteves
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa , Avenida da República, 2780-157 Oeiras, Portugal
| | - Pedro Lamosa
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa , Avenida da República, 2780-157 Oeiras, Portugal
| | - Vânia André
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa , Avenida Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Pedro Mateus
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa , Avenida da República, 2780-157 Oeiras, Portugal
| | - Rita Delgado
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa , Avenida da República, 2780-157 Oeiras, Portugal
| |
Collapse
|
31
|
Design strategies, structure activity relationship and mechanistic insights for purines as kinase inhibitors. Eur J Med Chem 2016; 112:298-346. [PMID: 26907156 DOI: 10.1016/j.ejmech.2016.02.018] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Revised: 02/04/2016] [Accepted: 02/05/2016] [Indexed: 12/22/2022]
Abstract
Kinases control a diverse set of cellular processes comprising of reversible phosphorylation of proteins. Protein kinases play a pivotal role in human tumor cell proliferation, migration and survival of neoplasia. In the recent past, purine based molecules have emerged as significantly potent kinase inhibitors. In view of their promising potential for the inhibition of kinases, this review article focuses on purines which have progressed as kinase inhibitors during the last five years. A detailed account of the design strategies employed for the synthesis of purine analogs exerting inhibitory effects on diverse kinases has been presented. Apart from presenting the design strategies, the article also highlights the structure activity relationship along with mechanistic insights revealed during the biological evaluation of the purine analogs for kinase inhibition. The interactions with the amino acid residues responsible for kinase inhibitory potential of purine based molecules have also been discussed. In this assemblage, purine based protein kinase inhibitors patented in the past have also been summarized in the tabular form. This compilation will be of great interest for the researchers working in the area of protein kinase inhibitors.
Collapse
|
32
|
Song S, Nguyen AH, Lee JU, Cha M, Sim SJ. Tracking of STAT3 signaling for anticancer drug-discovery based on localized surface plasmon resonance. Analyst 2016; 141:2493-501. [DOI: 10.1039/c5an02397a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The label-free sensor, based on the LSPR shift response by tracking of the STAT3 signaling pathways, is an ultrasensitive for drug screening of anticancer therapy.
Collapse
Affiliation(s)
- Sojin Song
- Department of Chemical and Biological Engineering
- Korea University
- Seoul 136-713
- South Korea
| | - Anh H. Nguyen
- Department of Chemical and Biological Engineering
- Korea University
- Seoul 136-713
- South Korea
| | - Jong Uk Lee
- Department of Chemical and Biological Engineering
- Korea University
- Seoul 136-713
- South Korea
| | - Misun Cha
- Department of Chemical and Biological Engineering
- Korea University
- Seoul 136-713
- South Korea
| | - Sang Jun Sim
- Department of Chemical and Biological Engineering
- Korea University
- Seoul 136-713
- South Korea
- Green School
| |
Collapse
|
33
|
STAT3 inhibition reduces toxicity of oncolytic VSV and provides a potentially synergistic combination therapy for hepatocellular carcinoma. Cancer Gene Ther 2015; 22:317-25. [PMID: 25930184 DOI: 10.1038/cgt.2015.23] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Revised: 03/27/2015] [Accepted: 03/28/2015] [Indexed: 12/19/2022]
Abstract
Hepatocellular carcinoma (HCC) is a refractory malignancy with a high mortality and increasing worldwide incidence rates, including the United States and central Europe. In this study, we demonstrate that a specific inhibitor of signal transducer and activator of transcription 3 (STAT3), NSC74859, efficiently reduces HCC cell proliferation and can be successfully combined with oncolytic virotherapy using vesicular stomatitis virus (VSV). The potential benefits of this combination treatment are strengthened by the ability of NSC74859 to protect primary hepatocytes and nervous system cells against virus-induced cytotoxicity, with an elevation of the VSV maximum tolerated dose in mice. Hereby we propose a strategy for improving the current regimen for HCC treatment and seek to further explore the molecular mechanisms underlying selective oncolytic specificity of VSV.
Collapse
|
34
|
Mali SB. Review of STAT3 (Signal Transducers and Activators of Transcription) in head and neck cancer. Oral Oncol 2015; 51:565-9. [PMID: 25817923 DOI: 10.1016/j.oraloncology.2015.03.004] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 02/25/2015] [Accepted: 03/10/2015] [Indexed: 12/14/2022]
Abstract
STATs can be activated independently of JAKs, most notably by c-Src kinases. In cancer cells, STAT3 and STAT5 activation leads to the increased expression of downstream target genes, leading to increased cell proliferation, cell survival, angiogenesis, and immune system evasion. STAT3 and STAT5 are expressed and activated in head and neck squamous cell carcinoma where they contribute to cell survival and proliferation. STATs can be activated by a number of signal transduction pathways, including the epidermal growth factor receptor (EGFR), nicotinic receptor, interleukin (IL) receptor, and erythropoietin receptor pathways. Identifying agents that inhibit STAT-3, a cytosolic transcription factor involved in the activation of various genes implicated in tumor progression is a promising strategy for cancer chemoprevention. Several approaches have been used to inhibit STAT3 in the hope of developing an antitumor agent. Although several STAT3-specific agents are promising, none are in clinical development, mostly because of drug delivery and stability issues.
Collapse
|
35
|
Jeon YJ, Jung SN, Yun J, Lee CW, Choi J, Lee YJ, Han DC, Kwon BM. Ginkgetin inhibits the growth of DU-145 prostate cancer cells through inhibition of signal transducer and activator of transcription 3 activity. Cancer Sci 2015; 106:413-20. [PMID: 25611086 PMCID: PMC4409885 DOI: 10.1111/cas.12608] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 01/07/2015] [Accepted: 01/09/2015] [Indexed: 12/26/2022] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3) is constitutively activated in human cancers. Therefore, STAT3 is a therapeutic target of cancer drug discovery. We previously reported that natural products inhibited constitutively activated STAT3 in human prostate tumor cells. We used a dual-luciferase assay to screen 200 natural products isolated from herbal medicines and we identified ginkgetin obtained from the leaves of Ginkgo biloba L. as a STAT3 inhibitor. Ginkgetin inhibited both inducible and constitutively activated STAT3 and blocked the nuclear translocation of p-STAT3 in DU-145 prostate cancer cells. Furthermore, ginkgetin selectively inhibited the growth of prostate tumor cells stimulated with activated STAT3. Ginkgetin induced STAT3 dephosphorylation at Try705 and inhibited its localization to the nucleus, leading to the inhibition of expression of STAT3 target genes such as cell survival-related genes (cyclin D1 and survivin) and anti-apoptotic proteins (Bcl-2 and Bcl-xL). Therefore, ginkgetin inhibited the growth of STAT3-activated tumor cells. We also found that ginkgetin inhibited tumor growth in xenografted nude mice and downregulated p-STAT3(Tyr705) and survivin in tumor tissues. This is the first report that ginkgetin exerts antitumor activity by inhibiting STAT3. Therefore, ginkgetin is a good STAT3 inhibitor and may be a useful lead molecule for development of a therapeutic STAT3 inhibitor.
Collapse
Affiliation(s)
- Yoon Jung Jeon
- Laboratory of Chemical Biology and Genomics, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea; Korea University of Science and Technology, Daejeon, Korea
| | | | | | | | | | | | | | | |
Collapse
|
36
|
In vitro and in vivo antitumor activity of a novel semisynthetic derivative of cucurbitacin B. PLoS One 2015; 10:e0117794. [PMID: 25674792 PMCID: PMC4326133 DOI: 10.1371/journal.pone.0117794] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 12/31/2014] [Indexed: 01/11/2023] Open
Abstract
Lung cancer is the most deadly type of cancer in humans, with non-small-cell lung cancer (NSCLC) being the most frequent and aggressive type of lung cancer showing high resistance to radiation and chemotherapy. Despite the outstanding progress made in anti-tumor therapy, discovering effective anti-tumor drugs is still a challenging task. Here we describe a new semisynthetic derivative of cucurbitacin B (DACE) as a potent inhibitor of NSCLC cell proliferation. DACE arrested the cell cycle of lung epithelial cells at the G2/M phase and induced cell apoptosis by interfering with EGFR activation and its downstream signaling, including AKT, ERK, and STAT3. Consistent with our in vitro studies, intraperitoneal application of DACE significantly suppressed the growth of mouse NSCLC that arises from type II alveolar pneumocytes due to constitutive expression of a human oncogenic c-RAF kinase (c-RAF-1-BxB) transgene in these cells. Taken together, these findings suggest that DACE is a promising lead compound for the development of an anti-lung-cancer drug.
Collapse
|
37
|
Trivedi S, Concha-Benavente F, Srivastava RM, Jie HB, Gibson SP, Schmitt NC, Ferris RL. Immune biomarkers of anti-EGFR monoclonal antibody therapy. Ann Oncol 2015; 26:40-47. [PMID: 24997207 PMCID: PMC4269339 DOI: 10.1093/annonc/mdu156] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 04/08/2014] [Accepted: 04/09/2014] [Indexed: 12/23/2022] Open
Abstract
The tumor antigen (TA)-targeted monoclonal antibodies (mAb) cetuximab and panitumumab target the human epidermal growth factor receptor and have been integrated into treatment regimens for advanced squamous cell carcinoma of the head and neck (SCCHN). The therapeutic efficacy of these mAbs has been found to be enhanced when combined with radiotherapy and chemotherapy. However, clinical trials indicate that these findings are limited to fewer than 20% of treated patients. Therefore, identifying patients who are likely to benefit from these agents is crucial to improving therapeutic strategies. Interestingly, it has been noted that TA-targeted mAbs mediate their effects by contributing to cell-mediated cytotoxicity in addition to inhibition of downstream signaling pathways. Here, we describe the potential immunogenic mechanisms underlying these clinical findings, their role in the varied clinical response and identify the putative biomarkers of antitumor activity. We review potential immunological biomarkers that affect mAb therapy in SCCHN patients, the implications of these findings and how they translate to the clinical scenario, which are critical to improving patient selection and ultimately outcomes for patients undergoing therapy.
Collapse
Affiliation(s)
- S Trivedi
- Department of Otolaryngology, University of Pittsburgh School of Medicine
| | | | - R M Srivastava
- Department of Otolaryngology, University of Pittsburgh School of Medicine
| | - H B Jie
- Department of Otolaryngology, University of Pittsburgh School of Medicine
| | - S P Gibson
- Department of Otolaryngology, University of Pittsburgh School of Medicine
| | - N C Schmitt
- Department of Otolaryngology, University of Pittsburgh School of Medicine
| | - R L Ferris
- Department of Otolaryngology, University of Pittsburgh School of Medicine; Department of Immunology, University of Pittsburgh; Cancer Immunology Program, University of Pittsburgh Cancer Institute, Pittsburgh, USA.
| |
Collapse
|
38
|
Jiang N, Sun R, Sun Q. Leptin signaling molecular actions and drug target in hepatocellular carcinoma. DRUG DESIGN DEVELOPMENT AND THERAPY 2014; 8:2295-302. [PMID: 25484575 PMCID: PMC4238752 DOI: 10.2147/dddt.s69004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Previous reports indicate that over 13 different tumors, including hepatocellular carcinoma (HCC), are related to obesity. Obesity-associated inflammatory, metabolic, and endocrine mediators, as well as the functioning of the gut microbiota, are suspected to contribute to tumorigenesis. In obese people, proinflammatory cytokines/chemokines including tumor necrosis factor-alpha, interleukin (IL)-1 and IL-6, insulin and insulin-like growth factors, adipokines, plasminogen activator inhibitor-1, adiponectin, and leptin are found to play crucial roles in the initiation and development of cancer. The cytokines induced by leptin in adipose tissue or tumor cells have been intensely studied. Leptin-induced signaling pathways are critical for biological functions such as adiposity, energy balance, endocrine function, immune reaction, and angiogenesis as well as oncogenesis. Leptin is an activator of cell proliferation and anti-apoptosis in several cell types, and an inducer of cancer stem cells; its critical roles in tumorigenesis are based on its oncogenic, mitogenic, proinflammatory, and pro-angiogenic actions. This review provides an update of the pathological effects of leptin signaling with special emphasis on potential molecular mechanisms and therapeutic targeting, which could potentially be used in future clinical settings. In addition, leptin-induced angiogenic ability and molecular mechanisms in HCC are discussed. The stringent binding affinity of leptin and its receptor Ob-R, as well as the highly upregulated expression of both leptin and Ob-R in cancer cells compared to normal cells, makes leptin an ideal drug target for the prevention and treatment of HCC, especially in obese patients.
Collapse
Affiliation(s)
- Nan Jiang
- Shandong University School of Medicine, Jinan, Shandong Province, People's Republic of China
| | - Rongtong Sun
- Weihai Municipal Hospital, Weihai, Shandong Province, People's Republic of China
| | - Qing Sun
- Department of Pathology, QianFoShan Hospital Affiliated to Shandong University, Jinan, Shandong Province, People's Republic of China
| |
Collapse
|
39
|
Wang SW, Hu J, Guo QH, Zhao Y, Cheng JJ, Zhang DS, Fei Q, Li J, Sun YM. AZD1480, a JAK inhibitor, inhibits cell growth and survival of colorectal cancer via modulating the JAK2/STAT3 signaling pathway. Oncol Rep 2014; 32:1991-8. [PMID: 25216185 DOI: 10.3892/or.2014.3477] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 08/18/2014] [Indexed: 11/05/2022] Open
Abstract
Interleukin (IL)-6 and the downstream Janus kinase (JAK)/signal activator of transcription (STAT) pathway have been found to be important in the development of colorectal cancer (CRC). To develop novel therapies for CRC, we have explored the effects of a novel small-molecule JAK inhibitor (AZD1480) on IL-6/JAK/STAT3 pathway and its potential antitumor activity on the human CRC cell lines (HCT116, HT29 and SW480). The results showed that, AZD1480 effectively prevents constitutive and IL-6-induced JAK2 and STAT-3 phosphorylation and exerted antitumor functional effects by a decrease in proliferation and an increase in apoptosis in CRC cells. The inhibition of tumorigenesis was consistent with the decreased phosphorylated JAK2 and phosphorylated STAT3, and the decreased expression of STAT3‑targeted genes c-Myc, cyclin D2 and IL-6. Thus, AZD1480 is a potential new clinical therapeutic agent for patients with CRC.
Collapse
Affiliation(s)
- Shu-Wei Wang
- Department of Colorectal Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Jun Hu
- Department of Colorectal Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Qin-Hao Guo
- Department of Colorectal Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yan Zhao
- Department of Colorectal Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Jie-Jing Cheng
- Department of Colorectal Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Dong-Sheng Zhang
- Department of Colorectal Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Qiang Fei
- Department of Colorectal Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Juan Li
- Department of Colorectal Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yue-Ming Sun
- Department of Colorectal Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
40
|
Zhou W, Tian Y, Gong H, Guo S, Luo C. Oncogenic role and therapeutic target of leptin signaling in colorectal cancer. Expert Opin Ther Targets 2014; 18:961-71. [PMID: 24946986 DOI: 10.1517/14728222.2014.926889] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Obesity is characterized by high secretion of several cytokines from adipose tissue and is a recognized risk factor for many cancers. Among these cytokines, leptin mainly produced by adipose tissue and cancer cells is the most studied adipokine. Leptin is an activator of cell proliferation, an antiapoptotic molecule and inducer of cancer stem cells in many cell types, and its critical roles in obesity-related tumorigenesis are based on its oncogenic, mitogenic, pro-inflammatory and pro-angiogenic actions. AREAS COVERED These leptin-induced signals and action are critical for their biological effects on energy balance, adiposity, endocrine systems, immunity, angiogenesis as well as oncogenesis. This review focuses on the up-to-date knowledge on the oncogenic role of leptin signaling, clinical significance and specific drug target development in colorectal cancer (CRC). Additionally, leptin-induced angiogenic ability and molecular mechanisms in CRC cells are discussed. EXPERT OPINION Stringent binding affinity of leptin/Ob-R and overexpression of leptin/Ob-R and their targets in cancer cells make it a unique drug target for prevention and treatment of CRC, particularly in obesity colorectal patients.
Collapse
Affiliation(s)
- Weiqiang Zhou
- Shenyang Medical College, Key Laboratory of Environmental Pollution and Microecology of Liaoning Province , No.146 North Huanghe St, Huanggu Dis, Shenyang City, Liaoning Pro 110034 , PR China
| | | | | | | | | |
Collapse
|
41
|
Guo S, Singh KK, Lillard JW, Yang L. Leptin Signaling in the Regulation of Stem and Cancer Stem Cells. CANCER STEM CELLS 2014:347-360. [DOI: 10.1002/9781118356203.ch26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
42
|
Lavecchia A, Di Giovanni C, Cerchia C. Novel inhibitors of signal transducer and activator of transcription 3 signaling pathway: an update on the recent patent literature. Expert Opin Ther Pat 2014; 24:383-400. [PMID: 24432979 DOI: 10.1517/13543776.2014.877443] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
INTRODUCTION The signal transducer and activator of transcription 3 (STAT3) is a transcription factor that plays a key role in normal cell growth and is constitutively activated in about 70% of solid and hematological cancers. Thus, the development of potent and selective inhibitors that target STAT3 is of interest especially in the cancer therapeutic area. AREAS COVERED This review updates new patents claiming STAT3 inhibitors and their uses published from 2011 to 2013. Pre-2011 patents have been extensively covered in previous reviews. Comments on the context of each chemical series are given where applicable to orientate the readers on the bewildering array of molecular designs now available. EXPERT OPINION The growing number of preclinical studies in numerous malignances as well as the first clinical trials of STAT3 inhibitors suggest that STAT3 remains a valid target for the treatment of human cancers as well as inflammatory diseases and/or autoimmune disorders. So, the future looks bright for patients because many new drugs are being developed and now combinations of STAT3 inhibitors with other targeted agents can diminish the resistance to traditional chemotherapy. These advances are expected to lead to further significant progress improving patient outcomes and quality of life.
Collapse
Affiliation(s)
- Antonio Lavecchia
- University of Naples Federico II, Department of Pharmacy, "Drug Discovery" Laboratory , Via D. Montesano 49, 80131 Naples , Italy +39 081 678613 ; +39 081 678012 ;
| | | | | |
Collapse
|
43
|
Wang SW, Sun YM. The IL-6/JAK/STAT3 pathway: potential therapeutic strategies in treating colorectal cancer (Review). Int J Oncol 2014; 44:1032-40. [PMID: 24430672 DOI: 10.3892/ijo.2014.2259] [Citation(s) in RCA: 227] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 01/07/2014] [Indexed: 11/06/2022] Open
Abstract
Among the cytokines linked to inflammation-associated cancer, interleukin (IL)-6 drives many of the cancer 'hallmarks' through downstream activation of the Janus kinase/signal transducer and activator of transcription 3 (JAK/STAT3) signaling pathway. Additionally, dysregulation of the interleukin (IL)-6-mediated JAK/STAT3 signaling pathway is closely related to the development of diverse human solid tumors including colorectal cancer (CRC). On this basis, modulation of the IL-6/JAK/STAT3 signaling pathway is currently being widely explored to develop novel therapies for CRC. The present review details the mechanisms and roles of the IL-6/JAK/STAT3 pathway in CRC, describes current therapeutic strategies, and the search for potential therapeutic approaches to treat CRC.
Collapse
Affiliation(s)
- Shu-Wei Wang
- Department of Minimally Invasive Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, P.R. China
| | - Yue-Ming Sun
- Department of Minimally Invasive Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, P.R. China
| |
Collapse
|
44
|
Siveen KS, Sikka S, Surana R, Dai X, Zhang J, Kumar AP, Tan BKH, Sethi G, Bishayee A. Targeting the STAT3 signaling pathway in cancer: role of synthetic and natural inhibitors. Biochim Biophys Acta Rev Cancer 2014; 1845:136-54. [PMID: 24388873 DOI: 10.1016/j.bbcan.2013.12.005] [Citation(s) in RCA: 358] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 12/24/2013] [Accepted: 12/27/2013] [Indexed: 12/25/2022]
Abstract
Signal transducers and activators of transcription (STATs) comprise a family of cytoplasmic transcription factors that mediate intracellular signaling that is usually generated at cell surface receptors and thereby transmit it to the nucleus. Numerous studies have demonstrated constitutive activation of STAT3 in a wide variety of human tumors, including hematological malignancies (leukemias, lymphomas, and multiple myeloma) as well as diverse solid tumors (such as head and neck, breast, lung, gastric, hepatocellular, colorectal and prostate cancers). There is strong evidence to suggest that aberrant STAT3 signaling promotes initiation and progression of human cancers by either inhibiting apoptosis or inducing cell proliferation, angiogenesis, invasion, and metastasis. Suppression of STAT3 activation results in the induction of apoptosis in tumor cells, and accordingly its pharmacological modulation by tyrosine kinase inhibitors, antisense oligonucleotides, decoy nucleotides, dominant negative proteins, RNA interference and chemopreventive agents have been employed to suppress the proliferation of various human cancer cells in culture and tumorigenicity in vivo. However, the identification and development of novel drugs that can target deregulated STAT3 activation effectively remains an important scientific and clinical challenge. This review presents the evidence for critical roles of STAT3 in oncogenesis and discusses the potential for development of novel cancer therapies based on mechanistic understanding of STAT3 signaling cascade.
Collapse
Affiliation(s)
| | - Sakshi Sikka
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Cancer Science Institute of Singapore, National University of Singapore, Centre for Translational Medicine, Singapore
| | - Rohit Surana
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Cancer Science Institute of Singapore, National University of Singapore, Centre for Translational Medicine, Singapore
| | - Xiaoyun Dai
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jingwen Zhang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Cancer Science Institute of Singapore, National University of Singapore, Centre for Translational Medicine, Singapore; School of Biomedical Sciences, Faculty of Health Sciences, Curtin University, Western Australia, Australia; Department of Biological Sciences, University of North Texas, Denton, TX, USA
| | - Benny K H Tan
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Cancer Science Institute of Singapore, National University of Singapore, Centre for Translational Medicine, Singapore.
| | - Anupam Bishayee
- Department of Pharmaceutical Sciences, School of Pharmacy, American University of Health Sciences, Signal Hill, CA, USA.
| |
Collapse
|
45
|
Johnston PA, Sen M, Hua Y, Camarco D, Shun TY, Lazo JS, Grandis JR. High-content pSTAT3/1 imaging assays to screen for selective inhibitors of STAT3 pathway activation in head and neck cancer cell lines. Assay Drug Dev Technol 2014; 12:55-79. [PMID: 24127660 PMCID: PMC3934522 DOI: 10.1089/adt.2013.524] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The oncogenic transcription factor signal transducer and activator of transcription 3 (STAT3) is hyperactivated in most cancers and represents a plausible therapeutic target. In the absence of STAT3-selective small-molecule inhibitors, we sought to develop pSTAT3/1 high-content imaging (HCS) assays to screen for selective inhibitors of STAT3 pathway activation in head and neck squamous cell carcinomas (HNSCC) tumor cell lines. Based on the expression of the interleukin-6 (IL-6)Rα and gp130 subunits of the IL-6 receptor complex and STAT3, we selected the Cal33 HNSCC cell line as our model. After developing image acquisition and analysis procedures, we rigorously investigated the cytokine activation responses to optimize the dynamic ranges of both assays and demonstrated that the pan-Janus kinase inhibitor pyridone 6 nonselectively inhibited pSTAT3 and pSTAT1 activation with 50% inhibition concentrations of 7.19 ± 4.08 and 16.38 ± 8.45 nM, respectively. The optimized pSTAT3 HCS assay performed very well in a pilot screen of 1,726 compounds from the Library of Pharmacologically Active Compounds and the National Institutes of Health clinical collection sets, and we identified 51 inhibitors of IL-6-induced pSTAT3 activation. However, only three of the primary HCS actives selectively inhibited STAT3 compared with STAT1. Our follow-up studies indicated that the nonselective inhibition of cytokine induced pSTAT3 and pSTAT1 activation by G-alpha stimulatory subunit-coupled G-protein-coupled receptor agonists, and forskolin was likely due to cyclic adenosine monophosphate-mediated up-regulation of suppressors of cytokine signaling 3. Azelastine, an H1 receptor antagonist approved for the treatment of seasonal allergic rhinitis, nonallergic vasomotor rhinitis, and ocular conjunctivitis, was subsequently confirmed as a selective inhibitor of IL-6-induced pSTAT3 activation that also reduced the growth of HNSCC cell lines. These data illustrate the power of a chemical biology approach to lead generation that utilizes fully developed and optimized HCS assays as phenotypic screens to interrogate specific signaling pathways.
Collapse
Affiliation(s)
- Paul A. Johnston
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Malabika Sen
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Yun Hua
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Daniel Camarco
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Tong Ying Shun
- Department of Drug Discovery Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - John S. Lazo
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia
- Department of Chemistry, University of Virginia, Charlottesville, Virginia
| | - Jennifer R. Grandis
- Department of University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
46
|
Martic S, Rains MK, Haftchenary S, Shahani VM, Kraskouskaya D, Ball DP, Gunning PT, Kraatz HB. Electrochemical detection of the Fc-STAT3 phosphorylation and STAT3–Fc-STAT3 dimerization and inhibition. MOLECULAR BIOSYSTEMS 2014; 10:576-80. [DOI: 10.1039/c3mb70493a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
47
|
Page BDG, Croucher DC, Li ZH, Haftchenary S, Jimenez-Zepeda VH, Atkinson J, Spagnuolo PA, Wong YL, Colaguori R, Lewis AM, Schimmer AD, Trudel S, Gunning PT. Inhibiting Aberrant Signal Transducer and Activator of Transcription Protein Activation with Tetrapodal, Small Molecule Src Homology 2 Domain Binders: Promising Agents against Multiple Myeloma. J Med Chem 2013; 56:7190-200. [DOI: 10.1021/jm3017255] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Brent D. G. Page
- Department
of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario, Canada L5L 1C6
| | - Danielle C. Croucher
- Ontario
Cancer Institute, Princess Margaret Hospital, 620 University Avenue, Toronto, Ontario, Canada M5G 2C1
| | - Zhi Hua Li
- Ontario
Cancer Institute, Princess Margaret Hospital, 620 University Avenue, Toronto, Ontario, Canada M5G 2C1
| | - Sina Haftchenary
- Department
of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario, Canada L5L 1C6
| | - Victor H. Jimenez-Zepeda
- Ontario
Cancer Institute, Princess Margaret Hospital, 620 University Avenue, Toronto, Ontario, Canada M5G 2C1
| | - Jennifer Atkinson
- Ontario
Cancer Institute, Princess Margaret Hospital, 620 University Avenue, Toronto, Ontario, Canada M5G 2C1
| | - Paul A. Spagnuolo
- Ontario
Cancer Institute, Princess Margaret Hospital, 620 University Avenue, Toronto, Ontario, Canada M5G 2C1
| | - Yoong Lim Wong
- Department
of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario, Canada L5L 1C6
| | - Robert Colaguori
- Department
of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario, Canada L5L 1C6
| | - Andrew M. Lewis
- Department
of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario, Canada L5L 1C6
| | - Aaron D. Schimmer
- Ontario
Cancer Institute, Princess Margaret Hospital, 620 University Avenue, Toronto, Ontario, Canada M5G 2C1
| | - Suzanne Trudel
- Ontario
Cancer Institute, Princess Margaret Hospital, 620 University Avenue, Toronto, Ontario, Canada M5G 2C1
| | - Patrick T. Gunning
- Department
of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario, Canada L5L 1C6
| |
Collapse
|
48
|
A 2,6,9-hetero-trisubstituted purine inhibitor exhibits potent biological effects against multiple myeloma cells. Bioorg Med Chem 2013; 21:5618-28. [DOI: 10.1016/j.bmc.2013.04.080] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 04/18/2013] [Accepted: 04/26/2013] [Indexed: 02/06/2023]
|
49
|
Silva I, R. Teixeir M, L. Lang K, R. Guimara TD, E. Dudek S, J. Duran F, Ludwig S, S.B. Caro M, P. Schenke E, M.O. Simoe C. Proliferative Inhibition and Apoptotic Mechanism on Human Non-small-cell
Lung Cancer (A549 Cells) of a Novel Cucurbitacin from Wilbrandia ebracteata
Cogn. ACTA ACUST UNITED AC 2013. [DOI: 10.3923/ijcr.2013.54.68] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
50
|
Avadisian M, Gunning PT. Extolling the benefits of molecular therapeutic lipidation. MOLECULAR BIOSYSTEMS 2013; 9:2179-88. [DOI: 10.1039/c3mb70147f] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|