1
|
Barker E, Morgan A, Barclay JW. A Caenorhabditis elegans model of autosomal dominant adult-onset neuronal ceroid lipofuscinosis identifies ethosuximide as a potential therapeutic. Hum Mol Genet 2023; 32:1772-1785. [PMID: 36282524 PMCID: PMC10196665 DOI: 10.1093/hmg/ddac263] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 09/22/2023] Open
Abstract
Autosomal dominant adult-onset neuronal ceroid lipofuscinosis (ANCL) is a rare neurodegenerative disorder characterized by progressive dementia and premature death. Four ANCL-causing mutations have been identified, all mapping to the DNAJC5 gene that encodes cysteine string protein α (CSPα). Here, using Caenorhabditis elegans, we describe an animal model of ANCL in which disease-causing mutations are introduced into their endogenous chromosomal locus, thereby mirroring the human genetic disorder. This was achieved through CRISPR/Cas9-mediated gene editing of dnj-14, the C. elegans ortholog of DNAJC5. The resultant homozygous ANCL mutant worms exhibited reduced lifespans and severely impaired chemotaxis, similar to isogenic dnj-14 null mutants. Importantly, these phenotypes were also seen in balanced heterozygotes carrying one wild-type and one ANCL mutant dnj-14 allele, mimicking the heterozygosity of ANCL patients. We observed a more severe chemotaxis phenotype in heterozygous ANCL mutant worms compared with haploinsufficient worms lacking one copy of CSP, consistent with a dominant-negative mechanism of action. Additionally, we provide evidence of CSP haploinsufficiency in longevity, as heterozygous null mutants exhibited significantly shorter lifespan than wild-type controls. The chemotaxis phenotype of dnj-14 null mutants was fully rescued by transgenic human CSPα, confirming the translational relevance of the worm model. Finally, a focused compound screen revealed that the anti-epileptic drug ethosuximide could restore chemotaxis in dnj-14 ANCL mutants to wild-type levels. This suggests that ethosuximide may have therapeutic potential for ANCL and demonstrates the utility of this C. elegans model for future larger-scale drug screening.
Collapse
Affiliation(s)
- Eleanor Barker
- Department of Molecular Physiology & Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown St, Liverpool L69 3BX, UK
| | - Alan Morgan
- Department of Molecular Physiology & Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown St, Liverpool L69 3BX, UK
| | - Jeff W Barclay
- Department of Molecular Physiology & Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown St, Liverpool L69 3BX, UK
| |
Collapse
|
2
|
Huang L, Zhang Z. CSPα in neurodegenerative diseases. Front Aging Neurosci 2022; 14:1043384. [DOI: 10.3389/fnagi.2022.1043384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/17/2022] [Indexed: 11/19/2022] Open
Abstract
Adult-onset neuronal ceroid lipofuscinosis (ANCL) is a rare neurodegenerative disease characterized by epilepsy, cognitive degeneration, and motor disorders caused by mutations in the DNAJC5 gene. In addition to being associated with ANCL disease, the cysteine string proteins α (CSPα) encoded by the DNAJC5 gene have been implicated in several neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease. However, the pathogenic mechanism responsible for these neurodegenerative diseases has not yet been elucidated. Therefore, this study examines the functional properties of the CSPα protein and the related mechanisms of neurodegenerative diseases.
Collapse
|
3
|
Moseley-Alldredge M, Sheoran S, Yoo H, O’Keefe C, Richmond JE, Chen L. A role for the Erk MAPK pathway in modulating SAX-7/L1CAM-dependent locomotion in Caenorhabditis elegans. Genetics 2022; 220:iyab215. [PMID: 34849872 PMCID: PMC9097276 DOI: 10.1093/genetics/iyab215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 11/11/2021] [Indexed: 01/13/2023] Open
Abstract
L1CAMs are immunoglobulin cell adhesion molecules that function in nervous system development and function. Besides being associated with autism and schizophrenia spectrum disorders, impaired L1CAM function also underlies the X-linked L1 syndrome, which encompasses a group of neurological conditions, including spastic paraplegia and congenital hydrocephalus. Studies on vertebrate and invertebrate L1CAMs established conserved roles that include axon guidance, dendrite morphogenesis, synapse development, and maintenance of neural architecture. We previously identified a genetic interaction between the Caenorhabditis elegans L1CAM encoded by the sax-7 gene and RAB-3, a GTPase that functions in synaptic neurotransmission; rab-3; sax-7 mutant animals exhibit synthetic locomotion abnormalities and neuronal dysfunction. Here, we show that this synergism also occurs when loss of SAX-7 is combined with mutants of other genes encoding key players of the synaptic vesicle (SV) cycle. In contrast, sax-7 does not interact with genes that function in synaptogenesis. These findings suggest a postdevelopmental role for sax-7 in the regulation of synaptic activity. To assess this possibility, we conducted electrophysiological recordings and ultrastructural analyses at neuromuscular junctions; these analyses did not reveal obvious synaptic abnormalities. Lastly, based on a forward genetic screen for suppressors of the rab-3; sax-7 synthetic phenotypes, we determined that mutants in the ERK Mitogen-activated Protein Kinase (MAPK) pathway can suppress the rab-3; sax-7 locomotion defects. Moreover, we established that Erk signaling acts in a subset of cholinergic neurons in the head to promote coordinated locomotion. In combination, these results suggest a modulatory role for Erk MAPK in L1CAM-dependent locomotion in C. elegans.
Collapse
Affiliation(s)
- Melinda Moseley-Alldredge
- Department of Genetics, Cell Biology & Development, University of Minnesota, Minneapolis, MN 55455, USA
- Developmental Biology Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Seema Sheoran
- Department of Biological Sciences, University of Illinois, Chicago, IL 60607, USA
| | - Hayoung Yoo
- Department of Genetics, Cell Biology & Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Calvin O’Keefe
- Department of Genetics, Cell Biology & Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Janet E Richmond
- Department of Biological Sciences, University of Illinois, Chicago, IL 60607, USA
| | - Lihsia Chen
- Department of Genetics, Cell Biology & Development, University of Minnesota, Minneapolis, MN 55455, USA
- Developmental Biology Center, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
4
|
Butz ES, Chandrachud U, Mole SE, Cotman SL. Moving towards a new era of genomics in the neuronal ceroid lipofuscinoses. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165571. [DOI: 10.1016/j.bbadis.2019.165571] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 10/12/2019] [Accepted: 10/14/2019] [Indexed: 12/15/2022]
|
5
|
Huber RJ. Molecular networking in the neuronal ceroid lipofuscinoses: insights from mammalian models and the social amoeba Dictyostelium discoideum. J Biomed Sci 2020; 27:64. [PMID: 32430003 PMCID: PMC7238602 DOI: 10.1186/s12929-020-00653-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 04/22/2020] [Indexed: 12/26/2022] Open
Abstract
The neuronal ceroid lipofuscinoses (NCLs), commonly known as Batten disease, belong to a family of neurological disorders that cause blindness, seizures, loss of motor function and cognitive ability, and premature death. There are 13 different subtypes of NCL that are associated with mutations in 13 genetically distinct genes (CLN1-CLN8, CLN10-CLN14). Similar clinical and pathological profiles of the different NCL subtypes suggest that common disease mechanisms may be involved. As a result, there have been many efforts to determine how NCL proteins are connected at the cellular level. A main driving force for NCL research has been the utilization of mammalian and non-mammalian cellular models to study the mechanisms underlying the disease. One non-mammalian model that has provided significant insight into NCL protein function is the social amoeba Dictyostelium discoideum. Accumulated data from Dictyostelium and mammalian cells show that NCL proteins display similar localizations, have common binding partners, and regulate the expression and activities of one another. In addition, genetic models of NCL display similar phenotypes. This review integrates findings from Dictyostelium and mammalian models of NCL to highlight our understanding of the molecular networking of NCL proteins. The goal here is to help set the stage for future work to reveal the cellular mechanisms underlying the NCLs.
Collapse
Affiliation(s)
- Robert J Huber
- Department of Biology, Trent University, 1600 West Bank Drive, Peterborough, Ontario, K9L 0G2, Canada.
| |
Collapse
|
6
|
Gundersen CB. Cysteine string proteins. Prog Neurobiol 2020; 188:101758. [DOI: 10.1016/j.pneurobio.2020.101758] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 01/06/2020] [Accepted: 01/13/2020] [Indexed: 12/17/2022]
|
7
|
Abstract
Modulation of neurotransmitter exocytosis by activated Gi/o coupled G-protein coupled receptors (GPCRs) is a universal regulatory mechanism used both to avoid overstimulation and to influence circuitry. One of the known modulation mechanisms is the interaction between Gβγ and the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNAREs). There are 5 Gβ and 12 Gγ subunits, but specific Gβγs activated by a given GPCR and the specificity to effectors, such as SNARE, in vivo are not known. Although less studied, Gβγ binding to the exocytic fusion machinery (i.e. SNARE) provides a more direct regulatory mechanism for neurotransmitter release. Here, we review some recent insights in the architecture of the synaptic terminal, modulation of synaptic transmission, and implications of G protein modulation of synaptic transmission in diseases. Numerous presynaptic proteins are involved in the architecture of synaptic terminals, particularly the active zone, and their importance in the regulation of exocytosis is still not completely understood. Further understanding of the Gβγ-SNARE interaction and the architecture and mechanisms of exocytosis may lead to the discovery of novel therapeutic targets to help patients with various disorders such as hypertension, attention-deficit/hyperactivity disorder, post-traumatic stress disorder, and acute/chronic pain.
Collapse
Affiliation(s)
- Yun Young Yim
- Department of Pharmacology, Vanderbilt University, Nashville 37232-6600, TN, United States
| | - Zack Zurawski
- Department of Pharmacology, Vanderbilt University, Nashville 37232-6600, TN, United States
| | - Heidi Hamm
- Department of Pharmacology, Vanderbilt University, Nashville 37232-6600, TN, United States.
| |
Collapse
|
8
|
Da Silva J, Lameiras P, Beljebbar A, Berquand A, Villemin M, Ramont L, Dukic S, Nuzillard JM, Molinari M, Gautier M, Brassart-Pasco S, Brassart B. Structural characterization and in vivo pro-tumor properties of a highly conserved matrikine. Oncotarget 2018; 9:17839-17857. [PMID: 29707150 PMCID: PMC5915158 DOI: 10.18632/oncotarget.24894] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 02/25/2018] [Indexed: 01/13/2023] Open
Abstract
Elastin-derived peptides (EDPs) exert protumor activities by increasing tumor growth, migration and invasion. A number of studies have highlighted the potential of VGVAPG consensus sequence-derived elastin-like polypeptides whose physicochemical properties and biocompatibility are particularly suitable for in vivo applications, such as drug delivery and tissue engineering. However, among the EDPs, the influence of elastin-derived nonapeptides (xGxPGxGxG consensus sequence) remains unknown. Here, we show that the AGVPGLGVG elastin peptide (AG-9) present in domain-26 of tropoelastin is more conserved than the VGVAPG elastin peptide (VG-6) from domain-24 in mammals. The results demonstrate that the structural features of AG-9 and VG-6 peptides are similar. CD, NMR and FTIR spectroscopies show that AG-9 and VG-6 present the same conformation, which includes a mixture of random coils and β-turn structures. On the other hand, the supraorganization differs between peptides, as demonstrated by AFM. The VG-6 peptide gathers in spots, whereas the AG-9 peptide aggregates into short amyloid-like fibrils. An in vivo study showed that AG-9 peptides promote tumor progression to a greater extent than do VG-6 peptides. These results were confirmed by in vitro studies such as 2D and 3D proliferation assays, migration assays, adhesion assays, proteinase secretion studies and pseudotube formation assays to investigate angiogenesis. Our findings suggest the possibility that the AG-9 peptide present in patient sera may dramatically influence cancer progression and could be used in the design of new, innovative antitumor therapies.
Collapse
Affiliation(s)
- Jordan Da Silva
- UMR CNRS/URCA 7369 MEDyC, Université de Reims Champagne Ardenne, UFR Médecine, 51095 Reims, France
| | - Pedro Lameiras
- ICMR, CNRS UMR 7312, UFR de Pharmacie, Université de Reims Champagne-Ardenne, 51096 Reims, France
| | - Abdelilah Beljebbar
- UMR CNRS/URCA 7369 MEDyC, Université de Reims Champagne Ardenne, UFR Médecine, 51095 Reims, France
| | - Alexandre Berquand
- Laboratoire de Recherche en Nanosciences, LRN-EA4682, Université de Reims Champagne-Ardenne, 51100 Reims, France
| | - Matthieu Villemin
- UMR CNRS/URCA 7369 MEDyC, Université de Reims Champagne Ardenne, UFR Médecine, 51095 Reims, France
| | - Laurent Ramont
- UMR CNRS/URCA 7369 MEDyC, Université de Reims Champagne Ardenne, UFR Médecine, 51095 Reims, France
- CHU de Reims, Laboratoire Central de Biochimie, 51092 Reims, France
| | - Sylvain Dukic
- UMR CNRS/URCA 7369 MEDyC, Université de Reims Champagne Ardenne, UFR Médecine, 51095 Reims, France
| | - Jean-Marc Nuzillard
- ICMR, CNRS UMR 7312, UFR de Pharmacie, Université de Reims Champagne-Ardenne, 51096 Reims, France
| | - Michael Molinari
- Laboratoire de Recherche en Nanosciences, LRN-EA4682, Université de Reims Champagne-Ardenne, 51100 Reims, France
| | - Mathieu Gautier
- Laboratoire de Physiologie Cellulaire et Moléculaire, LPCM - EA4667, Université de Picardie Jules Verne, UFR Sciences, F-80039 Amiens, France
| | - Sylvie Brassart-Pasco
- UMR CNRS/URCA 7369 MEDyC, Université de Reims Champagne Ardenne, UFR Médecine, 51095 Reims, France
| | - Bertrand Brassart
- UMR CNRS/URCA 7369 MEDyC, Université de Reims Champagne Ardenne, UFR Médecine, 51095 Reims, France
| |
Collapse
|
9
|
Sun X, Shi N, Li Y, Dong C, Zhang M, Guan Z, Duan M. Quantitative Proteome Profiling of Street Rabies Virus-Infected Mouse Hippocampal Synaptosomes. Curr Microbiol 2016; 73:301-311. [PMID: 27155843 DOI: 10.1007/s00284-016-1061-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 04/06/2016] [Indexed: 12/23/2022]
Abstract
It is well established now that neuronal dysfunction rather than structural damage may be responsible for the development of rabies. In order to explore the underlying mechanisms in rabies virus (RABV) and synaptic dysfunctions, a quantitative proteome profiling was carried out on synaptosome samples from mice hippocampus. Synaptosome samples from mice hippocampus were isolated and confirmed by Western blot and transmission electron microscopy. Synaptosome protein content changes were quantitatively detected by Nano-LC-MS/MS. Protein functions were classified by the Gene Ontology (GO) and KEGG pathway. PSICQUIC was used to create a network. MCODE algorithm was applied to obtain subnetworks. Of these protein changes, 45 were upregulated and 14 were downregulated following RABV infection relative to non-infected (mock) synaptosomes. 28 proteins were unique to mock treatment and 12 were unique to RABV treatment. Proteins related to metabolism and synaptic vesicle showed the most changes in expression levels. Furthermore, protein-protein interaction (PPI) networks revealed that several key biological processes related to synaptic functions potentially were modulated by RABV, including energy metabolism, cytoskeleton organization, and synaptic transmission. These data will be useful for better understanding of neuronal dysfunction of rabies and provide the foundation for future research.
Collapse
Affiliation(s)
- Xiaoning Sun
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, 130062, Jilin, China
| | - Ning Shi
- Institute of Special Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences CAAS, Changchun, 132109, China
| | - Ying Li
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun, 130012, China
| | - Chunyan Dong
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, 130062, Jilin, China
| | - Maolin Zhang
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, 130062, Jilin, China
| | - Zhenhong Guan
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, 130062, Jilin, China
| | - Ming Duan
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, 130062, Jilin, China.
| |
Collapse
|
10
|
Burgoyne RD, Morgan A. Cysteine string protein (CSP) and its role in preventing neurodegeneration. Semin Cell Dev Biol 2015; 40:153-9. [PMID: 25800794 PMCID: PMC4447612 DOI: 10.1016/j.semcdb.2015.03.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 03/16/2015] [Indexed: 11/25/2022]
Abstract
Cysteine string protein (CSP) is a member of the DnaJ/Hsp40 family of co-chaperones that localises to neuronal synaptic vesicles. Its name derives from the possession of a string of 12–15 cysteine residues, palmitoylation of which is required for targeting to post-Golgi membranes. The DnaJ domain of CSP enables it to bind client proteins and recruit Hsc70 chaperones, thereby contributing to the maintenance of protein folding in the presynaptic compartment. Mutation of CSP in flies, worms and mice reduces lifespan and causes synaptic dysfunction and neurodegeneration. Furthermore, recent studies have revealed that the neurodegenerative disease, adult onset neuronal ceroid lipofuscinosis, is caused by mutations in the human CSPα-encoding DNAJC5 gene. Accumulating evidence suggests that the major mechanism by which CSP prevents neurodegeneration is by maintaining the conformation of SNAP-25, thereby facilitating its entry into the membrane-fusing SNARE complex. In this review, we focus on the role of CSP in preventing neurodegeneration and discuss how recent studies of this universal neuroprotective chaperone are being translated into potential novel therapeutics for neurodegenerative diseases.
Collapse
Affiliation(s)
- Robert D Burgoyne
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Crown St., Liverpool L69 3BX, UK
| | - Alan Morgan
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Crown St., Liverpool L69 3BX, UK.
| |
Collapse
|
11
|
Young JC. The role of the cytosolic HSP70 chaperone system in diseases caused by misfolding and aberrant trafficking of ion channels. Dis Model Mech 2015; 7:319-29. [PMID: 24609033 PMCID: PMC3944492 DOI: 10.1242/dmm.014001] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Protein-folding diseases are an ongoing medical challenge. Many diseases within this group are genetically determined, and have no known cure. Among the examples in which the underlying cellular and molecular mechanisms are well understood are diseases driven by misfolding of transmembrane proteins that normally function as cell-surface ion channels. Wild-type forms are synthesized and integrated into the endoplasmic reticulum (ER) membrane system and, upon correct folding, are trafficked by the secretory pathway to the cell surface. Misfolded mutant forms traffic poorly, if at all, and are instead degraded by the ER-associated proteasomal degradation (ERAD) system. Molecular chaperones can assist the folding of the cytosolic domains of these transmembrane proteins; however, these chaperones are also involved in selecting misfolded forms for ERAD. Given this dual role of chaperones, diseases caused by the misfolding and aberrant trafficking of ion channels (referred to here as ion-channel-misfolding diseases) can be regarded as a consequence of insufficiency of the pro-folding chaperone activity and/or overefficiency of the chaperone ERAD role. An attractive idea is that manipulation of the chaperones might allow increased folding and trafficking of the mutant proteins, and thereby partial restoration of function. This Review outlines the roles of the cytosolic HSP70 chaperone system in the best-studied paradigms of ion-channel-misfolding disease--the CFTR chloride channel in cystic fibrosis and the hERG potassium channel in cardiac long QT syndrome type 2. In addition, other ion channels implicated in ion-channel-misfolding diseases are discussed.
Collapse
Affiliation(s)
- Jason C Young
- McGill University, Department of Biochemistry, Groupe de Recherche Axé sur la Structure des Protéines, 3649 Promenade Sir William Osler, Montreal, QC H3G 0B1, Canada
| |
Collapse
|
12
|
Wang Y, Yu Z, Ren H, Wang J, Wu J, Chen Y, Ding Z. The synergistic effect between β-amyloid(1-42) and α-synuclein on the synapses dysfunction in hippocampal neurons. J Chem Neuroanat 2014; 63:1-5. [PMID: 25445382 DOI: 10.1016/j.jchemneu.2014.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 11/09/2014] [Accepted: 11/09/2014] [Indexed: 01/23/2023]
Abstract
OBJECTIVE This study was to explore the molecular mechanisms underpinning the synergetic effect between β-amyloid (Aβ) and α-synuclein (α-syn) on synapses dysfunction during the development of neurodegenerative disorders including Parkinson's disease (PD), dementia with Lewy bodies (DLB) and Alzheimer disease (AD). METHODS The primary cultured hippocampal neurons prepared from the fetal tissue of mice were divided into six groups and treated with DMSO, Aβ(42-1), α-syn, Aβ(1-42), α-syn plus Aβ(42-1) and α-syn plus Aβ(1-42), respectively. After incubation for 24 h, the synapsin I content was calculated by immunofluorescence and the synaptic vesicle recycling was monitored by FM1-43 staining. Furthermore, the expression of cysteine string protein-α (CSPα) detected by western blot was also conducted. RESULTS Either Aβ(1-42) or α-syn alone could induce a significant synapses dysfunction through reducing the content of synapsin I, inhibiting the synaptic vesicle recycling as well as down-regulating the expression of CSPα compared with the controls (P<0.05). However, simultaneous intervention with both α-syn and Aβ(1-42) aggravated these effects in cultured hippocampal neurons compared with the treatment with α-syn (synapsin I content: P<0.001; synaptic vesicle recycling: P=0.007; CSPα expression: P<0.001) or Aβ(1-42) (synapsin I number: P<0.001; synaptic vesicle recycling: P=0.007 CSPα expression: P<0.001) alone. CONCLUSION There was synergistic effect between Aβ and α-syn on synapses dysfunction through reducing the synapsin I content, inhibiting the synaptic vesicle recycling and down-regulating the expression of CSPα in several neurodegenerative diseases.
Collapse
Affiliation(s)
- Yixuan Wang
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200040, China; Department & Institute of Neurology, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Zheming Yu
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200040, China; Department & Institute of Neurology, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Huimin Ren
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200040, China; Department & Institute of Neurology, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Jian Wang
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200040, China; Department & Institute of Neurology, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Jianjun Wu
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200040, China; Department & Institute of Neurology, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Yan Chen
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200040, China; Department & Institute of Neurology, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Zhengtong Ding
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200040, China; Department & Institute of Neurology, Shanghai Medical College, Fudan University, Shanghai 200040, China.
| |
Collapse
|
13
|
Sahu A, Kumar S, Sreenivasamurthy SK, Selvan LDN, Madugundu AK, Yelamanchi SD, Puttamallesh VN, Dey G, Anil AK, Srinivasan A, Mukherjee KK, Gowda H, Satishchandra P, Mahadevan A, Pandey A, Prasad TSK, Shankar SK. Host response profile of human brain proteome in toxoplasma encephalitis co-infected with HIV. Clin Proteomics 2014; 11:39. [PMID: 25404878 PMCID: PMC4232683 DOI: 10.1186/1559-0275-11-39] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 09/02/2014] [Indexed: 01/27/2023] Open
Abstract
Background Toxoplasma encephalitis is caused by the opportunistic protozoan parasite Toxoplasma gondii. Primary infection with T. gondii in immunocompetent individuals remains largely asymptomatic. In contrast, in immunocompromised individuals, reactivation of the parasite results in severe complications and mortality. Molecular changes at the protein level in the host central nervous system and proteins associated with pathogenesis of toxoplasma encephalitis are largely unexplored. We used a global quantitative proteomic strategy to identify differentially regulated proteins and affected molecular networks in the human host during T. gondii infection with HIV co-infection. Results We identified 3,496 proteins out of which 607 proteins were differentially expressed (≥1.5-fold) when frontal lobe of the brain from patients diagnosed with toxoplasma encephalitis was compared to control brain tissues. We validated differential expression of 3 proteins through immunohistochemistry, which was confirmed to be consistent with mass spectrometry analysis. Pathway analysis of differentially expressed proteins indicated deregulation of several pathways involved in antigen processing, immune response, neuronal growth, neurotransmitter transport and energy metabolism. Conclusions Global quantitative proteomic approach adopted in this study generated a comparative proteome profile of brain tissues from toxoplasma encephalitis patients co-infected with HIV. Differentially expressed proteins include previously reported and several new proteins in the context of T. gondii and HIV infection, which can be further investigated. Molecular pathways identified to be associated with the disease should enhance our understanding of pathogenesis in toxoplasma encephalitis. Electronic supplementary material The online version of this article (doi:10.1186/1559-0275-11-39) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Apeksha Sahu
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066 India ; Bioinformatics Centre, School of Life Sciences, Pondicherry University, Puducherry, 605014 India
| | - Satwant Kumar
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066 India
| | - Sreelakshmi K Sreenivasamurthy
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066 India ; Manipal University, Madhav Nagar, Manipal, 576104 India
| | - Lakshmi Dhevi N Selvan
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066 India ; Amrita School of Biotechnology, Amrita University, Kollam, 690525 India
| | - Anil K Madugundu
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066 India ; Bioinformatics Centre, School of Life Sciences, Pondicherry University, Puducherry, 605014 India
| | - Soujanya D Yelamanchi
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066 India ; School of Biotechnology, KIIT University, Bhubaneswar, 751024 India
| | | | - Gourav Dey
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066 India ; Manipal University, Madhav Nagar, Manipal, 576104 India
| | | | - Anand Srinivasan
- Department of Pharmacology, Postgraduate Institute of Medical Education & Research, Chandigarh, 160012 India
| | - Kanchan K Mukherjee
- Department of Neurosurgery, Postgraduate Institute of Medical Education & Research, Chandigarh, 160012 India
| | - Harsha Gowda
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066 India
| | | | - Anita Mahadevan
- Department of Neuropathology, National Institute of Mental Health and Neurosciences, Bangalore, 560029 India ; Human Brain Tissue Repository, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, Bangalore, 560029 India
| | - Akhilesh Pandey
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA ; Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 1205 USA ; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA ; The Sol Goldman Pancreatic Cancer Research Center, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Thottethodi Subrahmanya Keshava Prasad
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066 India ; Bioinformatics Centre, School of Life Sciences, Pondicherry University, Puducherry, 605014 India ; Manipal University, Madhav Nagar, Manipal, 576104 India ; Amrita School of Biotechnology, Amrita University, Kollam, 690525 India ; NIMHANS-IOB Proteomics and Bioinformatics Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, Bangalore, 560029 India
| | - Susarla Krishna Shankar
- Department of Neuropathology, National Institute of Mental Health and Neurosciences, Bangalore, 560029 India ; Human Brain Tissue Repository, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, Bangalore, 560029 India
| |
Collapse
|
14
|
Cotman SL, Karaa A, Staropoli JF, Sims KB. Neuronal ceroid lipofuscinosis: impact of recent genetic advances and expansion of the clinicopathologic spectrum. Curr Neurol Neurosci Rep 2014; 13:366. [PMID: 23775425 DOI: 10.1007/s11910-013-0366-z] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Neuronal ceroid lipofuscinosis (NCL), first clinically described in 1826 and pathologically defined in the 1960s, refers to a group of disorders mostly diagnosed in the childhood years that involve the accumulation of lysosomal storage material with characteristic ultrastructure and prominent neurodegenerative features including vision loss, seizures, motor and cognitive function deterioration, and often times, psychiatric disturbances. All NCL disorders evidence early morbidity and treatment options are limited to symptomatic and palliative care. While distinct genetic forms of NCL have long been recognized, recent genetic advances are considerably widening the NCL genotypic and phenotypic spectrum, highlighting significant overlap with other neurodegenerative diseases. This review will discuss these recent advances and the expanded potential for increased awareness and new research that will ultimately lead to effective treatments for NCL and related disorders.
Collapse
Affiliation(s)
- Susan L Cotman
- Center for Human Genetic Research, Department of Neurology, Massachusetts General Hospital, 185 Cambridge St, Boston, MA 02114, USA.
| | | | | | | |
Collapse
|
15
|
Hu HY, He L, Fominykh K, Yan Z, Guo S, Zhang X, Taylor MS, Tang L, Li J, Liu J, Wang W, Yu H, Khaitovich P. Evolution of the human-specific microRNA miR-941. Nat Commun 2013; 3:1145. [PMID: 23093182 PMCID: PMC3493648 DOI: 10.1038/ncomms2146] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 09/20/2012] [Indexed: 01/22/2023] Open
Abstract
MicroRNA-mediated gene regulation is important in many physiological processes. Here we explore the roles of a microRNA, miR-941, in human evolution. We find that miR-941 emerged de novo in the human lineage, between six and one million years ago, from an evolutionarily volatile tandem repeat sequence. Its copy-number remains polymorphic in humans and shows a trend for decreasing copy-number with migration out of Africa. Emergence of miR-941 was accompanied by accelerated loss of miR-941-binding sites, presumably to escape regulation. We further show that miR-941 is highly expressed in pluripotent cells, repressed upon differentiation and preferentially targets genes in hedgehog- and insulin-signalling pathways, thus suggesting roles in cellular differentiation. Human-specific effects of miR-941 regulation are detectable in the brain and affect genes involved in neurotransmitter signalling. Taken together, these results implicate miR-941 in human evolution, and provide an example of rapid regulatory evolution in the human linage.
Collapse
Affiliation(s)
- Hai Yang Hu
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, 320 Yue Yang Road, Shanghai 200031, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Kollmann K, Uusi-Rauva K, Scifo E, Tyynelä J, Jalanko A, Braulke T. Cell biology and function of neuronal ceroid lipofuscinosis-related proteins. Biochim Biophys Acta Mol Basis Dis 2013; 1832:1866-81. [PMID: 23402926 DOI: 10.1016/j.bbadis.2013.01.019] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 01/18/2013] [Accepted: 01/23/2013] [Indexed: 01/17/2023]
Abstract
Neuronal ceroid lipofuscinoses (NCL) comprise a group of inherited lysosomal disorders with variable age of onset, characterized by lysosomal accumulation of autofluorescent ceroid lipopigments, neuroinflammation, photoreceptor- and neurodegeneration. Most of the NCL-related genes encode soluble and transmembrane proteins which localize to the endoplasmic reticulum or to the endosomal/lysosomal compartment and directly or indirectly regulate lysosomal function. Recently, exome sequencing led to the identification of four novel gene defects in NCL patients and a new NCL nomenclature currently comprising CLN1 through CLN14. Although the precise function of most of the NCL proteins remains elusive, comprehensive analyses of model organisms, particularly mouse models, provided new insight into pathogenic mechanisms of NCL diseases and roles of mutant NCL proteins in cellular/subcellular protein and lipid homeostasis, as well as their adaptive/compensatorial regulation at the transcriptional level. This review summarizes the current knowledge on the expression, function and regulation of NCL proteins and their impact on lysosomal integrity. This article is part of a Special Issue entitled: The Neuronal Ceroid Lipofuscinoses or Batten Disease.
Collapse
Affiliation(s)
- Katrin Kollmann
- Department of Biochemistry, Children's Hospital, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | | | | | | | | |
Collapse
|
17
|
Bioinformatic perspectives in the neuronal ceroid lipofuscinoses. Biochim Biophys Acta Mol Basis Dis 2012; 1832:1831-41. [PMID: 23274885 DOI: 10.1016/j.bbadis.2012.12.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 12/16/2012] [Accepted: 12/19/2012] [Indexed: 02/06/2023]
Abstract
The neuronal ceroid lipofuscinoses (NCLs) are a group of rare genetic diseases characterised clinically by the progressive deterioration of mental, motor and visual functions and histopathologically by the intracellular accumulation of autofluorescent lipopigment - ceroid - in affected tissues. The NCLs are clinically and genetically heterogeneous and more than 14 genetically distinct NCL subtypes have been described to date (CLN1-CLN14) (Haltia and Goebel, 2012 [1]). In this review we will chronologically summarise work which has led over the years to identification of NCL genes, and outline the potential of novel genomic techniques and related bioinformatic approaches for further genetic dissection and diagnosis of NCLs. This article is part of a Special Issue entitled: The Neuronal Ceroid Lipofuscinoses or Batten Disease.
Collapse
|
18
|
Cadieux-Dion M, Andermann E, Lachance-Touchette P, Ansorge O, Meloche C, Barnabé A, Kuzniecky RI, Andermann F, Faught E, Leonberg S, Damiano JA, Berkovic SF, Rouleau GA, Cossette P. Recurrent mutations inDNAJC5cause autosomal dominant Kufs disease. Clin Genet 2012; 83:571-5. [DOI: 10.1111/cge.12020] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 09/12/2012] [Accepted: 09/12/2012] [Indexed: 01/23/2023]
Affiliation(s)
- M Cadieux-Dion
- CHUM Research Center; University of Montreal; Montreal; Quebec; Canada
| | - E Andermann
- Montreal Neurological Institute; McGill University; Montreal; Quebec; Canada
| | | | - O Ansorge
- Department of Neuropathology; John Radcliffe Hospital; Oxford; UK
| | - C Meloche
- CHUM Research Center; University of Montreal; Montreal; Quebec; Canada
| | - A Barnabé
- Montreal Neurological Institute; McGill University; Montreal; Quebec; Canada
| | - RI Kuzniecky
- Department of Neurology; Langone Medical Center, New York University; New York; NY; USA
| | - F Andermann
- Montreal Neurological Institute; McGill University; Montreal; Quebec; Canada
| | - E Faught
- Emory University School of Medicine; Atlanta; GA; USA
| | - S Leonberg
- Rutgers Medical School and Cooper Hospital/University Medical Center; Camden; NJ; USA
| | - JA Damiano
- Epilepsy Research Center; University of Melbourne, Austin Health; Heidelberg; VIC; 3084; Australia
| | - SF Berkovic
- Epilepsy Research Center; University of Melbourne, Austin Health; Heidelberg; VIC; 3084; Australia
| | - GA Rouleau
- CHUM Research Center; University of Montreal; Montreal; Quebec; Canada
| | - P Cossette
- CHUM Research Center; University of Montreal; Montreal; Quebec; Canada
| |
Collapse
|
19
|
Zhang YQ, Henderson MX, Colangelo CM, Ginsberg SD, Bruce C, Wu T, Chandra SS. Identification of CSPα clients reveals a role in dynamin 1 regulation. Neuron 2012; 74:136-50. [PMID: 22500636 DOI: 10.1016/j.neuron.2012.01.029] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2012] [Indexed: 01/05/2023]
Abstract
Cysteine string protein α (CSPα), a presynaptic cochaperone for Hsc70, is required for synapse maintenance. Deletion of CSPα leads to neuronal dysfunction, synapse loss, and neurodegeneration. We utilized unbiased, systematic proteomics to identify putative CSPα protein clients. We found 22 such proteins whose levels are selectively decreased in CSPα knockout synapses. Of these putative CSPα protein clients, two directly bind to the CSPα chaperone complex and are bona fide clients. They are the t-SNARE SNAP-25 and the GTPase dynamin 1, which are necessary for synaptic vesicle fusion and fission, respectively. Using hippocampal cultures, we show that CSPα regulates the stability of client proteins and synaptic vesicle number. Our analysis of CSPα-dynamin 1 interactions reveals unexpectedly that CSPα regulates the polymerization of dynamin 1. CSPα, therefore, participates in synaptic vesicle endocytosis and may facilitate exo- and endocytic coupling. These findings advance the understanding of how synapses are functionally and structurally maintained.
Collapse
Affiliation(s)
- Yong-Quan Zhang
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Department of Neurology, Yale University, New Haven, CT 06536, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Genome-wide study of gene variants associated with differential cardiovascular event reduction by pravastatin therapy. PLoS One 2012; 7:e38240. [PMID: 22666496 PMCID: PMC3364212 DOI: 10.1371/journal.pone.0038240] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 05/02/2012] [Indexed: 11/26/2022] Open
Abstract
Statin therapy reduces the risk of coronary heart disease (CHD), however, the person-to-person variability in response to statin therapy is not well understood. We have investigated the effect of genetic variation on the reduction of CHD events by pravastatin. First, we conducted a genome-wide association study of 682 CHD cases from the Cholesterol and Recurrent Events (CARE) trial and 383 CHD cases from the West of Scotland Coronary Prevention Study (WOSCOPS), two randomized, placebo-controlled studies of pravastatin. In a combined case-only analysis, 79 single nucleotide polymorphisms (SNPs) were associated with differential CHD event reduction by pravastatin according to genotype (P<0.0001), and these SNPs were analyzed in a second stage that included cases as well as non-cases from CARE and WOSCOPS and patients from the PROspective Study of Pravastatin in the Elderly at Risk/PHArmacogenomic study of Statins in the Elderly at risk for cardiovascular disease (PROSPER/PHASE), a randomized placebo controlled study of pravastatin in the elderly. We found that one of these SNPs (rs13279522) was associated with differential CHD event reduction by pravastatin therapy in all 3 studies: P = 0.002 in CARE, P = 0.01 in WOSCOPS, P = 0.002 in PROSPER/PHASE. In a combined analysis of CARE, WOSCOPS, and PROSPER/PHASE, the hazard ratio for CHD when comparing pravastatin with placebo decreased by a factor of 0.63 (95% CI: 0.52 to 0.75) for each extra copy of the minor allele (P = 4.8×10−7). This SNP is located in DnaJ homolog subfamily C member 5B (DNAJC5B) and merits investigation in additional randomized studies of pravastatin and other statins.
Collapse
|
21
|
Nosková L, Stránecký V, Hartmannová H, Přistoupilová A, Barešová V, Ivánek R, Hůlková H, Jahnová H, van der Zee J, Staropoli J, Sims K, Tyynelä J, Van Broeckhoven C, Nijssen P, Mole S, Elleder M, Kmoch S. Mutations in DNAJC5, encoding cysteine-string protein alpha, cause autosomal-dominant adult-onset neuronal ceroid lipofuscinosis. Am J Hum Genet 2011; 89:241-52. [PMID: 21820099 PMCID: PMC3155175 DOI: 10.1016/j.ajhg.2011.07.003] [Citation(s) in RCA: 201] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 07/04/2011] [Accepted: 07/09/2011] [Indexed: 11/26/2022] Open
Abstract
Autosomal-dominant adult-onset neuronal ceroid lipofuscinosis (ANCL) is characterized by accumulation of autofluorescent storage material in neural tissues and neurodegeneration and has an age of onset in the third decade of life or later. The genetic and molecular basis of the disease has remained unknown for many years. We carried out linkage mapping, gene-expression analysis, exome sequencing, and candidate-gene sequencing in affected individuals from 20 families and/or individuals with simplex cases; we identified in five individuals one of two disease-causing mutations, c.346_348delCTC and c.344T>G, in DNAJC5 encoding cysteine-string protein alpha (CSPα). These mutations-causing a deletion, p.Leu116del, and an amino acid exchange, p.Leu115Arg, respectively-are located within the cysteine-string domain of the protein and affect both palmitoylation-dependent sorting and the amount of CSPα in neuronal cells. The resulting depletion of functional CSPα might cause in parallel the presynaptic dysfunction and the progressive neurodegeneration observed in affected individuals and lysosomal accumulation of misfolded and proteolysis-resistant proteins in the form of characteristic ceroid deposits in neurons. Our work represents an important step in the genetic dissection of a genetically heterogeneous group of ANCLs. It also confirms a neuroprotective role for CSPα in humans and demonstrates the need for detailed investigation of CSPα in the neuronal ceroid lipofuscinoses and other neurodegenerative diseases presenting with neuronal protein aggregation.
Collapse
Affiliation(s)
- Lenka Nosková
- Institute for Inherited Metabolic Disorders, First Faculty of Medicine, Charles University in Prague, 120 00 Prague, Czech Republic
- Center for Applied Genomics, First Faculty of Medicine, Charles University in Prague, 120 00 Prague, Czech Republic
| | - Viktor Stránecký
- Institute for Inherited Metabolic Disorders, First Faculty of Medicine, Charles University in Prague, 120 00 Prague, Czech Republic
- Center for Applied Genomics, First Faculty of Medicine, Charles University in Prague, 120 00 Prague, Czech Republic
| | - Hana Hartmannová
- Institute for Inherited Metabolic Disorders, First Faculty of Medicine, Charles University in Prague, 120 00 Prague, Czech Republic
- Center for Applied Genomics, First Faculty of Medicine, Charles University in Prague, 120 00 Prague, Czech Republic
| | - Anna Přistoupilová
- Institute for Inherited Metabolic Disorders, First Faculty of Medicine, Charles University in Prague, 120 00 Prague, Czech Republic
- Center for Applied Genomics, First Faculty of Medicine, Charles University in Prague, 120 00 Prague, Czech Republic
| | - Veronika Barešová
- Institute for Inherited Metabolic Disorders, First Faculty of Medicine, Charles University in Prague, 120 00 Prague, Czech Republic
- Center for Applied Genomics, First Faculty of Medicine, Charles University in Prague, 120 00 Prague, Czech Republic
| | - Robert Ivánek
- Institute for Inherited Metabolic Disorders, First Faculty of Medicine, Charles University in Prague, 120 00 Prague, Czech Republic
- Center for Applied Genomics, First Faculty of Medicine, Charles University in Prague, 120 00 Prague, Czech Republic
| | - Helena Hůlková
- Institute for Inherited Metabolic Disorders, First Faculty of Medicine, Charles University in Prague, 120 00 Prague, Czech Republic
| | - Helena Jahnová
- Institute for Inherited Metabolic Disorders, First Faculty of Medicine, Charles University in Prague, 120 00 Prague, Czech Republic
| | - Julie van der Zee
- Neurodegenerative Brain Diseases Group, Department of Molecular Genetics, VIB, B-2610 Antwerp, Belgium
- Laboratory of Neurogenetics, Institute Born-Bunge, University of Antwerp, B-2610 Antwerp, Belgium
| | - John F. Staropoli
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Katherine B. Sims
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Jaana Tyynelä
- Institute of Biomedicine/Biochemistry and Developmental Biology, University of Helsinki, 00014 Helsinki, Finland
| | - Christine Van Broeckhoven
- Neurodegenerative Brain Diseases Group, Department of Molecular Genetics, VIB, B-2610 Antwerp, Belgium
- Laboratory of Neurogenetics, Institute Born-Bunge, University of Antwerp, B-2610 Antwerp, Belgium
| | - Peter C.G. Nijssen
- Department of Neurology, St. Elisabeth Hospital, 5022 Tilburg, The Netherlands
| | - Sara E. Mole
- MRC Laboratory for Molecular Cell Biology, Institute of Child Health and Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| | - Milan Elleder
- Institute for Inherited Metabolic Disorders, First Faculty of Medicine, Charles University in Prague, 120 00 Prague, Czech Republic
- Center for Applied Genomics, First Faculty of Medicine, Charles University in Prague, 120 00 Prague, Czech Republic
| | - Stanislav Kmoch
- Institute for Inherited Metabolic Disorders, First Faculty of Medicine, Charles University in Prague, 120 00 Prague, Czech Republic
- Center for Applied Genomics, First Faculty of Medicine, Charles University in Prague, 120 00 Prague, Czech Republic
| |
Collapse
|
22
|
Sharma M, Burré J, Südhof TC. CSPα promotes SNARE-complex assembly by chaperoning SNAP-25 during synaptic activity. Nat Cell Biol 2010; 13:30-9. [PMID: 21151134 DOI: 10.1038/ncb2131] [Citation(s) in RCA: 194] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Accepted: 10/28/2010] [Indexed: 12/26/2022]
Abstract
A neuron forms thousands of presynaptic nerve terminals on its axons, far removed from the cell body. The protein CSPα resides in presynaptic terminals, where it forms a chaperone complex with Hsc70 and SGT. Deletion of CSPα results in massive neurodegeneration that impairs survival in mice and flies. In CSPα-knockout mice, levels of presynaptic SNARE complexes and the SNARE protein SNAP-25 are reduced, suggesting that CSPα may chaperone SNARE proteins, which catalyse synaptic vesicle fusion. Here, we show that the CSPα-Hsc70-SGT complex binds directly to monomeric SNAP-25 to prevent its aggregation, enabling SNARE-complex formation. Deletion of CSPα produces an abnormal SNAP-25 conformer that inhibits SNARE-complex formation, and is subject to ubiquitylation and proteasomal degradation. Even in wild-type mouse terminals, SNAP-25 degradation is regulated by synaptic activity; this degradation is decreased by CSPα overexpression, and enhanced by CSPα deletion. Thus, SNAP-25 function is maintained during rapid SNARE cycles by equilibrium between CSPα-dependent chaperoning and ubiquitin-dependent degradation, revealing unique protein quality-control machinery within the presynaptic compartment.
Collapse
Affiliation(s)
- Manu Sharma
- Department of Molecular and Cellular Physiology, Stanford University, SIM1, 265 Campus Drive, Palo Alto, CA 94304-5453, USA.
| | | | | |
Collapse
|
23
|
Xu F, Proft J, Gibbs S, Winkfein B, Johnson JN, Syed N, Braun JEA. Quercetin targets cysteine string protein (CSPalpha) and impairs synaptic transmission. PLoS One 2010; 5:e11045. [PMID: 20548785 PMCID: PMC2883571 DOI: 10.1371/journal.pone.0011045] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Accepted: 05/21/2010] [Indexed: 01/25/2023] Open
Abstract
Background Cysteine string protein (CSPα) is a synaptic vesicle protein that displays unique anti-neurodegenerative properties. CSPα is a member of the conserved J protein family, also called the Hsp40 (heat shock protein of 40 kDa) protein family, whose importance in protein folding has been recognized for many years. Deletion of the CSPα in mice results in knockout mice that are normal for the first 2–3 weeks of life followed by an unexplained presynaptic neurodegeneration and premature death. How CSPα prevents neurodegeneration is currently not known. As a neuroprotective synaptic vesicle protein, CSPα represents a promising therapeutic target for the prevention of neurodegenerative disorders. Methodology/Principal Findings Here, we demonstrate that the flavonoid quercetin promotes formation of stable CSPα-CSPα dimers and that quercetin-induced dimerization is dependent on the unique cysteine string region. Furthermore, in primary cultures of Lymnaea neurons, quercetin induction of CSPα dimers correlates with an inhibition of synapse formation and synaptic transmission suggesting that quercetin interfers with CSPα function. Quercetin's action on CSPα is concentration dependent and does not promote dimerization of other synaptic proteins or other J protein family members and reduces the assembly of CSPα:Hsc70 units (70kDa heat shock cognate protein). Conclusions/Significance Quercetin is a plant derived flavonoid and popular nutritional supplement proposed to prevent memory loss and altitude sickness among other ailments, although its precise mechanism(s) of action has been unclear. In view of the therapeutic promise of upregulation of CSPα and the undesired consequences of CSPα dysfunction, our data establish an essential proof of principle that pharmaceutical agents can selectively target the neuroprotective J protein CSPα.
Collapse
Affiliation(s)
- Fenglian Xu
- Department of Anatomy and Cell Biology, University of Calgary, Calgary, Alberta, Canada
| | - Juliane Proft
- Hotchkiss Brain Institute, Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - Sarah Gibbs
- Hotchkiss Brain Institute, Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - Bob Winkfein
- Hotchkiss Brain Institute, Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - Jadah N. Johnson
- Hotchkiss Brain Institute, Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - Naweed Syed
- Department of Anatomy and Cell Biology, University of Calgary, Calgary, Alberta, Canada
| | - Janice E. A. Braun
- Hotchkiss Brain Institute, Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
- * E-mail:
| |
Collapse
|