1
|
Mineev KS, Hargittay B, Jin J, Catapano C, Dietz MS, Segarra M, Harwardt MS, Richter C, Jonker HRA, Saxena K, Sreeramulu S, Heilemann M, Acker-Palmer A, Schwalbe H. Differential effects of the N-terminal helix of FGF8b on the activity of a small-molecule FGFR inhibitor in cell culture and for the extracellular domain of FGFR3c in solution. FEBS Lett 2024; 598:2518-2532. [PMID: 38997225 DOI: 10.1002/1873-3468.14976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 07/14/2024]
Abstract
SSR128129E (SSR) is a unique small-molecule inhibitor of fibroblast growth factor receptors (FGFRs). SSR is a high-affinity allosteric binder that selectively blocks one of the two major FGFR-mediated pathways. The mechanisms of SSR activity were studied previously in much detail, allowing the identification of its binding site, located in the hydrophobic groove of the receptor D3 domain. The binding site overlaps with the position of an N-terminal helix, an element exclusive for the FGF8b growth factor, which could potentially convert SSR from an allosteric inhibitor into an orthosteric blocker for the particular FGFR/FGF8b system. In this regard, we report here on the structural and functional investigation of FGF8b/FGFR3c system and the effects imposed on it by SSR. We show that SSR is equally or more potent in inhibiting FGF8b-induced FGFR signaling compared to FGF2-induced activation. On the other hand, when studied in the context of separate extracellular domains of FGFR3c in solution with NMR spectroscopy, SSR is unable to displace the N-terminal helix of FGF8b from its binding site on FGFR3c and behaves as a weak orthosteric inhibitor. The substantial inconsistency between the results obtained with cell culture and for the individual water-soluble subdomains of the FGFR proteins points to the important role played by the cell membrane.
Collapse
Affiliation(s)
- Konstantin S Mineev
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe University, Frankfurt/Main, Germany
| | - Bruno Hargittay
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe University, Frankfurt/Main, Germany
| | - Jing Jin
- BMLS and Institute for Cell Biology and Neuroscience, Johann Wolfgang Goethe University, Frankfurt/Main, Germany
| | - Claudia Catapano
- Institute of Physical and Theoretical Chemistry, Johann Wolfgang Goethe University, Frankfurt/Main, Germany
| | - Marina S Dietz
- Institute of Physical and Theoretical Chemistry, Johann Wolfgang Goethe University, Frankfurt/Main, Germany
| | - Marta Segarra
- BMLS and Institute for Cell Biology and Neuroscience, Johann Wolfgang Goethe University, Frankfurt/Main, Germany
| | - Mark S Harwardt
- Institute of Physical and Theoretical Chemistry, Johann Wolfgang Goethe University, Frankfurt/Main, Germany
| | - Christian Richter
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe University, Frankfurt/Main, Germany
| | - Hendrik R A Jonker
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe University, Frankfurt/Main, Germany
| | - Krishna Saxena
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe University, Frankfurt/Main, Germany
| | - Sridhar Sreeramulu
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe University, Frankfurt/Main, Germany
| | - Mike Heilemann
- Institute of Physical and Theoretical Chemistry, Johann Wolfgang Goethe University, Frankfurt/Main, Germany
| | - Amparo Acker-Palmer
- BMLS and Institute for Cell Biology and Neuroscience, Johann Wolfgang Goethe University, Frankfurt/Main, Germany
| | - Harald Schwalbe
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe University, Frankfurt/Main, Germany
| |
Collapse
|
2
|
Yeoh YQ, Amin A, Cuic B, Tomas D, Turner BJ, Shabanpoor F. Efficient systemic CNS delivery of a therapeutic antisense oligonucleotide with a blood-brain barrier-penetrating ApoE-derived peptide. Biomed Pharmacother 2024; 175:116737. [PMID: 38749176 DOI: 10.1016/j.biopha.2024.116737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/22/2024] [Accepted: 05/08/2024] [Indexed: 06/03/2024] Open
Abstract
Antisense oligonucleotide (ASO) has emerged as a promising therapeutic approach for treating central nervous system (CNS) disorders by modulating gene expression with high selectivity and specificity. However, the poor permeability of ASO across the blood-brain barrier (BBB) diminishes its therapeutic success. Here, we designed and synthesized a series of BBB-penetrating peptides (BPP) derived from either the receptor-binding domain of apolipoprotein E (ApoE) or a transferrin receptor-binding peptide (THR). The BPPs were conjugated to phosphorodiamidate morpholino oligomers (PMO) that are chemically analogous to the 2'-O-(2-methoxyethyl) (MOE)-modified ASO approved by the FDA for treating spinal muscular atrophy (SMA). The BPP-PMO conjugates significantly increased the level of full-length SMN2 in the patient-derived SMA fibroblasts in a concentration-dependent manner with minimal to no toxicity. Furthermore, the systemic administration of the most potent BPP-PMO conjugates significantly increased the expression of full-length SMN2 in the brain and spinal cord of SMN2 transgenic adult mice. Notably, BPP8-PMO conjugate showed a 1.25-fold increase in the expression of full-length functional SMN2 in the brain. Fluorescence imaging studies confirmed that 78% of the fluorescently (Cy7)-labelled BPP8-PMO reached brain parenchyma, with 11% uptake in neuronal cells. Additionally, the BPP-PMO conjugates containing retro-inverso (RI) D-BPPs were found to possess extended half-lives compared to their L-counterparts, indicating increased stability against protease degradation while preserving the bioactivity. This delivery platform based on BPP enhances the CNS bioavailability of PMO targeting the SMN2 gene, paving the way for the development of systemically administered neurotherapeutics for CNS disorders.
Collapse
Affiliation(s)
- Yuan Qi Yeoh
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3010, Australia
| | - Azin Amin
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3010, Australia
| | - Brittany Cuic
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3010, Australia
| | - Doris Tomas
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3010, Australia
| | - Bradley J Turner
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3010, Australia
| | - Fazel Shabanpoor
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3010, Australia; School of Chemistry, University of Melbourne, VIC 3010, Australia.
| |
Collapse
|
3
|
Orientational Preferences of GPI-Anchored Ly6/uPAR Proteins. Int J Mol Sci 2022; 24:ijms24010011. [PMID: 36613456 PMCID: PMC9819746 DOI: 10.3390/ijms24010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Ly6/uPAR proteins regulate many essential functions in the nervous and immune systems and epithelium. Most of these proteins contain single β-structural LU domains with three protruding loops and are glycosylphosphatidylinositol (GPI)-anchored to a membrane. The GPI-anchor role is currently poorly studied. Here, we investigated the positional and orientational preferences of six GPI-anchored proteins in the receptor-unbound state by molecular dynamics simulations. Regardless of the linker length between the LU domain and GPI-anchor, the proteins interacted with the membrane by polypeptide parts and N-/O-glycans. Lynx1, Lynx2, Lypd6B, and Ly6H contacted the membrane by the loop regions responsible for interactions with nicotinic acetylcholine receptors, while Lypd6 and CD59 demonstrated unique orientations with accessible receptor-binding sites. Thus, GPI-anchoring does not guarantee an optimal 'pre-orientation' of the LU domain for the receptor interaction.
Collapse
|
4
|
Shenkarev ZO, Chesnokov YM, Zaigraev MM, Chugunov AO, Kulbatskii DS, Kocharovskaya MV, Paramonov AS, Bychkov ML, Shulepko MA, Nolde DE, Kamyshinsky RA, Yablokov EO, Ivanov AS, Kirpichnikov MP, Lyukmanova EN. Membrane-mediated interaction of non-conventional snake three-finger toxins with nicotinic acetylcholine receptors. Commun Biol 2022; 5:1344. [PMID: 36477694 PMCID: PMC9729238 DOI: 10.1038/s42003-022-04308-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
Nicotinic acetylcholine receptor of α7 type (α7-nAChR) presented in the nervous and immune systems and epithelium is a promising therapeutic target for cognitive disfunctions and cancer treatment. Weak toxin from Naja kaouthia venom (WTX) is a non-conventional three-finger neurotoxin, targeting α7-nAChR with weak affinity. There are no data on interaction mode of non-conventional neurotoxins with nAChRs. Using α-bungarotoxin (classical three-finger neurotoxin with high affinity to α7-nAChR), we showed applicability of cryo-EM to study complexes of α7-nAChR extracellular ligand-binding domain (α7-ECD) with toxins. Using cryo-EM structure of the α7-ECD/WTX complex, together with NMR data on membrane active site in the WTX molecule and mutagenesis data, we reconstruct the structure of α7-nAChR/WTX complex in the membrane environment. WTX interacts at the entrance to the orthosteric site located at the receptor intersubunit interface and simultaneously forms the contacts with the membrane surface. WTX interaction mode with α7-nAChR significantly differs from α-bungarotoxin's one, which does not contact the membrane. Our study reveals the important role of the membrane for interaction of non-conventional neurotoxins with the nicotinic receptors.
Collapse
Affiliation(s)
- Zakhar O. Shenkarev
- grid.418853.30000 0004 0440 1573Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow, 117997 Russia ,grid.18763.3b0000000092721542Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology (National Research University), Institutsky Lane 9, Dolgoprudny, Moscow, 141701 Russia
| | - Yuri M. Chesnokov
- grid.18919.380000000406204151National Research Center “Kurchatov Institute”, Academic Kurchatov Sq. 1, Moscow, 123182 Russia ,grid.435159.f0000 0001 1941 7461Shubnikov Institute of Crystallography of Federal Scientific Research Centre “Crystallography and Photonics” of Russian Academy of Sciences, Leninsky Prospect 59, Moscow, 119333 Russia
| | - Maxim M. Zaigraev
- grid.418853.30000 0004 0440 1573Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow, 117997 Russia ,grid.18763.3b0000000092721542Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology (National Research University), Institutsky Lane 9, Dolgoprudny, Moscow, 141701 Russia
| | - Anton O. Chugunov
- grid.418853.30000 0004 0440 1573Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow, 117997 Russia ,grid.18763.3b0000000092721542Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology (National Research University), Institutsky Lane 9, Dolgoprudny, Moscow, 141701 Russia ,grid.410682.90000 0004 0578 2005National Research University Higher School of Economics, Myasnitskaya Str. 20, Moscow, 101000 Russia
| | - Dmitrii S. Kulbatskii
- grid.418853.30000 0004 0440 1573Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow, 117997 Russia
| | - Milita V. Kocharovskaya
- grid.418853.30000 0004 0440 1573Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow, 117997 Russia ,grid.18763.3b0000000092721542Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology (National Research University), Institutsky Lane 9, Dolgoprudny, Moscow, 141701 Russia
| | - Alexander S. Paramonov
- grid.418853.30000 0004 0440 1573Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow, 117997 Russia
| | - Maxim L. Bychkov
- grid.418853.30000 0004 0440 1573Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow, 117997 Russia
| | - Mikhail A. Shulepko
- grid.418853.30000 0004 0440 1573Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow, 117997 Russia
| | - Dmitry E. Nolde
- grid.418853.30000 0004 0440 1573Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow, 117997 Russia ,grid.410682.90000 0004 0578 2005National Research University Higher School of Economics, Myasnitskaya Str. 20, Moscow, 101000 Russia
| | - Roman A. Kamyshinsky
- grid.18919.380000000406204151National Research Center “Kurchatov Institute”, Academic Kurchatov Sq. 1, Moscow, 123182 Russia ,grid.435159.f0000 0001 1941 7461Shubnikov Institute of Crystallography of Federal Scientific Research Centre “Crystallography and Photonics” of Russian Academy of Sciences, Leninsky Prospect 59, Moscow, 119333 Russia
| | - Evgeniy O. Yablokov
- grid.418846.70000 0000 8607 342XInstitute of Biomedical Chemistry, Pogodinskaya 10k8, Moscow, 119121 Russia
| | - Alexey S. Ivanov
- grid.418846.70000 0000 8607 342XInstitute of Biomedical Chemistry, Pogodinskaya 10k8, Moscow, 119121 Russia
| | - Mikhail P. Kirpichnikov
- grid.418853.30000 0004 0440 1573Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow, 117997 Russia ,grid.14476.300000 0001 2342 9668Interdisciplinary Scientific and Educational School of Moscow University “Molecular Technologies of the Living Systems and Synthetic Biology”, Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory, Moscow, 119234 Russia
| | - Ekaterina N. Lyukmanova
- grid.418853.30000 0004 0440 1573Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow, 117997 Russia ,grid.18763.3b0000000092721542Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology (National Research University), Institutsky Lane 9, Dolgoprudny, Moscow, 141701 Russia ,grid.14476.300000 0001 2342 9668Interdisciplinary Scientific and Educational School of Moscow University “Molecular Technologies of the Living Systems and Synthetic Biology”, Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory, Moscow, 119234 Russia
| |
Collapse
|
5
|
Zhang Y, Yin H. Summary of Prof. Yin's CSEMV-EVCNA award lecture 2021. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2022; 3:87-92. [PMID: 39698445 PMCID: PMC11648511 DOI: 10.20517/evcna.2022.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 04/08/2022] [Indexed: 12/20/2024]
Abstract
Extracellular vesicles (EVs) have been regarded as influential intracellular delivering parcels that possess tremendous potential because of their strict and complex secretion regulation processes. However, traditional detection methods cannot monitor the secretion of EVs due to their small particle diameters. Inspired by their peculiar diverse appearances and lipid membranes ingredients, we developed an innovative strategy to detect EVs in any kind of fluids by using rationally designed peptide probes that particularly recognize the highly curved surface of EVs. These peptide probes also serve as novel tools to selectively target cancerous cells with specific lipid compositions and distributions. With this strategy, we discovered a series of EV-secreting regulation mechanisms and identified their roles within physiological processes. Recently, we found that the transportation of oligodeoxynucleotides and cell division control protein 42 homolog from TLR9-activated macrophages to naïve cells via EVs exerts synergetic effects in the propagation of the intracellular immune response, which suggests a general mechanism for EV-mediated uptake of pathogen-associated molecular patterns.
Collapse
Affiliation(s)
- Ying Zhang
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorous chemistry and Chemical Biology(Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Hang Yin
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorous chemistry and Chemical Biology(Ministry of Education), Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
- Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing 100084, China
| |
Collapse
|
6
|
Bryce DA, Kitt JP, Harris JM. Raman Microscopy Investigation of GLP-1 Peptide Association with Supported Phospholipid Bilayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:14265-14274. [PMID: 34856805 DOI: 10.1021/acs.langmuir.1c01663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A wide range of important biological processes occur at phospholipid membranes including cell signaling, where a peptide or small molecule targets a membrane-localized receptor protein. In this work, we report the adaptation of confocal Raman microscopy to quantify populations of unlabeled glucagon-like peptide-1 (GLP-1), a membrane-active 30-residue incretin peptide, in supported phospholipid bilayers deposited on the interior surfaces of wide-pore porous silica particles. Quantification of lipid bilayer-associated peptide is achieved by measuring the Raman scattering intensity of the peptide relative to that of the supported lipid bilayer, which serves as an internal standard. The dependence of the bilayer-associated GLP-1 population on the solution concentration of GLP-1 produces an isotherm used to determine the equilibrium constant for peptide-bilayer association and the maximum peptide surface coverage. The maximum coverage of GLP-1 in the lipid bilayer was found to be only 1/5th of a full monolayer based on its hydrodynamic radius. The saturation coverage, therefore, is not limited by the size of GLP-1 but by the ability of the bilayer to accommodate the peptide at high concentrations within the bilayer. Raman spectra show that GLP-1 association with the supported bilayer is accompanied by structural changes consistent with the intercalation of the peptide into the bilayer, where the observed increase in acyl-chain order would increase the lipid density and provide free volume needed to accommodate the peptide. These results were compared with previous measurements of the association of fluorescently labeled GLP-1 with a planar-supported bilayer; the unlabeled peptide exhibits a 3-fold greater affinity for the lipid bilayer on the porous silica support, suggesting that the fluorescent label alters the GLP-1 lipid bilayer association.
Collapse
Affiliation(s)
- David A Bryce
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Jay P Kitt
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
- Department of Biomedical Informatics, University of Utah, 421 Wakara Way Ste. 140, Salt Lake City, Utah 84108, United States
| | - Joel M Harris
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| |
Collapse
|
7
|
Jiang Y, Yan M, Wang C, Wang Q, Chen X, Zhang R, Wan L, Ji B, Dong B, Wang H, Chen J. The Effects of Apelin and Elabela Ligands on Apelin Receptor Distinct Signaling Profiles. Front Pharmacol 2021; 12:630548. [PMID: 33746758 PMCID: PMC7970304 DOI: 10.3389/fphar.2021.630548] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/27/2021] [Indexed: 12/13/2022] Open
Abstract
Apelin and Elabela are endogenous peptide ligands for Apelin receptor (APJ), a widely expressed G protein-coupled receptor. They constitute a spatiotemporal dual ligand system to control APJ signal transduction and function. We investigated the effects of Apelin-13, pGlu1-apelin-13, Apelin-17, Apelin-36, Elabela-21 and Elabela-32 peptides on APJ signal transduction. Whether different ligands are biased to different APJ mediated signal transduction pathways was studied. We observed the different changes of G protein dependent and β-arrestin dependent signaling pathways after APJ was activated by six peptide ligands. We demonstrated that stimulation with APJ ligands resulted in dose-dependent increases in both G protein dependent [cyclic AMP (cAMP), Ca2+ mobilization, and the early phase extracellular related kinase (ERK) activation] and β-arrestin dependent [GRKs, β-arrestin 1, β-arrestin 2, and β2 subunit of the clathrin adaptor AP2] signaling pathways. However, the ligands exhibited distinct signaling profiles. Elabela-32 showed a >1000-fold bias to the β-statin-dependent signaling pathway. These data provide that Apelin-17 was biased toward β-arrestin dependent signaling. Eabela-21 and pGlu1-Apelin-13 exhibited very distinct activities on the G protein dependent pathway. The activity profiles of these ligands could be valuable for the development of drugs with high selectivity for specific APJ downstream signaling pathways.
Collapse
Affiliation(s)
- Yunlu Jiang
- Neurobiology Key Laboratory of Jining Medical University in Colleges of Shandong, Jining Medical University, Jining, China
| | - Maocai Yan
- School of Pharmacy, Jining Medical University, Shandong, China
| | - Chunmei Wang
- Neurobiology Key Laboratory of Jining Medical University in Colleges of Shandong, Jining Medical University, Jining, China
| | - Qinqin Wang
- Neurobiology Key Laboratory of Jining Medical University in Colleges of Shandong, Jining Medical University, Jining, China
| | - Xiaoyu Chen
- Department of Physiology, Shandong First Medical University, Shandong, China
| | - Rumin Zhang
- Neurobiology Key Laboratory of Jining Medical University in Colleges of Shandong, Jining Medical University, Jining, China
| | - Lei Wan
- Neurobiology Key Laboratory of Jining Medical University in Colleges of Shandong, Jining Medical University, Jining, China
| | - Bingyuan Ji
- Neurobiology Key Laboratory of Jining Medical University in Colleges of Shandong, Jining Medical University, Jining, China
| | - Bo Dong
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Huiyun Wang
- School of Pharmacy, Jining Medical University, Shandong, China
| | - Jing Chen
- Neurobiology Key Laboratory of Jining Medical University in Colleges of Shandong, Jining Medical University, Jining, China.,Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| |
Collapse
|
8
|
Nirthanan S. Snake three-finger α-neurotoxins and nicotinic acetylcholine receptors: molecules, mechanisms and medicine. Biochem Pharmacol 2020; 181:114168. [PMID: 32710970 DOI: 10.1016/j.bcp.2020.114168] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/20/2020] [Accepted: 07/20/2020] [Indexed: 12/13/2022]
Abstract
Snake venom three-finger α-neurotoxins (α-3FNTx) act on postsynaptic nicotinic acetylcholine receptors (nAChRs) at the neuromuscular junction (NMJ) to produce skeletal muscle paralysis. The discovery of the archetypal α-bungarotoxin (α-BgTx), almost six decades ago, exponentially expanded our knowledge of membrane receptors and ion channels. This included the localisation, isolation and characterization of the first receptor (nAChR); and by extension, the pathophysiology and pharmacology of neuromuscular transmission and associated pathologies such as myasthenia gravis, as well as our understanding of the role of α-3FNTxs in snakebite envenomation leading to novel concepts of targeted treatment. Subsequent studies on a variety of animal venoms have yielded a plethora of novel toxins that have revolutionized molecular biomedicine and advanced drug discovery from bench to bedside. This review provides an overview of nAChRs and their subtypes, classification of α-3FNTxs and the challenges of typifying an increasing arsenal of structurally and functionally unique toxins, and the three-finger protein (3FP) fold in the context of the uPAR/Ly6/CD59/snake toxin superfamily. The pharmacology of snake α-3FNTxs including their mechanisms of neuromuscular blockade, variations in reversibility of nAChR interactions, specificity for nAChR subtypes or for distinct ligand-binding interfaces within a subtype and the role of α-3FNTxs in neurotoxic envenomation are also detailed. Lastly, a reconciliation of structure-function relationships between α-3FNTx and nAChRs, derived from historical mutational and biochemical studies and emerging atomic level structures of nAChR models in complex with α-3FNTxs is discussed.
Collapse
Affiliation(s)
- Selvanayagam Nirthanan
- School of Medical Science, Griffith Health Group, Griffith University, Gold Coast, Queensland, Australia.
| |
Collapse
|
9
|
Sarker M, Speckert M, Rainey JK. Bicelle composition-dependent modulation of phospholipid dynamics by apelin peptides 1. Biochem Cell Biol 2018; 97:325-332. [PMID: 30092142 DOI: 10.1139/bcb-2018-0172] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Apelin peptides are cognate ligands for the apelin receptor, a G-protein-coupled receptor (GPCR). The apelinergic system plays critical roles in wide-ranging physiological activities including function and development of the central nervous and cardiovascular systems. Apelin is found in 13-55 residue isoforms in vivo, all of which share the C-terminal portion of the preproapelin precursor. Characterization of high-resolution structures and detergent micelle interactions of apelin-17 led to a two-step membrane-catalyzed binding and GPCR activation mechanism hypothesis recapitulated in longer isoforms. Here, we examine interactions of the apelin-13 and -17 isoforms with isotropic zwitterionic and mixed zwitterionic-anionic lipid bicelles to test for hallmarks of membrane catalysis in a more physiological membrane-mimetic environment than a micelle. Specifically, 1H and 31P relaxation and diffusion solution-state NMR techniques demonstrate that both apelin isoforms interact with both types of isotropic bicelles. Bicelle hydrodynamics were observed to be differentially modulated by apelin peptides, although these effects were minimal. Phospholipid headgroup 31P spin relaxation behaviour was, conversely, clearly perturbed. Perturbation of this nature was also observed in magnetically aligned bicelles by 31P solid-state NMR spectroscopy and spin relaxation experiments. This behaviour is consistent with an apelin-bicelle binding process allowing significant peptide mobility, facilitating membrane-catalyzed GPCR encounter.
Collapse
Affiliation(s)
- Muzaddid Sarker
- a Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Matt Speckert
- a Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Jan K Rainey
- a Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada.,b Department of Chemistry, Dalhousie University, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
10
|
Mandaliti W, Nepravishta R, Pica F, Vallebona PS, Garaci E, Paci M. Potential mechanism of thymosin-α1-membrane interactions leading to pleiotropy: experimental evidence and hypotheses. Expert Opin Biol Ther 2018; 18:33-42. [DOI: 10.1080/14712598.2018.1456527] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Walter Mandaliti
- Department of Chemical Sciences and Technologies, University of Rome “Tor Vergata”, Rome, Italy
| | - Ridvan Nepravishta
- Department of Chemical Sciences and Technologies, University of Rome “Tor Vergata”, Rome, Italy
- School of Pharmacy, East Anglia University, Norwich, UK
| | - Francesca Pica
- Department of Experimental Medicine and Surgery, University of Rome “Tor Vergata”, Rome, Italy
| | | | - Enrico Garaci
- San Raffaele Pisana Scientific Institute for Research, Hospitalization and Health Care, Rome, Italy
| | - Maurizio Paci
- Department of Chemical Sciences and Technologies, University of Rome “Tor Vergata”, Rome, Italy
| |
Collapse
|
11
|
Lancet D, Zidovetzki R, Markovitch O. Systems protobiology: origin of life in lipid catalytic networks. J R Soc Interface 2018; 15:20180159. [PMID: 30045888 PMCID: PMC6073634 DOI: 10.1098/rsif.2018.0159] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 06/29/2018] [Indexed: 12/17/2022] Open
Abstract
Life is that which replicates and evolves, but there is no consensus on how life emerged. We advocate a systems protobiology view, whereby the first replicators were assemblies of spontaneously accreting, heterogeneous and mostly non-canonical amphiphiles. This view is substantiated by rigorous chemical kinetics simulations of the graded autocatalysis replication domain (GARD) model, based on the notion that the replication or reproduction of compositional information predated that of sequence information. GARD reveals the emergence of privileged non-equilibrium assemblies (composomes), which portray catalysis-based homeostatic (concentration-preserving) growth. Such a process, along with occasional assembly fission, embodies cell-like reproduction. GARD pre-RNA evolution is evidenced in the selection of different composomes within a sparse fitness landscape, in response to environmental chemical changes. These observations refute claims that GARD assemblies (or other mutually catalytic networks in the metabolism first scenario) cannot evolve. Composomes represent both a genotype and a selectable phenotype, anteceding present-day biology in which the two are mostly separated. Detailed GARD analyses show attractor-like transitions from random assemblies to self-organized composomes, with negative entropy change, thus establishing composomes as dissipative systems-hallmarks of life. We show a preliminary new version of our model, metabolic GARD (M-GARD), in which lipid covalent modifications are orchestrated by non-enzymatic lipid catalysts, themselves compositionally reproduced. M-GARD fills the gap of the lack of true metabolism in basic GARD, and is rewardingly supported by a published experimental instance of a lipid-based mutually catalytic network. Anticipating near-future far-reaching progress of molecular dynamics, M-GARD is slated to quantitatively depict elaborate protocells, with orchestrated reproduction of both lipid bilayer and lumenal content. Finally, a GARD analysis in a whole-planet context offers the potential for estimating the probability of life's emergence. The invigorated GARD scrutiny presented in this review enhances the validity of autocatalytic sets as a bona fide early evolution scenario and provides essential infrastructure for a paradigm shift towards a systems protobiology view of life's origin.
Collapse
Affiliation(s)
- Doron Lancet
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Raphael Zidovetzki
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA 92521, USA
| | - Omer Markovitch
- Origins Center, Center for Systems Chemistry, Stratingh Institute for Chemistry, University of Groningen, Groningen, the Netherlands
- Blue Marble Space Institute of Science, Seattle, WA, USA
| |
Collapse
|
12
|
Abstract
Apelin and apela (ELABELA/ELA/Toddler) are two peptide ligands for a class A G-protein-coupled receptor named the apelin receptor (AR/APJ/APLNR). Ligand-AR interactions have been implicated in regulation of the adipoinsular axis, cardiovascular system, and central nervous system alongside pathological processes. Each ligand may be processed into a variety of bioactive isoforms endogenously, with apelin ranging from 13 to 55 amino acids and apela from 11 to 32, typically being cleaved C-terminal to dibasic proprotein convertase cleavage sites. The C-terminal region of the respective precursor protein is retained and is responsible for receptor binding and subsequent activation. Interestingly, both apelin and apela exhibit isoform-dependent variability in potency and efficacy under various physiological and pathological conditions, but most studies focus on a single isoform. Biophysical behavior and structural properties of apelin and apela isoforms show strong correlations with functional studies, with key motifs now well determined for apelin. Unlike its ligands, the AR has been relatively difficult to characterize by biophysical techniques, with most characterization to date being focused on effects of mutagenesis. This situation may improve following a recently reported AR crystal structure, but there are still barriers to overcome in terms of comprehensive biophysical study. In this review, we summarize the three components of the apelinergic system in terms of structure-function correlation, with a particular focus on isoform-dependent properties, underlining the potential for regulation of the system through multiple endogenous ligands and isoforms, isoform-dependent pharmacological properties, and biological membrane-mediated receptor interaction. © 2018 American Physiological Society. Compr Physiol 8:407-450, 2018.
Collapse
Affiliation(s)
- Kyungsoo Shin
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Calem Kenward
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Jan K Rainey
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
13
|
Apelin conformational and binding equilibria upon micelle interaction primarily depend on membrane-mimetic headgroup. Sci Rep 2017; 7:15433. [PMID: 29133807 PMCID: PMC5684411 DOI: 10.1038/s41598-017-14784-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 10/04/2017] [Indexed: 12/13/2022] Open
Abstract
Apelin is one of two peptide hormones that activate the apelin receptor (AR or APJ) to regulate the cardiovascular system, central nervous system, and adipoinsular axis. Here, we apply circular dichroism (CD) spectropolarimetry and nuclear magnetic resonance (NMR) spectroscopy to characterize the potential membrane binding by the two longest bioactive apelin isoforms, apelin-55 and -36, using membrane-mimetic dodecylphosphocholine (DPC), sodium dodecyl sulfate (SDS), and 1-palmitoyl-2-hydroxy-sn-glycero-3-[phospho-rac-(1-glycerol)] (LPPG) micelles. Pulsed field gradient diffusion NMR experiments demonstrated preferential interaction of both apelin-55 and -36 with anionic SDS and LPPG micelles over zwitterionic DPC micelles. Chemical shift perturbations and changes in ps-ns scale dynamics of apelin-55 in all micelles were similarly localized along the polypeptide backbone, demonstrating clear dependence upon detergent headgroup, while comparison of chemical shifts between apelin-55 and apelin-36 showed negligible differences indicative of highly similar modes of micelle interaction. Notably, the observed behaviour was consistent with an ensemble averaged pair of free and bound states in fast exchange on the NMR timescale proportional to the fraction of micelle-bound protein, implying a similar conformational equilibrium regardless of headgroup and tailgroup. Membrane catalysis of apelin-AR binding would thus give rise to analogous behaviour in the essential C-terminal region common to all apelin isoforms.
Collapse
|
14
|
Identification of a conformational heparin-recognition motif on the peptide hormone secretin: key role for cell surface binding. Biochem J 2017; 474:2249-2260. [PMID: 28536157 DOI: 10.1042/bcj20170035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 04/30/2017] [Accepted: 05/23/2017] [Indexed: 11/17/2022]
Abstract
Secretin is a peptide hormone that exerts pleiotropic physiological functions by specifically binding to its cognate membrane-bound receptor. The membrane catalysis model of peptide-receptor interactions states that soluble peptidic ligands initially interact with the plasma membrane. This interaction increases the local concentration and structures the peptide, enhancing the rate of receptor binding. However, this model does not consider the dense network of glycosaminoglycans (GAGs) at the surface of eukaryotic cells. These sulfated polysaccharide chains are known to sequester numerous proteic signaling molecules. In the present study, we evaluated the interaction between the peptide hormone secretin and sulfated GAGs and its contribution to cell surface binding. Using GAG-deficient cells and competition experiments with soluble GAGs, we observed by confocal microscopy and flow cytometry that GAGs mediate the sequestration of secretin at the cell surface. Isothermal titration calorimetry and surface plasmon resonance revealed that secretin binds to heparin with dissociation constants ranging between 0.9 and 4 μM. By designing secretin derivatives with a restricted conformational ensemble, we observed that this interaction is mediated by the presence of a specific conformational GAG-recognition motif that decorates the surface of the peptide upon helical folding. The present study identifies secretin as a novel GAG-binding polypeptide and opens new research direction on the functional role of GAGs in the biology of secretin.
Collapse
|
15
|
Nepravishta R, Mandaliti W, Vallebona PS, Pica F, Garaci E, Paci M. Mechanism of Action of Thymosinα1: Does It Interact with Membrane by Recognition of Exposed Phosphatidylserine on Cell Surface? A Structural Approach. VITAMINS AND HORMONES 2016; 102:101-19. [PMID: 27450732 DOI: 10.1016/bs.vh.2016.04.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Thymosinα1 is a peptidic hormone with pleiotropic activity, which is used in the therapy of several diseases. It is unstructured in water solution and interacts with negative regions of micelles and vesicles assuming two tracts of helical conformation with a structural flexible break in between. The studies of the interaction of Thymosinα1 with micelles of mixed dipalmitoylphosphatidylcholine and sodium dodecylsulfate and vesicles with mixed dipalmitoylphosphatidylcholine/dipalmitoylphosphatidylserine, the latter the negative component of the membranes, by (1)H and natural abundance (15)N NMR are herewith reported, reviewed, and discussed. The results indicate that the preferred interactions are those where the surface is negatively charged due to sodium dodecylsulfate or due to the presence of dipalmitoylphosphatidylserine exposed on the surface. In fact the unbalance of dipalmitoylphosphatidylserine on the cellular surface is an important phenomenon present in pathological conditions of cells. Moreover, the direct interaction of Thymosinα1 with K562 cells presenting an overexposure of phosphatidylserine as a consequence of resveratrol-induced apoptosis was carried out.
Collapse
Affiliation(s)
- R Nepravishta
- University of Rome "Tor Vergata", Rome, Italy; Faculty of Pharmacy Catholic University "Our Lady of Good Counsel", Tirane, Albania
| | - W Mandaliti
- University of Rome "Tor Vergata", Rome, Italy
| | | | - F Pica
- University of Rome "Tor Vergata", Rome, Italy
| | - E Garaci
- University of Rome "Tor Vergata", Rome, Italy; San Raffaele Pisana Scientific Institute for Research, Hospitalization and Health Care, Rome, Italy
| | - M Paci
- University of Rome "Tor Vergata", Rome, Italy.
| |
Collapse
|
16
|
Mandaliti W, Nepravishta R, Sinibaldi Vallebona P, Pica F, Garaci E, Paci M. Thymosin α1 Interacts with Exposed Phosphatidylserine in Membrane Models and in Cells and Uses Serum Albumin as a Carrier. Biochemistry 2016; 55:1462-72. [DOI: 10.1021/acs.biochem.5b01345] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Walter Mandaliti
- Department
of Chemical Sciences and Technologies, University of Rome “Tor Vergata”, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Ridvan Nepravishta
- Department
of Chemical Sciences and Technologies, University of Rome “Tor Vergata”, Via della Ricerca Scientifica 1, 00133 Rome, Italy
- Department
of Chemical Pharmaceutical and Biomolecular Technologies, Faculty of Pharmacy Catholic University “Our Lady of Good Counsel”, Rr. D.
Hoxha, Tirane, Albania
| | - Paola Sinibaldi Vallebona
- Department
of Experimental Medicine and Surgery, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy
| | - Francesca Pica
- Department
of Experimental Medicine and Surgery, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy
| | - Enrico Garaci
- Department
of Experimental Medicine and Surgery, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy
- San
Raffaele Pisana Scientific Institute for Research, Hospitalization and Health Care, 00163 Rome, Italy
| | - Maurizio Paci
- Department
of Chemical Sciences and Technologies, University of Rome “Tor Vergata”, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| |
Collapse
|
17
|
Li ZL, Ding HM, Ma YQ. Interaction of peptides with cell membranes: insights from molecular modeling. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2016; 28:083001. [PMID: 26828575 DOI: 10.1088/0953-8984/28/8/083001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The investigation of the interaction of peptides with cell membranes is the focus of active research. It can enhance the understanding of basic membrane functions such as membrane transport, fusion, and signaling processes, and it may shed light on potential applications of peptides in biomedicine. In this review, we will present current advances in computational studies on the interaction of different types of peptides with the cell membrane. Depending on the properties of the peptide, membrane, and external environment, the peptide-membrane interaction shows a variety of different forms. Here, on the basis of recent computational progress, we will discuss how different peptides could initiate membrane pores, translocate across the membrane, induce membrane endocytosis, produce membrane curvature, form fibrils on the membrane surface, as well as interact with functional membrane proteins. Finally, we will present a conclusion summarizing recent progress and providing some specific insights into future developments in this field.
Collapse
Affiliation(s)
- Zhen-lu Li
- National Laboratory of Solid State Microstructures and Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, People's Republic of China
| | | | | |
Collapse
|
18
|
Lubecka EA, Sikorska E, Sobolewski D, Prahl A, Slaninová J, Ciarkowski J. Arginine-, D-arginine-vasopressin, and their inverso analogues in micellar and liposomic models of cell membrane: CD, NMR, and molecular dynamics studies. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2015; 44:727-43. [PMID: 26290060 PMCID: PMC4628624 DOI: 10.1007/s00249-015-1071-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 07/22/2015] [Accepted: 08/03/2015] [Indexed: 01/21/2023]
Abstract
We describe the synthesis, pharmacological properties, and structures of antidiuretic agonists, arginine vasopressin (AVP) and [d-Arg8]-vasopressin (DAVP), and their inverso analogues. The structures of the peptides are studied based on micellar and liposomic models of cell membranes using CD spectroscopy. Additionally, three-dimensional structures in mixed anionic–zwitterionic micelles are obtained using NMR spectroscopy and molecular dynamics simulations. NMR data have shown that AVP and DAVP tend to adopt typical of vasopressin-like peptides β-turns: in the 2–5 and 3–6 fragments. The inverso-analogues also adopt β-turns in the 3–6 fragments. For this reason, their inactivity seems to be due to the difference in side chains orientations of Tyr2, Phe3, and Arg8, important for interactions with the receptors. Again, the potent antidiuretic activity of DAVP can be explained by CD data suggesting differences in mutual arrangement of the aromatic side chains of Tyr2 and Phe3 in this peptide in liposomes rather than of native AVP. In the presence of liposomes, the smallest conformational changes of the peptides are noticed with DPPC and the largest with DPPG liposomes. This suggests that electrostatic interactions are crucial for the peptide–membrane interactions. We obtained similar, probably active, conformations of the antidiuretic agonists in the mixed DPC/SDS micelles (5:1) and in the mixed DPPC/DPPG (7:3) liposomes. Thus it can be speculated that the anionic–zwitterionic liposomes as well as the anionic–zwitterionic micelles, mimicking the eukaryotic cell membrane environment, partially restrict conformational freedom of the peptides and probably induce conformations resembling those of biologically relevant ones.
Collapse
Affiliation(s)
- Emilia A Lubecka
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308, Gdańsk, Poland.
| | - Emilia Sikorska
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Dariusz Sobolewski
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Adam Prahl
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Jiřina Slaninová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, 166 10, Prague, Czech Republic
| | - Jerzy Ciarkowski
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308, Gdańsk, Poland
| |
Collapse
|
19
|
Bruno A, Scrima M, Novellino E, D'Errico G, D'Ursi AM, Limongelli V. The glycan role in the glycopeptide immunogenicity revealed by atomistic simulations and spectroscopic experiments on the multiple sclerosis biomarker CSF114(Glc). Sci Rep 2015; 5:9200. [PMID: 25776265 PMCID: PMC4361856 DOI: 10.1038/srep09200] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 02/24/2015] [Indexed: 12/22/2022] Open
Abstract
Glycoproteins are often recognized as not-self molecules by antibodies triggering the onset of severe autoimmune diseases such as Multiple Sclerosis (MS). Thus, the development of antigen-mimicking biomarkers represents an attractive strategy for an early diagnosis of the disease. An example is the synthetic glycopeptide CSF114(Glc), which was designed and tested as MS biomarker and whose clinical application was limited by its reduced ability to detect autoantibodies in MS patients. In the attempt to improve the efficacy of CSF114(Glc), we have characterized all the events leading to the final binding of the biomarker to the autoantibody using atomistic simulations, ESR and NMR experiments. The glycosydic moiety plays a primary role in the whole process. In particular, in an environment mimicking that used in the clinical tests the glycopeptide assumes a α-helix structure that is functional for the interaction with the antibody. In this conformation CSF114(Glc) binds the monoclonal antibody mAb8-18C5 similarly to the myelin oligodendrocyte glycoprotein MOG, which is a known MS auto-antigen, thus explaining its diagnostic activity. Our study offers new molecular bases to design more effective biomarkers and provides a most valid protocol to investigate other systems where the environment effect is determinant for the biological activity.
Collapse
Affiliation(s)
- Agostino Bruno
- Department of Pharmacy, University of Naples "Federico II", via D. Montesano 49, I-80131 Naples, Italy
| | - Mario Scrima
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano, Italy
| | - Ettore Novellino
- Department of Pharmacy, University of Naples "Federico II", via D. Montesano 49, I-80131 Naples, Italy
| | - Gerardino D'Errico
- Dipartimento di Scienze Chimiche, Università di Napoli "Federico II", Complesso di Monte Sant'Angelo, via Cinthia, 80126 Naples, Italy
| | - Anna Maria D'Ursi
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano, Italy
| | - Vittorio Limongelli
- 1] Department of Pharmacy, University of Naples "Federico II", via D. Montesano 49, I-80131 Naples, Italy [2] Università della Svizzera Italiana (USI), Faculty of Informatics, Institute of Computational Science, via G. Buffi 13, CH-6900 Lugano, Switzerland
| |
Collapse
|
20
|
Saludes JP, Morton LA, Coulup SK, Fiorini Z, Cook BM, Beninson L, Chapman ER, Fleshner M, Yin H. Multivalency amplifies the selection and affinity of bradykinin-derived peptides for lipid nanovesicles. MOLECULAR BIOSYSTEMS 2013; 9:2005-9. [PMID: 23715428 PMCID: PMC3764994 DOI: 10.1039/c3mb70109c] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The trimer of a bradykinin derivative displayed a more than five-fold increase in binding affinity for phosphatidylserine-enriched nanovesicles as compared to its monomeric precursor. The nanovesicle selection is directly correlated with multivalency, which amplifies the electrostatic attraction. This strategy may lead to the development of novel molecular probes for detecting highly curved membrane bilayers.
Collapse
Affiliation(s)
- Jonel P. Saludes
- Department of Chemistry & Biochemistry and BioFrontiers Institute, University of Colorado, Boulder, CO 80309, USA
- Department of Chemistry, Washington State University, Pullman, WA 99164, USA
| | - Leslie A. Morton
- Department of Chemistry & Biochemistry and BioFrontiers Institute, University of Colorado, Boulder, CO 80309, USA
| | - Sara K. Coulup
- Department of Chemistry & Biochemistry and BioFrontiers Institute, University of Colorado, Boulder, CO 80309, USA
| | - Zeno Fiorini
- Department of Chemistry & Biochemistry and BioFrontiers Institute, University of Colorado, Boulder, CO 80309, USA
| | - Brandan M. Cook
- Department of Chemistry, Washington State University, Pullman, WA 99164, USA
| | - Lida Beninson
- Department of Integrative Physiology, University of Colorado, Boulder, CO 80309, USA
| | - Edwin R. Chapman
- Howard Hughes Medical Institute and Department of Neuroscience, University of Wisconsin, Madison, WI 53706, USA
| | - Monika Fleshner
- Department of Integrative Physiology, University of Colorado, Boulder, CO 80309, USA
| | - Hang Yin
- Department of Chemistry & Biochemistry and BioFrontiers Institute, University of Colorado, Boulder, CO 80309, USA
| |
Collapse
|
21
|
De Ricco R, Valensin D, Gaggelli E, Valensin G. Conformation propensities of des-acyl-ghrelin as probed by CD and NMR. Peptides 2013; 43:62-7. [PMID: 23470254 DOI: 10.1016/j.peptides.2013.02.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 02/20/2013] [Accepted: 02/20/2013] [Indexed: 12/30/2022]
Abstract
Des-acyl-ghrelin is a 28 amino acid peptide secreted by both human and rat stomach. Together with ghrelin and obestatin, it is obtained by post-translational modification of a 117 aminoacid prepropeptide mainly expressed in distinct endocrine cell type in the stomach. Although its receptor has not been unambiguously identified so far, des-acyl-ghrelin is considered one of the strongest antagonists of ghrelin in activating the growth hormone secretagogue receptor (GHS-R). Here the secondary structure of des-acyl-ghrelin in different experimental conditions has been investigated and compared with that of obestatin, a bioactive peptide having similar biological functions. CD and NMR techniques have been combined for gaining the desired conformational features. The obtained structures support a steady alpha-helix structure spanning residues from 7 to 14, very similar to that observed for obestatin at the same experimental conditions, leading to suggest that a similar secondary structure can be associated with the similar biological role.
Collapse
Affiliation(s)
- Riccardo De Ricco
- Department of Biotechnology, University of Siena, Via A. Moro 2, 53100 Siena, Italy
| | | | | | | |
Collapse
|
22
|
Langelaan DN, Reddy T, Banks AW, Dellaire G, Dupré DJ, Rainey JK. Structural features of the apelin receptor N-terminal tail and first transmembrane segment implicated in ligand binding and receptor trafficking. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:1471-83. [PMID: 23438363 DOI: 10.1016/j.bbamem.2013.02.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 01/17/2013] [Accepted: 02/13/2013] [Indexed: 12/20/2022]
Abstract
G-protein coupled receptors (GPCRs) comprise a large family of membrane proteins with rich functional diversity. Signaling through the apelin receptor (AR or APJ) influences the cardiovascular system, central nervous system and glucose regulation. Pathophysiological involvement of apelin has been shown in atherosclerosis, cancer, human immunodeficiency virus-1 (HIV-1) infection and obesity. Here, we present the high-resolution nuclear magnetic resonance (NMR) spectroscopy-based structure of the N-terminus and first transmembrane (TM) segment of AR (residues 1-55, AR55) in dodecylphosphocholine micelles. AR55 consists of two disrupted helices, spanning residues D14-K25 and A29-R55(1.59). Molecular dynamics (MD) simulations of AR built from a hybrid of experimental NMR and homology model-based restraints allowed validation of the AR55 structure in the context of the full-length receptor in a hydrated bilayer. AR55 structural features were functionally probed using mutagenesis in full-length AR through monitoring of apelin-induced extracellular signal-regulated kinase (ERK) phosphorylation in transiently transfected human embryonic kidney (HEK) 293A cells. Residues E20 and D23 form an extracellular anionic face and interact with lipid headgroups during MD simulations in the absence of ligand, producing an ideal binding site for a cationic apelin ligand proximal to the membrane-water interface, lending credence to membrane-catalyzed apelin-AR binding. In the TM region of AR55, N46(1.50) is central to a disruption in helical character. G42(1.46), G45(1.49) and N46(1.50), which are all involved in the TM helical disruption, are essential for proper trafficking of AR. In summary, we introduce a new correlative NMR spectroscopy and computational biochemistry methodology and demonstrate its utility in providing some of the first high-resolution structural information for a peptide-activated GPCR TM domain.
Collapse
Affiliation(s)
- David N Langelaan
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | | | | | | | |
Collapse
|
23
|
Sikorska E, Iłowska E, Wyrzykowski D, Kwiatkowska A. Membrane structure and interactions of peptide hormones with model lipid bilayers. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:2982-93. [DOI: 10.1016/j.bbamem.2012.07.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 07/10/2012] [Accepted: 07/16/2012] [Indexed: 11/26/2022]
|
24
|
Myers GA, Gacek DA, Peterson EM, Fox CB, Harris JM. Microscopic Rates of Peptide–Phospholipid Bilayer Interactions from Single-Molecule Residence Times. J Am Chem Soc 2012; 134:19652-60. [DOI: 10.1021/ja306074k] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Grant A. Myers
- Department
of Chemistry, University of Utah, 315 South
1400 East, Salt Lake
City, Utah 84112-0850, United States
| | - Daniel A. Gacek
- Department
of Chemistry, University of Utah, 315 South
1400 East, Salt Lake
City, Utah 84112-0850, United States
| | - Eric M. Peterson
- Department
of Chemistry, University of Utah, 315 South
1400 East, Salt Lake
City, Utah 84112-0850, United States
| | - Christopher B. Fox
- Department
of Chemistry, University of Utah, 315 South
1400 East, Salt Lake
City, Utah 84112-0850, United States
- Department of Bioengineering, University of Utah, 50 South Central Campus Drive,
Salt Lake City, Utah 84112-9202, United States
| | - Joel M. Harris
- Department
of Chemistry, University of Utah, 315 South
1400 East, Salt Lake
City, Utah 84112-0850, United States
- Department of Bioengineering, University of Utah, 50 South Central Campus Drive,
Salt Lake City, Utah 84112-9202, United States
| |
Collapse
|
25
|
Petropavlovskaia M, Daoud J, Zhu J, Moosavi M, Ding J, Makhlin J, Assouline-Thomas B, Rosenberg L. Mechanisms of action of islet neogenesis-associated protein: comparison of the full-length recombinant protein and a bioactive peptide. Am J Physiol Endocrinol Metab 2012; 303:E917-27. [PMID: 22850686 PMCID: PMC3469614 DOI: 10.1152/ajpendo.00670.2011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Islet neogenesis-associated protein (INGAP) was discovered in the partially duct-obstructed hamster pancreas as a factor inducing formation of new duct-associated islets. A bioactive portion of INGAP, INGAP(104-118) peptide (INGAP-P), has been shown to have neogenic and insulin-potentiating activity in numerous studies, including recent phase 2 clinical trials that demonstrated improved glucose homeostasis in both type 1 and type 2 diabetic patients. Aiming to improve INGAP-P efficacy and to understand its mechanism of action, we cloned the full-length protein (rINGAP) and compared the signaling events induced by the protein and the peptide in RIN-m5F cells that respond to INGAP with an increase in proliferation. Here, we show that, although both rINGAP and INGAP-P signal via the Ras/Raf/ERK pathway, rINGAP is at least 100 times more efficient on a molar basis than INGAP-P. For either ligand, ERK1/2 activation appears to be pertussis toxin sensitive, suggesting involvement of a G protein-coupled receptor(s). However, there are clear differences between the peptide and the protein in interactions with the cell surface and in the downstream signaling. We demonstrate that fluorescent-labeled rINGAP is characterized by clustering on the membrane and by slow internalization (≤5 h), whereas INGAP-P does not cluster and is internalized within minutes. Signaling by rINGAP appears to involve Src, in contrast to INGAP-P, which appears to activate Akt in addition to the Ras/Raf/ERK1/2 pathway. Thus our data suggest that interactions of INGAP with the cell surface are important to consider for further development of INGAP as a pharmacotherapy for diabetes.
Collapse
Affiliation(s)
- Maria Petropavlovskaia
- Department of Surgery, the Research Institute of the McGill University Health Center, McGill University, Montreal, Québec, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Langelaan DN, Ngweniform P, Rainey JK. Biophysical characterization of G-protein coupled receptor-peptide ligand binding. Biochem Cell Biol 2011; 89:98-105. [PMID: 21455262 DOI: 10.1139/o10-142] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
G-protein coupled receptors (GPCRs) are ubiquitous membrane proteins allowing intracellular responses to extracellular factors that range from photons of light to small molecules to proteins. Despite extensive exploitation of GPCRs as therapeutic targets, biophysical characterization of GPCR-ligand interactions remains challenging. In this minireview, we focus on techniques that have been successfully used for structural and biophysical characterization of peptide ligands binding to their cognate GPCRs. The techniques reviewed include solution-state nuclear magnetic resonance (NMR) spectroscopy, solid-state NMR, X-ray diffraction, fluorescence spectroscopy and single-molecule fluorescence methods, flow cytometry, surface plasmon resonance, isothermal titration calorimetry, and atomic force microscopy. The goal herein is to provide a cohesive starting point to allow selection of techniques appropriate to the elucidation of a given GPCR-peptide interaction.
Collapse
Affiliation(s)
- David N Langelaan
- Department of Biochemistry & Molecular Biology, Dalhousie University, 5850 College Street, Halifax, Nova Scotia, Canada
| | | | | |
Collapse
|