1
|
Zhou J, Yan X, Liu Y, Yang J. Succinylation of CTBP1 mediated by KAT2A suppresses its inhibitory activity on the transcription of CDH1 to promote the progression of prostate cancer. Biochem Biophys Res Commun 2023; 650:9-16. [PMID: 36764210 DOI: 10.1016/j.bbrc.2023.02.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/05/2023]
Abstract
CTBP1 has been demonstrated as a co-repressor in the transcriptional regulation of downstream genes and is involved in various cell process. However, the mechanism of CTBP1 in the progression of prostate cancer is still unclear. Here, we aim to investigate how CTBP1 exerts its role in prostate cancer progression, especially how CTBP1 was regulated by the upstream genes. We found that CTBP1 was highly expressed in prostate cancer and promoted the cell viability, migration, invasion and glycolysis of prostate cancer cells. CDH1 was verified to be the target of CTBP1. We determined that CTBP1 could directly bind with SP1 to inhibit the transcription of CDH1. Moreover, succinylation of CTBP1 was found to be up-regulated in prostate cancer cell. Further studies demonstrated that KAT2A promotes the succinylation of CTBP1 and mediates the transcription suppressing activity of it. In addition, the K46 and K280 was confirmed to be the two sites that regulated by KAT2A. In vivo studies further indicated that CTBP1 could promote the growth of prostate cancer, and this effect of CTBP1 could be partially reversed by KAT2A knockdown. Taken together, we found that succinylation of CTBP1 mediated by KAT2A suppresses the inhibitory activity of CTBP1 on the transcription of CDH1, thus act as an oncogene.
Collapse
Affiliation(s)
- Jinmeng Zhou
- Department of Geriatrics, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China; Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China; Department of Critical Care Medicine, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiaoting Yan
- Department of Urology, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Ying Liu
- Department of Geriatrics,Beijing Jishuitan Hospital, Beijing, China
| | - Jihong Yang
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China; Department of Nephrology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Science, Beijing, China.
| |
Collapse
|
2
|
Tessier TM, Dodge MJ, MacNeil KM, Evans AM, Prusinkiewicz MA, Mymryk JS. Almost famous: Human adenoviruses (and what they have taught us about cancer). Tumour Virus Res 2021; 12:200225. [PMID: 34500123 PMCID: PMC8449131 DOI: 10.1016/j.tvr.2021.200225] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/25/2021] [Accepted: 09/03/2021] [Indexed: 12/11/2022] Open
Abstract
Papillomaviruses, polyomaviruses and adenoviruses are collectively categorized as the small DNA tumour viruses. Notably, human adenoviruses were the first human viruses demonstrated to be able to cause cancer, albeit in non-human animal models. Despite their long history, no human adenovirus is a known causative agent of human cancers, unlike a subset of their more famous cousins, including human papillomaviruses and human Merkel cell polyomavirus. Nevertheless, seminal research using human adenoviruses has been highly informative in understanding the basics of cell cycle control, gene expression, apoptosis and cell differentiation. This review highlights the contributions of human adenovirus research in advancing our knowledge of the molecular basis of cancer.
Collapse
Affiliation(s)
- Tanner M Tessier
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, Canada
| | - Mackenzie J Dodge
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, Canada
| | - Katelyn M MacNeil
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, Canada
| | - Andris M Evans
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, Canada
| | - Martin A Prusinkiewicz
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, Canada
| | - Joe S Mymryk
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, Canada; Department of Otolaryngology, Head & Neck Surgery, The University of Western Ontario, London, ON, Canada; Department of Oncology, The University of Western Ontario, London, ON, Canada; London Regional Cancer Program, Lawson Health Research Institute, London, ON, Canada.
| |
Collapse
|
3
|
The Influence of E1A C-Terminus on Adenovirus Replicative Cycle. Viruses 2017; 9:v9120387. [PMID: 29257057 PMCID: PMC5744161 DOI: 10.3390/v9120387] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 12/15/2017] [Accepted: 12/16/2017] [Indexed: 01/30/2023] Open
Abstract
Adenovirus Early 1A proteins (E1A) are crucial for initiation of the viral life cycle after infection. The E1A gene is encoded at the left end of the viral genome and consists of two exons, the first encoding 185 amino acids in the 289 residues adenovirus 5 E1A, while the second exon encodes 104 residues. The second exon-encoded region of E1A is conserved across all E1A isoforms except for the 55 residues protein, which has a unique C-terminus due to a frame shift following splicing into the second exon. This region of E1A contributes to a variety of processes including the regulation of viral and cellular gene expression, immortalization and transformation. Here we evaluated the contributions that different regions of the second exon of E1A make to the viral life cycle using deletion mutants. The region of E1A encoded by the second exon was found to be important for overall virus growth, induction of viral and cellular gene expression, viral genome replication and deregulation of the cell cycle. Efficient viral replication was found to require exon 2 and the nuclear localization signal, as loss of either resulted in severe growth deficiency. Induction of cellular DNA synthesis was also deficient with any deletion of E1A within the C-terminus even if these deletions were outside of conserved region 4. Overall, our study provides the first comprehensive insight into the contributions of the C-terminus of E1A to the replicative fitness of human adenovirus 5 in arrested lung fibroblasts.
Collapse
|
4
|
Cimas FJ, Callejas-Valera JL, García-Olmo DC, Hernández-Losa J, Melgar-Rojas P, Ruiz-Hidalgo MJ, Pascual-Serra R, Ortega-Muelas M, Roche O, Marcos P, Garcia-Gil E, Fernandez-Aroca DM, Ramón y Cajal S, Gutkind JS, Sanchez-Prieto R. E1a is an exogenous in vivo tumour suppressor. Cancer Lett 2017; 399:74-81. [DOI: 10.1016/j.canlet.2017.04.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/05/2017] [Accepted: 04/09/2017] [Indexed: 12/17/2022]
|
5
|
Ivanova D, Dirks A, Fejtova A. Bassoon and piccolo regulate ubiquitination and link presynaptic molecular dynamics with activity-regulated gene expression. J Physiol 2016; 594:5441-8. [PMID: 26915533 DOI: 10.1113/jp271826] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 01/29/2016] [Indexed: 12/26/2022] Open
Abstract
Release of neurotransmitter is executed by complex multiprotein machinery, which is assembled around the presynaptic cytomatrix at the active zone. One well-established function of this proteinaceous scaffold is the spatial organization of synaptic vesicle cluster, the protein complexes that execute membrane fusion and compensatory endocytosis, and the transmembrane molecules important for alignment of pre- and postsynaptic structures. The presynaptic cytomatrix proteins function also in processes other than the formation of a static frame for assembly of the release apparatus and synaptic vesicle cycling. They actively contribute to the regulation of multiple steps in this process and are themselves an important subject of regulation during neuronal plasticity. We are only beginning to understand the mechanisms and signalling pathways controlling these regulations. They are mainly dependent on posttranslational modifications, including phosphorylation and small-molecules conjugation, such as ubiquitination. Ubiquitination of presynaptic proteins might lead to their degradation by proteasomes, but evidence is growing that this modification also affects their function independently of their degradation. Signalling from presynapse to nucleus, which works on a much slower time scale and more globally, emerged as an important mechanism for persistent usage-dependent and homeostatic neuronal plasticity. Recently, two new functions for the largest presynaptic scaffolding proteins bassoon and piccolo emerged. They were implied (1) in the regulation of specific protein ubiquitination and proteasome-mediated proteolysis that potentially contributes to short-term plasticity at the presynapse and (2) in the coupling of activity-induced molecular rearrangements at the presynapse with reprogramming of expression of neuronal activity-regulated genes.
Collapse
Affiliation(s)
- Daniela Ivanova
- RG Presynaptic Plasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Anika Dirks
- Department of Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Anna Fejtova
- RG Presynaptic Plasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany. .,Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany.
| |
Collapse
|
6
|
The Cellular Protein Complex Associated with a Transforming Region of E1A Contains c-MYC. J Virol 2015; 90:1070-9. [PMID: 26559831 DOI: 10.1128/jvi.02039-15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 11/02/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The cell-transforming activity of human adenovirus 5 (hAd5) E1A is mediated by the N-terminal half of E1A, which interacts with three different major cellular protein complexes, p300/CBP, TRRAP/p400, and pRb family members. Among these protein interactions, the interaction of pRb family proteins with conserved region 2 (CR2) of E1A is known to promote cell proliferation by deregulating the activities of E2F family transcription factors. The functional consequences of interaction with the other two protein complexes in regulating the transforming activity of E1A are not well defined. Here, we report that the E1A N-terminal region also interacted with the cellular proto-oncoprotein c-MYC and the homolog of enhancer of yellow 2 (ENY2). Our results suggested that these proteins interacted with an essential E1A transforming domain spanning amino acid residues 26 to 35 which also interacted with TRRAP and p400. Small interfering RNA (siRNA)-mediated depletion of TRRAP reduced c-MYC interaction with E1A, while p400 depletion did not. In contrast, depletion of TRRAP enhanced ENY2 interaction with E1A, suggesting that ENY2 and TRRAP may interact with E1A in a competitive manner. The same E1A region additionally interacted with the constituents of a deubiquitinase complex consisting of USP22, ATXN7, and ATXN7L3 via TRRAP. Acute short hairpin RNA (shRNA)-mediated depletion of c-MYC reduced the E1A transforming activity, while depletion of ENY2 and MAX did not. These results suggested that the association of c-MYC with E1A may, at least partially, play a role in the E1A transformation activity, independently of MAX. IMPORTANCE The transforming region of adenovirus E1A consists of three short modules which complex with different cellular protein complexes. The mechanism by which one of the transforming modules, CR2, promotes cell proliferation, through inactivating the activities of the pRb family proteins, is better understood than the activities of the other domains. Our analysis of the E1A proteome revealed the presence of the proto-oncoprotein c-MYC and of ENY2. We mapped these interactions to a critical transforming module of E1A that was previously known to interact with the scaffolding molecule TRRAP and the E1A-binding protein p400. We showed that c-MYC interacted with E1A through TRRAP, while ENY2 interacted with it independently. The data reported here indicated that depletion of c-MYC in normal human cells reduced the transforming activity of E1A. Our result raises a novel paradigm in oncogenic transformation by a DNA viral oncogene, the E1A gene, that may exploit the activity of a cellular oncogene, the c-MYC gene, in addition to inactivation of the tumor suppressors, such as pRb.
Collapse
|
7
|
Adenovirus E1A targets the DREF nuclear factor to regulate virus gene expression, DNA replication, and growth. J Virol 2014; 88:13469-81. [PMID: 25210186 DOI: 10.1128/jvi.02538-14] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The adenovirus E1A gene is the first gene expressed upon viral infection. E1A remodels the cellular environment to maximize permissivity for viral replication. E1A is also the major transactivator of viral early gene expression and a coregulator of a large number of cellular genes. E1A carries out its functions predominantly by binding to cellular regulatory proteins and altering their activities. The unstructured nature of E1A enables it to bind to a large variety of cellular proteins and form new molecular complexes with novel functions. The C terminus of E1A is the least-characterized region of the protein, with few known binding partners. Here we report the identification of cellular factor DREF (ZBED1) as a novel and direct binding partner of E1A. Our studies identify a dual role for DREF in the viral life cycle. DREF contributes to activation of gene expression from all viral promoters early in infection. Unexpectedly, it also functions as a growth restriction factor for adenovirus as knockdown of DREF enhances virus growth and increases viral genome copy number late in the infection. We also identify DREF as a component of viral replication centers. E1A affects the subcellular distribution of DREF within PML bodies and enhances DREF SUMOylation. Our findings identify DREF as a novel E1A C terminus binding partner and provide evidence supporting a role for DREF in viral replication. IMPORTANCE This work identifies the putative transcription factor DREF as a new target of the E1A oncoproteins of human adenovirus. DREF was found to primarily localize with PML nuclear bodies in uninfected cells and to relocalize into virus replication centers during infection. DREF was also found to be SUMOylated, and this was enhanced in the presence of E1A. Knockdown of DREF reduced the levels of viral transcripts detected at 20 h, but not at 40 h, postinfection, increased overall virus yield, and enhanced viral DNA replication. DREF was also found to localize to viral promoters during infection together with E1A. These results suggest that DREF contributes to activation of viral gene expression. However, like several other PML-associated proteins, DREF also appears to function as a growth restriction factor for adenovirus infection.
Collapse
|
8
|
Arulsundaram VD, Webb P, Yousef AF, Pelka P, Fonseca GJ, Baxter JD, Walfish PG, Mymryk JS. The adenovirus 55 residue E1A protein is a transcriptional activator and binds the unliganded thyroid hormone receptor. J Gen Virol 2013; 95:142-152. [PMID: 24136366 DOI: 10.1099/vir.0.056838-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The early region 1A (E1A) of human adenovirus types 2 and 5 is differentially spliced to yield five distinct mRNAs that encode different proteins. The smallest E1A RNA transcript encodes a 55 residue (55R) protein that shares only 28 amino acid residues with the other E1A proteins. Even though it is the most abundant E1A transcript at late times post-infection, little is known about the functions of this E1A isoform. In this study, we show that the E1A 55R protein interacts with, and modulates the activity of the unliganded thyroid hormone receptor (TR). We demonstrate that E1A 55R contains a signature motif known as the CoRNR box that confers interaction with the unliganded TR; this motif was originally identified in cellular corepressors. Using a system reconstituted in the yeast Saccharomyces cerevisiae, which lack endogenous TR and TR coregulators, we show that E1A 55R nonetheless differs from cellular corepressors as it functions as a strong co-activator of TR-dependent transcription and that it possesses an intrinsic transcriptional activation domain. These data indicate that the E1A 55R protein functions as a transcriptional regulator.
Collapse
Affiliation(s)
- Vishnuka D Arulsundaram
- Departments of Oncology, Microbiology & Immunology, University of Western Ontario and London Regional Cancer Centre, London, Ontario N6A 4L6, Canada
| | - Paul Webb
- The Methodist Hospital Research Institute, 6565 Fannin Street, Houston, TX 77030, USA
| | - Ahmed F Yousef
- Masdar Institute of Science and Technology, Abu Dhabi, UAE
| | - Peter Pelka
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Greg J Fonseca
- Departments of Oncology, Microbiology & Immunology, University of Western Ontario and London Regional Cancer Centre, London, Ontario N6A 4L6, Canada
| | - John D Baxter
- The Methodist Hospital Research Institute, 6565 Fannin Street, Houston, TX 77030, USA
| | - Paul G Walfish
- Department of Medicine, Endocrine Division, Mount Sinai Hospital, University of Toronto Medical School, Toronto, Ontario M5G 1X5, Canada
| | - Joe S Mymryk
- Departments of Oncology, Microbiology & Immunology, University of Western Ontario and London Regional Cancer Centre, London, Ontario N6A 4L6, Canada
| |
Collapse
|
9
|
Dissection of the C-terminal region of E1A redefines the roles of CtBP and other cellular targets in oncogenic transformation. J Virol 2013; 87:10348-55. [PMID: 23864635 DOI: 10.1128/jvi.00786-13] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human adenovirus E1A makes extensive connections with the cellular protein interaction network. By doing so, E1A can manipulate many cellular programs, including cell cycle progression. Through these reprogramming events, E1A functions as a growth-promoting oncogene and has been used extensively to investigate mechanisms contributing to oncogenesis. Nevertheless, it remains unclear how the C-terminal region of E1A contributes to oncogenic transformation. Although this region is required for transformation in cooperation with E1B, it paradoxically suppresses transformation in cooperation with activated Ras. Previous analysis has suggested that the interaction of E1A with CtBP plays a pivotal role in both activities. However, some C-terminal mutants of E1A retain CtBP binding and yet exhibit defects in transformation, suggesting that other targets of this region are also necessary. To explore the roles of these additional factors, we performed an extensive mutational analysis of the C terminus of E1A. We identified key residues that are specifically required for binding all known targets of the C terminus of E1A. We further tested each mutant for the ability to both localize to the nucleus and transform primary rat cells in cooperation with E1B-55K or Ras. Interaction of E1A with importin α3/Qip1, dual-specificity tyrosine-regulated kinase 1A (DYRK1A), HAN11, and CtBP influenced transformation with E1B-55K. Interestingly, the interaction of E1A with DYRK1A and HAN11 appeared to play a role in suppression of transformation by activated Ras whereas interaction with CtBP was not necessary. This unexpected result suggests a need for revision of current models and provides new insight into transformation by the C terminus of E1A.
Collapse
|
10
|
Subramanian T, Zhao LJ, Chinnadurai G. Interaction of CtBP with adenovirus E1A suppresses immortalization of primary epithelial cells and enhances virus replication during productive infection. Virology 2013; 443:313-20. [PMID: 23747199 DOI: 10.1016/j.virol.2013.05.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 04/29/2013] [Accepted: 05/10/2013] [Indexed: 10/26/2022]
Abstract
Adenovirus E1A induces cell proliferation, oncogenic transformation and promotes viral replication through interaction with p300/CBP, TRRAP/p400 multi-protein complex and the retinoblastoma (pRb) family proteins through distinct domains in the E1A N-terminal region. The C-terminal region of E1A suppresses E1A/Ras co-transformation and interacts with FOXK1/K2, DYRK1A/1B/HAN11 and CtBP1/2 (CtBP) protein complexes. To specifically dissect the role of CtBP interaction with E1A, we engineered a mutation (DL→AS) within the CtBP-binding motif, PLDLS, and investigated the effect of the mutation on immortalization and Ras cooperative transformation of primary cells and viral replication. Our results suggest that CtBP-E1A interaction suppresses immortalization and Ras co-operative transformation of primary rodent epithelial cells without significantly influencing the tumorigenic activities of transformed cells in immunodeficient and immunocompetent animals. During productive infection, CtBP-E1A interaction enhances viral replication in human cells. Between the two CtBP family proteins, CtBP2 appears to restrict viral replication more than CtBP1 in human cells.
Collapse
Affiliation(s)
- T Subramanian
- Institute for Molecular Virology, Saint Louis University Health Sciences Center, Doisy Research Center, 1100 South Grand Blvd., Saint Louis, MO 63104, USA
| | | | | |
Collapse
|
11
|
Wierstra I. FOXM1 (Forkhead box M1) in tumorigenesis: overexpression in human cancer, implication in tumorigenesis, oncogenic functions, tumor-suppressive properties, and target of anticancer therapy. Adv Cancer Res 2013; 119:191-419. [PMID: 23870513 DOI: 10.1016/b978-0-12-407190-2.00016-2] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
FOXM1 (Forkhead box M1) is a typical proliferation-associated transcription factor and is also intimately involved in tumorigenesis. FOXM1 stimulates cell proliferation and cell cycle progression by promoting the entry into S-phase and M-phase. Additionally, FOXM1 is required for proper execution of mitosis. In accordance with its role in stimulation of cell proliferation, FOXM1 exhibits a proliferation-specific expression pattern and its expression is regulated by proliferation and anti-proliferation signals as well as by proto-oncoproteins and tumor suppressors. Since these factors are often mutated, overexpressed, or lost in human cancer, the normal control of the foxm1 expression by them provides the basis for deregulated FOXM1 expression in tumors. Accordingly, FOXM1 is overexpressed in many types of human cancer. FOXM1 is intimately involved in tumorigenesis, because it contributes to oncogenic transformation and participates in tumor initiation, growth, and progression, including positive effects on angiogenesis, migration, invasion, epithelial-mesenchymal transition, metastasis, recruitment of tumor-associated macrophages, tumor-associated lung inflammation, self-renewal capacity of cancer cells, prevention of premature cellular senescence, and chemotherapeutic drug resistance. However, in the context of urethane-induced lung tumorigenesis, FOXM1 has an unexpected tumor suppressor role in endothelial cells because it limits pulmonary inflammation and canonical Wnt signaling in epithelial lung cells, thereby restricting carcinogenesis. Accordingly, FOXM1 plays a role in homologous recombination repair of DNA double-strand breaks and maintenance of genomic stability, that is, prevention of polyploidy and aneuploidy. The implication of FOXM1 in tumorigenesis makes it an attractive target for anticancer therapy, and several antitumor drugs have been reported to decrease FOXM1 expression.
Collapse
|