1
|
Chowdhury M, Turner JA, Cappello D, Hajjami M, Hudson RHE. Chimeric GFP-uracil based molecular rotor fluorophores. Org Biomol Chem 2023; 21:9463-9470. [PMID: 37997774 DOI: 10.1039/d3ob01539d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Uracil has been modified at the 5-position to derive a small library of nucleobase-chromophores which were inspired by green fluorescent protein (GFP). The key steps in the syntheses were Erlenmeyer azlactone synthesis followed by amination by use of hexamethyl disilazane (HMDS) to produce the imidazolinone derivatives. The uracil analogues displayed emission in the green region of visible spectrum and exhibited microenvironmental sensitivity exemplified by polarity-based solvatochromism and viscosity-dependent emission enhancement. Solid-state quantum yields of approximately 0.2 and solvent dependent emission wavelengths beyond 500 nm were observed. Select analogues were incorporated into peptide nucleic acid (PNA) strands which upon duplex formation with DNA showed good response ranging from a turn-off of fluorescence in presence of an opposing mismatched residue to a greater than 3-fold turn-on of fluorescence upon binding to fully complementary DNA strand.
Collapse
Affiliation(s)
- Mria Chowdhury
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada N6A 5B7. rhhudson@uwo
| | - Julia A Turner
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada N6A 5B7. rhhudson@uwo
| | - Daniela Cappello
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada N6A 5B7. rhhudson@uwo
| | - Maryam Hajjami
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada N6A 5B7. rhhudson@uwo
| | - Robert H E Hudson
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada N6A 5B7. rhhudson@uwo
| |
Collapse
|
2
|
Brodyagin N, Maryniak AL, Kumpina I, Talbott JM, Katkevics M, Rozners E, MacKay JA. Extended Peptide Nucleic Acid Nucleobases Based on Isoorotic Acid for the Recognition of A-U Base Pairs in Double-Stranded RNA. Chemistry 2021; 27:4332-4335. [PMID: 33439519 DOI: 10.1002/chem.202005401] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/12/2021] [Indexed: 02/06/2023]
Abstract
Peptide nucleic acids (PNA) with extended isoorotamide containing nucleobases (Io ) were designed for binding A-U base pairs in double-stranded RNA. Isothermal titration calorimetry and UV thermal melting experiments revealed improved affinity for A-U using the Io scaffold in PNA. PNAs having four sequential Io extended nucleobases maintained high binding affinity.
Collapse
Affiliation(s)
- Nikita Brodyagin
- Department of Chemistry, Binghamton University, Binghamton, New York, 13902, USA
| | - Aubrey L Maryniak
- Department of Chemistry and Biochemistry, Elizabethtown College, Elizabethtown, Pennsylvania, 17022, USA
| | - Ilze Kumpina
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga, LV-1006, Latvia
| | - John M Talbott
- Department of Chemistry and Biochemistry, Elizabethtown College, Elizabethtown, Pennsylvania, 17022, USA
| | - Martins Katkevics
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga, LV-1006, Latvia
| | - Eriks Rozners
- Department of Chemistry, Binghamton University, Binghamton, New York, 13902, USA
| | - James A MacKay
- Department of Chemistry and Biochemistry, Elizabethtown College, Elizabethtown, Pennsylvania, 17022, USA
| |
Collapse
|
3
|
Mattelaer H, Van Hool A, de Jong F, Van der Auweraer M, Van Meervelt L, Dehaen W, Herdewijn P. New Metal-Free Route towards Imidazole-Substituted Uridine. European J Org Chem 2020; 2020:4022-4025. [PMID: 32837299 PMCID: PMC7283795 DOI: 10.1002/ejoc.202000563] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Indexed: 01/24/2023]
Abstract
Nucleosides with a bi(hetero)aryl nucleobase have unique potential applications as antiviral drugs and molecular probes. The need for transition metal catalysis to synthesize these nucleosides from pre-functionalized building blocks and the use of nucleobase protection groups results in expensive and tedious syntheses. Herein we report that 5-imidazolyl-uracil can be obtained by scalable Van Leusen imidazole synthesis and regioselectively introduced on ribose to obtain the desired nucleoside in a 5 step synthesis (total yield 55 %). The 5-imidazolyl moiety leads to improved fluorescence properties. The only side-product formed was characterized by 2D-NMR and X-ray crystallography and could be suppressed during synthesis in favor of the desired product.
Collapse
Affiliation(s)
- Henri‐Philippe Mattelaer
- Rega Institute for Medical ScienceMedicinal ChemistryKULeuvenHerestraat 493000LeuvenBelgium
- Department of Chemistry, Molecular Design and SynthesisLeuvenCelestijnenlaan 200F3001LeuvenBelgium
| | - Anne‐Sophie Van Hool
- Rega Institute for Medical ScienceMedicinal ChemistryKULeuvenHerestraat 493000LeuvenBelgium
| | - Flip de Jong
- Department of Chemistry, Molecular Imaging and PhotonicsKULeuvenCelestijnenlaan 200F3001LeuvenBelgium
| | - Mark Van der Auweraer
- Department of Chemistry, Molecular Imaging and PhotonicsKULeuvenCelestijnenlaan 200F3001LeuvenBelgium
| | - Luc Van Meervelt
- Department of Chemistry, Biochemistry, Molecular and Structural Biology SectionKULeuvenCelestijnenlaan 200F3001LeuvenBelgium
| | - Wim Dehaen
- Department of Chemistry, Molecular Design and SynthesisLeuvenCelestijnenlaan 200F3001LeuvenBelgium
| | - Piet Herdewijn
- Rega Institute for Medical ScienceMedicinal ChemistryKULeuvenHerestraat 493000LeuvenBelgium
| |
Collapse
|
4
|
Krell K, Wagenknecht HA. Fluorogenic and Bioorthogonal Modification of RNA Using Photoclick Chemistry. Biomolecules 2020; 10:biom10030480. [PMID: 32245224 PMCID: PMC7175119 DOI: 10.3390/biom10030480] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 12/27/2022] Open
Abstract
A bromoaryltetrazole-modified uridine was synthesized as a new RNA building block for bioorthogonal, light-activated and postsynthetic modification with commercially available fluorescent dyes. It allows "photoclick"-type modifications by irradiation with light (300 nm LED) at internal and terminal positions of presynthesized RNA with maleimide-conjugated fluorophores in good yields. The reaction was evidenced for three different dyes. During irradiation, the emission increases due to the formation of an intrinsically fluorescent pyrazoline moiety as photoclick product. The fluorogenecity of the photoclick reaction was significantly enhanced by energy transfer between the pyrazoline as the reaction product (poor emitter) and the photoclicked dye as the strong emitter. The RNA-dye conjugates show remarkable fluorescent properties, in particular an up to 9.4 fold increase of fluorescence, which are important for chemical biology and fluorescent imaging of RNA in cells.
Collapse
|
5
|
Kim EK, Martin V, Krishnamurthy R. Orotidine-Containing RNA: Implications for the Hierarchical Selection (Systems Chemistry Emergence) of RNA. Chemistry 2017; 23:12668-12675. [PMID: 28708927 DOI: 10.1002/chem.201702912] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Indexed: 02/05/2023]
Abstract
The prebiotic synthesis of canonical nucleobases from HCN is a cornerstone for the RNA world hypothesis. However, their role in the primordial pathways to RNA is still debated. The very same process starting from HCN also gives rise to orotic acid, which (via orotidine) plays a crucial role in extant biology in the de novo synthesis of uridine and cytidine, the informational base-pairs in RNA. However, orotidine itself is absent in RNA. Given the prebiotic and biological relevance of orotic acid vis-à-vis uracil, we investigated orotidine-containing RNA oligonucleotides and show that they have severely compromised base-pairing properties. While not unexpected, these results suggest that the emergence of extant RNA cannot just be a consequence of the plausible prebiotic formation of its chemical constituents/building blocks. In combination with other investigations on alternative prebiotic nucleobases, sugars, and linkers, these findings imply that the selection of the components of extant RNA occurred at a higher hierarchical level of an oligomer/polymer based on its functional properties-pointing to a systems chemistry emergence of RNA from a library of precursors.
Collapse
Affiliation(s)
- Eun-Kyong Kim
- Department of Chemistry, The Scripps Research Institute, 10550, North Torrey Pines Rd, La Jolla, Ca, 92037, USA
| | - Vincent Martin
- Department of Chemistry, The Scripps Research Institute, 10550, North Torrey Pines Rd, La Jolla, Ca, 92037, USA
| | - Ramanarayanan Krishnamurthy
- Department of Chemistry, The Scripps Research Institute, 10550, North Torrey Pines Rd, La Jolla, Ca, 92037, USA
| |
Collapse
|
6
|
Patel JP, Sowers ML, Herring JL, Theruvathu JA, Emmett MR, Hawkins BE, Zhang K, DeWitt DS, Prough DS, Sowers LC. Measurement of Postreplicative DNA Metabolism and Damage in the Rodent Brain. Chem Res Toxicol 2015; 28:2352-63. [PMID: 26447562 PMCID: PMC7986959 DOI: 10.1021/acs.chemrestox.5b00359] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The DNA of all organisms is metabolically active due to persistent endogenous DNA damage, repair, and enzyme-mediated base modification pathways important for epigenetic reprogramming and antibody diversity. The free bases released from DNA either spontaneously or by base excision repair pathways constitute DNA metabolites in living tissues. In this study, we have synthesized and characterized the stable-isotope standards for a series of pyrimidines derived from the normal DNA bases by oxidation and deamination. We have used these standards to measure free bases in small molecule extracts from rat brain. Free bases are observed in extracts, consistent with both endogenous DNA damage and 5-methylcytosine demethylation pathways. The most abundant free base observed is uracil, and the potential sources of uracil are discussed. The free bases measured in tissue extracts constitute the end product of DNA metabolism and could be used to reveal metabolic disturbances in human disease.
Collapse
Affiliation(s)
- Jay P. Patel
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Mark L. Sowers
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Jason L. Herring
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Jacob A. Theruvathu
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Mark R. Emmett
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Bridget E. Hawkins
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas 77555, United States
- Moody Project for Translational Traumatic Brain Injury Research, Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Kangling Zhang
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States
- Moody Project for Translational Traumatic Brain Injury Research, Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Douglas S. DeWitt
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas 77555, United States
- Moody Project for Translational Traumatic Brain Injury Research, Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Donald S. Prough
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas 77555, United States
- Moody Project for Translational Traumatic Brain Injury Research, Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Lawrence C. Sowers
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States
- Department of Internal Medicine, Division of Hematology and Oncology, University of Texas Medical Branch, Galveston, Texas 77555, United States
- Moody Project for Translational Traumatic Brain Injury Research, Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| |
Collapse
|
7
|
St. Amant AH, Engbers C, Hudson RH. A solid-phase CuAAC strategy for the synthesis of PNA containing nucleobase surrogates. ARTIFICIAL DNA, PNA & XNA 2013; 4:4-10. [PMID: 23422048 PMCID: PMC3654728 DOI: 10.4161/adna.23982] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 02/11/2013] [Accepted: 02/12/2013] [Indexed: 11/19/2022]
Abstract
The synthesis of an azide containing PNA monomer is described. The monomer was incorporated into two PNA sequences for the purpose of synthesizing an intercalating fluorophore-labeled PNA and a metal binding hairpin using a solid phase copper catalyzed azide-alkyne Huisgen cycloaddition (CuAAC). Click chemistry was performed using 2-ethynylfluorene or 1-ethynylpyrene to add a fluorophore to the PNA, which were tested for their ability to recognize an abasic site on a DNA target. A PNA hairpin possessing azide monomers at each termini was synthesized and reacted with 2-ethynylpyridine to form a hairpin that is stabilized by Ni²⁺.
Collapse
Affiliation(s)
- André H. St. Amant
- Department of Chemistry; The University of Western Ontario; London, ON Canada
| | - Christopher Engbers
- Department of Chemistry; The University of Western Ontario; London, ON Canada
| | - Robert H.E. Hudson
- Department of Chemistry; The University of Western Ontario; London, ON Canada
| |
Collapse
|
8
|
Zhang X, Krishnamurthy R. Mapping the landscape of potentially primordial informational oligomers: oligo-dipeptides tagged with orotic acid derivatives as recognition elements. Angew Chem Int Ed Engl 2010; 48:8124-8. [PMID: 19768828 DOI: 10.1002/anie.200904188] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xuejun Zhang
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | |
Collapse
|
9
|
Zhang X, Krishnamurthy R. Mapping the Landscape of Potentially Primordial Informational Oligomers: Oligo-dipeptides Tagged with Orotic Acid Derivatives as Recognition Elements. Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200904188] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
10
|
|
11
|
Hudson RHE, Liu Y, Wojciechowski F. Hydrophilic modifications in peptide nucleic acid — Synthesis and properties of PNA possessing 5-hydroxymethyluracil and 5-hydroxymethylcytosine. CAN J CHEM 2007. [DOI: 10.1139/v07-030] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have investigated the chemistry for the incorporation of C5-hydroxymethyl-uracil and -cytosine in peptide nucleic acid (PNA) and the subsequent effect of this modification on PNA hybridization behavior. Largely based on literature precedent, we prepared a peptide nucleic acid monomer, possessing 5-hydroxymethyuracil, which was compatible with Fmoc-based oligopeptide synthesis. An improved, large-scale synthesis of 5-hydroxymethylcytosine was developed, as a starting point for the synthesis of a monomer containing this nucleobase. In each case, the hydroxyl group was blocked as a t-butyldiphenylsilyl ether, and the exocyclic amino group of cytosine was additionally blocked with the benzoyl-group. The modified monomers were incorporated into isolated positions in the oligomer sequence using standard protocols. The modified oligomers showed that the 5-hydroxymethyl group is compatible with triplex and duplex formation.Key words: peptide nucleic acid, hydroxymethyluracil, hydroxymethylcytosine, modified nucleobase, hybridization.
Collapse
|