1
|
Liu M, Chen S, Zhiwen Z, Li H, Sun G, Yin N, Wen J. Anti-ageing peptides and proteins for topical applications: a review. Pharm Dev Technol 2021; 27:108-125. [PMID: 34957891 DOI: 10.1080/10837450.2021.2023569] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Skin ageing is a cumulative result of oxidative stress, predominantly caused by reactive oxygen species (ROS). Respiration, pollutants, toxins, or ultraviolet A (UVA) irradiation produce ROS with 80% of skin damage attributed to UVA irradiation. Anti-ageing peptides and proteins are considered valuable compounds for removing ROS to prevent skin ageing and maintenance of skin health. In this review, skin ageing theory has been illustrated with a focus on the mechanism and relationship with anti-ageing peptides and proteins. The effects, classification, and transport pathways of anti-ageing peptides and proteins across skin are summarized and discussed. Over the last decade, several novel formulations and advanced strategies have been developed to overcome the challenges in the dermal delivery of proteins and peptides for skin ageing. This article also provides an in-depth review of the latest advancements in the dermal delivery of anti-ageing proteins and peptides. Based on these studies, this review prospected several semi-solid dosage forms to achieve topical applicability for anti-ageing peptides and proteins.
Collapse
Affiliation(s)
- Mengyang Liu
- School of Pharmacy, Faculty of Medical and Health Sciences, the University of Auckland, Auckland, New Zealand
| | - Shuo Chen
- School of Pharmacy, Faculty of Medical and Health Sciences, the University of Auckland, Auckland, New Zealand
| | - Zhang Zhiwen
- Shanghai Institute of Materia Medica, Chinese Academy of Science, China
| | - Hongyu Li
- School of Pharmacy, University of Arkansas for Medical Sciences, Arkansas, USA
| | - Guiju Sun
- Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, China
| | - Naibo Yin
- School of Pharmacy, Faculty of Medical and Health Sciences, the University of Auckland, Auckland, New Zealand
| | - Jingyuan Wen
- School of Pharmacy, Faculty of Medical and Health Sciences, the University of Auckland, Auckland, New Zealand
| |
Collapse
|
2
|
Collagen Bioinks for Bioprinting: A Systematic Review of Hydrogel Properties, Bioprinting Parameters, Protocols, and Bioprinted Structure Characteristics. Biomedicines 2021; 9:biomedicines9091137. [PMID: 34572322 PMCID: PMC8468019 DOI: 10.3390/biomedicines9091137] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/05/2021] [Accepted: 08/27/2021] [Indexed: 01/01/2023] Open
Abstract
Bioprinting is a modern tool suitable for creating cell scaffolds and tissue or organ carriers from polymers that mimic tissue properties and create a natural environment for cell development. A wide range of polymers, both natural and synthetic, are used, including extracellular matrix and collagen-based polymers. Bioprinting technologies, based on syringe deposition or laser technologies, are optimal tools for creating precise constructs precisely from the combination of collagen hydrogel and cells. This review describes the different stages of bioprinting, from the extraction of collagen hydrogels and bioink preparation, over the parameters of the printing itself, to the final testing of the constructs. This study mainly focuses on the use of physically crosslinked high-concentrated collagen hydrogels, which represents the optimal way to create a biocompatible 3D construct with sufficient stiffness. The cell viability in these gels is mainly influenced by the composition of the bioink and the parameters of the bioprinting process itself (temperature, pressure, cell density, etc.). In addition, a detailed table is included that lists the bioprinting parameters and composition of custom bioinks from current studies focusing on printing collagen gels without the addition of other polymers. Last but not least, our work also tries to refute the often-mentioned fact that highly concentrated collagen hydrogel is not suitable for 3D bioprinting and cell growth and development.
Collapse
|
3
|
Samiei M, Fathi M, Barar J, Fathi N, Amiryaghoubi N, Omidi Y. Bioactive hydrogel-based scaffolds for the regeneration of dental pulp tissue. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
4
|
Kumar P, Behl G, Kaur S, Yadav N, Liu B, Chhikara A. Tumor microenvironment responsive nanogels as a smart triggered release platform for enhanced intracellular delivery of doxorubicin. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2020; 32:385-404. [PMID: 33054642 DOI: 10.1080/09205063.2020.1837504] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The fabrication of novel and intelligent delivery systems that can effectively deliver therapeutics to the targeted site and release payload in enhanced/controlled manner is highly desired to overcome the multiple challenges in chemotherapy. The present article demonstrates the potential application of dual stimuli responsive nanogels as tumor microenvironment targeted drug delivery carrier. Disulfide cross-linked pH and redox responsive PEG-PDMAEMA nanogels were synthesized by atom transfer radical polymerization (ATRP). The nanogels were characterized by nuclear magnetic resonance (NMR) spectroscopy, Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD). The PEG-PDMAEMA nanogels exhibited dual stimuli-responsive release of the encapsulated model anticancer drug (doxorubicin, DOX) due to the acidic pH-response of dimethyl amine group in PDMAEMA and reductive cleavage of the disulfide linkages. A relatively higher release of DOX was observed from the nanogels at pH 5.0 than at pH 7.4. DOX release was further accelerated in tumor simulated environment of pH 5.0 and 10 mM glutathione (GSH). Confocal microscopy images revealed that DOX-loaded PEG-PDMAEMA nanogels can rapidly internalize and effectively deliver the drug into the cells. The nanogels exhibited higher cytotoxicity in GSH-OEt pretreated HeLa cells than untreated cells. The dual stimuli responsive nanogels synthesized in this study exhibited many favorable traits, such as pH and redox dependent controlled release of drug, biodegradability, biocompatibility, and enhanced cytotoxicity, which endow them as a promising candidate for anticancer drug delivery.
Collapse
Affiliation(s)
- Parveen Kumar
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo, China.,Department of Chemistry, Dyal Singh College, University of Delhi, New Delhi, India
| | - Gautam Behl
- Department of Chemistry, Dyal Singh College, University of Delhi, New Delhi, India.,Pharmaceutical and Molecular Biotechnology Research Centre, Department of Science, Waterford Institute of Technology, Waterford, Ireland
| | - Sumeet Kaur
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, New Delhi, India
| | - Nalini Yadav
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, New Delhi, India
| | - Bo Liu
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo, China
| | - Aruna Chhikara
- Department of Chemistry, Dyal Singh College, University of Delhi, New Delhi, India
| |
Collapse
|
5
|
Kuo YC, Lee IH, Rajesh R. Self-assembled ternary poly(vinyl alcohol)-alginate-gelatin hydrogel with controlled-release nanoparticles for pancreatic differentiation of iPS cells. J Taiwan Inst Chem Eng 2019. [DOI: 10.1016/j.jtice.2019.09.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
6
|
Kumari L, Badwaik HR. Polysaccharide-based nanogels for drug and gene delivery. POLYSACCHARIDE CARRIERS FOR DRUG DELIVERY 2019:497-557. [DOI: 10.1016/b978-0-08-102553-6.00018-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
7
|
Chen S, Zhou A, He B, Zhao W, Chen X, Jiang D. Designer D-form self-assembling peptide scaffolds promote the proliferation and migration of rat bone marrow-derived mesenchymal stem cells. Int J Mol Med 2017; 40:679-688. [PMID: 28677805 PMCID: PMC5547947 DOI: 10.3892/ijmm.2017.3056] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 06/23/2017] [Indexed: 01/06/2023] Open
Abstract
Self-assembling peptide (SAP) nanofiber hydrogel scaffolds have become increasingly important in tissue engineering due to their outstanding bioactivity and biodegradability. However, there is an initial concern on their long-term clinical use, since SAPs made of L-form amino acid sequences are sensitive to enzymatic degradation. In this study, we present a designer SAP, D-RADA16, made of all D-amino acid. We investigated the nanofiber morphology of D-RADA16, its potential for the culture of bone marrow-derived mesenchymal stem cells (BMSCs), and the proteolytic resistance of the biomaterial. The results revealed that D-RADA16 exhibited stable β-sheets and formed interwoven nanofiber scaffolds in water. D-RADA16 and L-RADA16 hydrogel scaffolds were both found to promote the proliferation and migration of rat BMSCs in the 3D cell culture microenvironment. Furthermore, the D-RADA16 scaffolds exhibited a higher proteolytic resistance against proteinase K than the L-RADA16 scaffolds. These observations indicate that D-RADA16 hydrogel scaffolds have excellent bioactivity, biocompatibility and biostability, and thus may serve as promising candidates for long-term application in vivo.
Collapse
Affiliation(s)
- Shuo Chen
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Ao Zhou
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Bin He
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Weikang Zhao
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Xiaojun Chen
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Dianming Jiang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
8
|
|
9
|
Alvarado AG, Cortés J, Pérez-Carrillo LA, Rabelero M, Arellano J, Sánchez-Díaz JC, Puig JE, Arellano M. Temperature and pH-Responsive Polyacrylamide/Poly(Acrylic Acid) Interpenetrating Polymer Network Nanoparticles. J MACROMOL SCI B 2016. [DOI: 10.1080/00222348.2016.1238436] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
10
|
Javanbakht T, Bérard A, Tavares JR. Polyethylene glycol and poly(vinyl alcohol) hydrogels treated with photo-initiated chemical vapor deposition. CAN J CHEM 2016. [DOI: 10.1139/cjc-2016-0229] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
This study was designed to determine if surface modification via photo-initiated chemical vapor deposition (PICVD) affects the physicochemical properties of polyethylene glycol (PEG) and poly(vinyl alcohol) (PVA) differently, given their different chemical structures and properties. Contact angle measurements showed that both polymers increase in surface hydrophobicity after PICVD treatment. Further, the improved hydrophobicity facilitated dispersion into nonpolar solvents. Chemical changes were concentrated near the surface, evidenced by Fourier transform infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS) measurements, indicating namely that partial oxidation occurs during treatment. These findings were discussed in the context of the difference of the molecular structures of PEG and PVA, which, in turn, control their surface functionalization and hydrophobicity.
Collapse
Affiliation(s)
- Taraneh Javanbakht
- Department of Chemical Engineering, École Polytechnique de Montréal, Montreal, QC H3C 3A7, Canada
- Department of Chemical Engineering, École Polytechnique de Montréal, Montreal, QC H3C 3A7, Canada
| | - Ariane Bérard
- Department of Chemical Engineering, École Polytechnique de Montréal, Montreal, QC H3C 3A7, Canada
- Department of Chemical Engineering, École Polytechnique de Montréal, Montreal, QC H3C 3A7, Canada
| | - Jason R. Tavares
- Department of Chemical Engineering, École Polytechnique de Montréal, Montreal, QC H3C 3A7, Canada
- Department of Chemical Engineering, École Polytechnique de Montréal, Montreal, QC H3C 3A7, Canada
| |
Collapse
|
11
|
Das D, Patra P, Ghosh P, Rameshbabu AP, Dhara S, Pal S. Dextrin and poly(lactide)-based biocompatible and biodegradable nanogel for cancer targeted delivery of doxorubicin hydrochloride. Polym Chem 2016. [DOI: 10.1039/c6py00213g] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Herein, we report the development and application of a novel biocompatible, chemically crosslinked nanogel for use in anticancer drug delivery.
Collapse
Affiliation(s)
- Dipankar Das
- Polymer Chemistry Laboratory
- Department of Applied Chemistry
- Indian School of Mines
- Dhanbad-826004
- India
| | - Priyapratim Patra
- Polymer Chemistry Laboratory
- Department of Applied Chemistry
- Indian School of Mines
- Dhanbad-826004
- India
| | - Paulomi Ghosh
- Biomaterials and Tissue Engineering Laboratory
- School of Medical Science & Technology
- Indian Institute of Technology
- Kharagpur-721302
- India
| | - Arun Prabhu Rameshbabu
- Biomaterials and Tissue Engineering Laboratory
- School of Medical Science & Technology
- Indian Institute of Technology
- Kharagpur-721302
- India
| | - Santanu Dhara
- Biomaterials and Tissue Engineering Laboratory
- School of Medical Science & Technology
- Indian Institute of Technology
- Kharagpur-721302
- India
| | - Sagar Pal
- Polymer Chemistry Laboratory
- Department of Applied Chemistry
- Indian School of Mines
- Dhanbad-826004
- India
| |
Collapse
|
12
|
Dailing EA, Setterberg WK, Shah PK, Stansbury JW. Photopolymerizable nanogels as macromolecular precursors to covalently crosslinked water-based networks. SOFT MATTER 2015; 11:5647-55. [PMID: 26075300 PMCID: PMC4502958 DOI: 10.1039/c4sm02788d] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We present a strategy for directly and efficiently polymerizing aqueous dispersions of reactive nanogels into covalently crosslinked polymer networks with properties that are determined by the initial chemical and physical nanogel structure. This technique can extend the range of achievable properties and architectures for networks formed in solution, particularly in water where monomer selection for direct polymerization and the final network properties are quite limited. Nanogels were initially obtained from a solution polymerization of a hydrophilic monomethacrylate and either a hydrophilic PEG-based dimethacrylate or a more hydrophobic urethane dimethacrylate, which produced globular particles with diameters of 10-15 nm with remarkably low polydispersity in some cases. Networks derived from a single type of nanogel or a blend of nanogels with different chemistries when dispersed in water gelled within minutes when exposed to low intensity UV light. Modifying the nanogel structure changes both covalent and non-covalent secondary interactions in the crosslinked networks and reveals critical design criteria for the development of networks from highly internally branched, nanoscale prepolymer precursors.
Collapse
Affiliation(s)
- Eric A Dailing
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80309, USA.
| | | | | | | |
Collapse
|
13
|
Haraguchi K, Ning J, Li G. Swelling/deswelling behavior of zwitterionic nanocomposite gels consisting of sulfobetaine polymer–clay networks. Eur Polym J 2015. [DOI: 10.1016/j.eurpolymj.2015.03.061] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
14
|
Wen Y, Oh JK. Intracellular delivery cellulose-based bionanogels with dual temperature/pH-response for cancer therapy. Colloids Surf B Biointerfaces 2015; 133:246-53. [PMID: 26119370 DOI: 10.1016/j.colsurfb.2015.06.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 06/02/2015] [Accepted: 06/08/2015] [Indexed: 01/05/2023]
Abstract
Polysaccharide-based crosslinked nanogles (bionanogels) exhibiting multiple stimuli-responsive release of encapsulated therapeutics hold a great potential as tumor-targeting intracelluar durg delivery nanocarriers. Herein, we report the synthesis of monodisperse dual temperature/acidic pH-responsive bionanogels (DuR-BNGs) by aqueous crosslinking polymerization through temperature-induced self-association method. The DuR-BNGs have prolonged colloidal stability and negligible non-specific interactions with proteins. In response to acidic pH at higher temperature (above lower critical solution temperature), they exhibit synergistic release of anticancer drugs as a consequence of both acidic pH-sensitivity of carboxymethyl cellulose and temperature-induced volume change of grafted thermoresponsive copolymers. In vitro cell culture results suggest that new colloidally-stable DuR-BNG is a promising candidate promoting dual stimuli-responsive drug release for cancer therapy.
Collapse
Affiliation(s)
- Yifen Wen
- Department of Chemistry and Biochemistry, Centre for NanoScience Research, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Jung Kwon Oh
- Department of Chemistry and Biochemistry, Centre for NanoScience Research, Concordia University, Montreal, Quebec H4B 1R6, Canada.
| |
Collapse
|
15
|
Safdar M, Sproß J, Jänis J. Microscale immobilized enzyme reactors in proteomics: Latest developments. J Chromatogr A 2014; 1324:1-10. [DOI: 10.1016/j.chroma.2013.11.045] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 11/18/2013] [Accepted: 11/24/2013] [Indexed: 01/10/2023]
|
16
|
Wen Y, Oh JK. Dual-stimuli reduction and acidic pH-responsive bionanogels: intracellular delivery nanocarriers with enhanced release. RSC Adv 2014. [DOI: 10.1039/c3ra46072j] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
17
|
Polymeric nanogels as vaccine delivery systems. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2013; 9:159-73. [DOI: 10.1016/j.nano.2012.06.001] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Revised: 04/11/2012] [Accepted: 06/18/2012] [Indexed: 01/22/2023]
|
18
|
Biocompatibility of mannan nanogel—safe interaction with plasma proteins. Biochim Biophys Acta Gen Subj 2012; 1820:1043-51. [DOI: 10.1016/j.bbagen.2012.04.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 04/12/2012] [Accepted: 04/16/2012] [Indexed: 11/19/2022]
|
19
|
Moya-Ortega MD, Alvarez-Lorenzo C, Concheiro A, Loftsson T. Cyclodextrin-based nanogels for pharmaceutical and biomedical applications. Int J Pharm 2012; 428:152-63. [PMID: 22388054 DOI: 10.1016/j.ijpharm.2012.02.038] [Citation(s) in RCA: 136] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 02/22/2012] [Accepted: 02/23/2012] [Indexed: 11/18/2022]
Abstract
Hydrophilic nanogels combine the advantages of hydrogels with certain advantages that are inherent in their nanoscale size. Similar to macrogels, nanogels can contain and protect drugs and regulate their release by incorporating high-affinity functional groups, stimuli-responsive conformations and biodegradable bonds into the polymer network. Similar to nanoparticles, nanogels can easily be administered in liquid form for parenteral drug delivery. The nanoscale size of nanogels gives them a high specific surface area that is available for further bioconjugation of active targeting agents. Biodistribution and drug release can be modulated through size adjustments. The incorporation of hydrophilic cyclodextrin (CD) moieties into the polymeric network of the nanogels provides them with a drug loading and release mechanism that is based on the formation of inclusion complexes without decreasing the hydrophilicity of the network. The covalent attachment of CD molecules to the chemically crosslinked networks may enable the CDs to display fully their ability to form complexes, while simultaneously preventing drug release upon media dilution. The preparation, characterization and advantages for pharmaceutical and biomedical applications of CD-based nanogels are reviewed in this article.
Collapse
Affiliation(s)
- Maria D Moya-Ortega
- Faculty of Pharmaceutical Sciences, University of Iceland, Hofsvallagata 53, IS-107 Reykjavik, Iceland
| | | | | | | |
Collapse
|
20
|
Abstract
This article summarizes the recent progress in the design and synthesis of hydrogels as tissue-engineering scaffolds. Hydrogels are attractive scaffolding materials owing to their highly swollen network structure, ability to encapsulate cells and bioactive molecules, and efficient mass transfer. Various polymers, including natural, synthetic and natural/synthetic hybrid polymers, have been used to make hydrogels via chemical or physical crosslinking. Recently, bioactive synthetic hydrogels have emerged as promising scaffolds because they can provide molecularly tailored biofunctions and adjustable mechanical properties, as well as an extracellular matrix-like microenvironment for cell growth and tissue formation. This article addresses various strategies that have been explored to design synthetic hydrogels with extracellular matrix-mimetic bioactive properties, such as cell adhesion, proteolytic degradation and growth factor-binding.
Collapse
Affiliation(s)
- Junmin Zhu
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA.
| | | |
Collapse
|
21
|
Control of polymerization shrinkage and stress in nanogel-modified monomer and composite materials. Dent Mater 2011; 27:509-19. [PMID: 21388669 DOI: 10.1016/j.dental.2011.01.006] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Revised: 12/02/2010] [Accepted: 01/17/2011] [Indexed: 11/21/2022]
Abstract
OBJECTIVES This study demonstrates the effects of nano-scale prepolymer particles as additives to model dental monomer and composite formulations. METHODS Discrete nanogel particles were prepared by solution photopolymerization of isobornyl methacrylate and urethane dimethacrylate in the presence of a chain transfer agent, which also provided a means to attach reactive groups to the prepolymer. Nanogel was added to triethylene glycol dimethacrylate (TEGDMA) in increments between 5 and 40 wt% with resin viscosity, reaction kinetics, shrinkage, mechanical properties, stress and optical properties evaluated. Maximum loading of barium glass filler was determined as a function of nanogel content and composites with varied nanogel content but uniform filler loading were compared in terms of consistency, conversion, shrinkage and mechanical properties. RESULTS High conversion, high molecular weight internally crosslinked and cyclized nanogel prepolymer was efficiently prepared and redispersed into TEGDMA with an exponential rise in viscosity accompanying nanogel content. Nanogel addition at any level produced no deleterious effects on reaction kinetics, conversion or mechanical properties, as long as reactive nanogels were used. A reduction in polymerization shrinkage and stress was achieved in proportion to nanogel content. Even at high nanogel concentrations, the maximum loading of glass filler was only marginally reduced relative to the control and high strength composite materials with low shrinkage were obtained. SIGNIFICANCE The use of reactive nanogels offers a versatile platform from which resin and composite handling properties can be adjusted while the polymerization shrinkage and stress development that challenge the adhesive bonding of dental restoratives are controllably reduced.
Collapse
|
22
|
An Z, Qiu Q, Liu G. Synthesis of architecturally well-defined nanogels via RAFT polymerization for potential bioapplications. Chem Commun (Camb) 2011; 47:12424-40. [DOI: 10.1039/c1cc13955j] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
23
|
Oh JK, Park JM. Iron oxide-based superparamagnetic polymeric nanomaterials: Design, preparation, and biomedical application. Prog Polym Sci 2011. [DOI: 10.1016/j.progpolymsci.2010.08.005] [Citation(s) in RCA: 350] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
24
|
Elbert DL. Liquid-liquid two-phase systems for the production of porous hydrogels and hydrogel microspheres for biomedical applications: A tutorial review. Acta Biomater 2011; 7:31-56. [PMID: 20659596 PMCID: PMC2967636 DOI: 10.1016/j.actbio.2010.07.028] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2010] [Revised: 07/14/2010] [Accepted: 07/21/2010] [Indexed: 01/17/2023]
Abstract
Macroporous hydrogels may have direct applications in regenerative medicine as scaffolds to support tissue formation. Hydrogel microspheres may be used as drug-delivery vehicles or as building blocks to assemble modular scaffolds. A variety of techniques exist to produce macroporous hydrogels and hydrogel microspheres. A subset of these relies on liquid-liquid two-phase systems. Within this subset, vastly different types of polymerization processes are found. In this review, the history, terminology and classification of liquid-liquid two-phase polymerization and crosslinking are described. Instructive examples of hydrogel microsphere and macroporous scaffold formation by precipitation/dispersion, emulsion and suspension polymerizations are used to illustrate the nature of these processes. The role of the kinetics of phase separation in determining the morphology of scaffolds and microspheres is also delineated. Brief descriptions of miniemulsion, microemulsion polymerization and ionotropic gelation are also included.
Collapse
Affiliation(s)
- Donald L Elbert
- Department of Biomedical Engineering, Center for Materials Innovation, Washington University in St. Louis, MO 63130, USA.
| |
Collapse
|