1
|
Hellmann MJ, Marongiu GL, Gorzelanny C, Moerschbacher BM, Cord-Landwehr S. Hydrolysis of chitin and chitosans by the human chitinolytic enzymes: chitotriosidase, acidic mammalian chitinase, and lysozyme. Int J Biol Macromol 2025; 297:139789. [PMID: 39805453 DOI: 10.1016/j.ijbiomac.2025.139789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 01/01/2025] [Accepted: 01/10/2025] [Indexed: 01/16/2025]
Abstract
Human chitinolytic enzymes trigger growing interest, not only because a wide range of diseases and allergic responses are linked to chitinous components of pathogens, including their interplay with human enzymes, but also due to the increasing use of chitosans in biomedical applications. Here, we present a detailed side-by-side analysis of the only two human chitinases, chitotriosidase and acidic mammalian chitinase, as well as human lysozyme. By analyzing the cleavage of well-characterized chitosan polymers and defined chitin and chitosan oligomers, we report mild processivity and a quantitative subsite preference typical for GH18 chitinases for chitotriosidase and acidic mammalian chitinase. In contrast, lysozyme is negligibly processive and preferentially binds acetylated units at subsites -2, -1, and +1, thus exhibiting an even higher overall preference for acetylated units. A common feature of all three enzymes is their endo-chitinase behavior. For efficient hydrolysis, chitotriosidase or lysozyme require substrates of ≥4 or ≥5 units, respectively, and we identified defined chitosan oligomers which can competitively inhibit chitotriosidase. Knowledge about the enzymes' actions provides insight into the metabolic fate of chitin and chitosans in the human body, which is crucial to develop and approve chitosan applications, and to elucidate molecular mechanisms in chitin-associated diseases.
Collapse
Affiliation(s)
- Margareta J Hellmann
- Institute for Biology and Biotechnology of Plants, University of Münster, Schlossplatz 8, 48143 Münster, Germany.
| | - Gian Luca Marongiu
- Institute for Biology and Biotechnology of Plants, University of Münster, Schlossplatz 8, 48143 Münster, Germany.
| | - Christian Gorzelanny
- Experimental Dermatology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany.
| | - Bruno M Moerschbacher
- Institute for Biology and Biotechnology of Plants, University of Münster, Schlossplatz 8, 48143 Münster, Germany.
| | - Stefan Cord-Landwehr
- Institute for Biology and Biotechnology of Plants, University of Münster, Schlossplatz 8, 48143 Münster, Germany.
| |
Collapse
|
2
|
de Castro R, Kandhola G, Kim JW, Moore QC, Thompson AK. Fabrication of Chitosan/PEGDA Bionanocomposites for Enhanced Drug Encapsulation and Release Efficiency. Mol Pharm 2023; 20:5532-5542. [PMID: 37774674 DOI: 10.1021/acs.molpharmaceut.3c00415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
Abstract
Drug delivery systems (DDS) have evolved in the last decades with the development of hydrogels and particles. However, challenges such as high systemic uptake, side effects, low bioavailability, and encapsulation efficiency continue to be significant hurdles faced by such DDSs. Particles and hydrogels can be specifically designed for targeted DDSs to mitigate some of these problems. This study developed chitosan (Cs) particles (Ps) and composite films using poly(ethylene glycol) diacrylate (PEGDA) as a copolymer to encapsulate gentamicin (GtS) for drug delivery. We demonstrated that lysozyme degrades the chitosan β-1,4 glycosidic bonds to release GtS. PEGDA increased drug encapsulation efficiency by shielding the repelling forces of like charges between Cs and GtS. The data show that PEGDA does not hinder enzymatic degradation while increasing drug encapsulation efficiency and producing more homogeneous particles. Additionally, we utilized Michael's reaction to cross-link Cs, CsPs, and PEGDA to produce a film designed for drug delivery. The film is an anchor for CsPs to prevent premature drug release. The cross-linking of Cs and PEGDA does not affect lysozyme activity, and CsPs could successfully release GtS without affecting GtS activity.
Collapse
Affiliation(s)
- Raquel de Castro
- Department of Chemical Engineering, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Gurshagan Kandhola
- Department of Biological & Agricultural Engineering, University of Arkansas, Fayetteville, Arkansas 72701, United States
- Institute for Nanoscience & Engineering, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Jin-Woo Kim
- Department of Biological & Agricultural Engineering, University of Arkansas, Fayetteville, Arkansas 72701, United States
- Institute for Nanoscience & Engineering, University of Arkansas, Fayetteville, Arkansas 72701, United States
- Materials Science & Engineering Program, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Quincy C Moore
- Department of Biology, Prairie View A&M University, Prairie View, Texas 77446, United States
| | - Audie K Thompson
- Department of Chemical Engineering, University of Arkansas, Fayetteville, Arkansas 72701, United States
- U.S. Army Engineer Research and Development Center (ERDC), Vicksburg, Mississippi 39180, United States
| |
Collapse
|
3
|
Tagliaro I, Seccia S, Pellegrini B, Bertini S, Antonini C. Chitosan-based coatings with tunable transparency and superhydrophobicity: A solvent-free and fluorine-free approach by stearoyl derivatization. Carbohydr Polym 2023; 302:120424. [PMID: 36604086 DOI: 10.1016/j.carbpol.2022.120424] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 11/30/2022]
Abstract
One of the current greatest challenges in materials science and technology is the development of safe- and sustainable-by-design coatings with enhanced functionalities, e.g. to substitute fluorinated substances raising concerns for their potential hazard on human health. Bio-based polymeric coatings represent a promising route with a high potential. In this study, we propose an innovative sustainable method for fabricating coatings based on chitosan with modified functionality, with a fine-tuning of coating properties, namely transparency and superhydrophobicity. The process consists in two main steps: i) fluorine-free modification of chitosan functional groups with stearoyl chloride and freeze-drying to obtain a superhydrophobic powder, ii) coating deposition using a novel solvent-free approach through a thermal treatment. The modified chitosan is characterized to assess its chemico-physical properties and confirm the functionality modification with fatty acid tails. The deposition method enables tuning the coating properties of transparency and superhydrophobicity, maintaining good durability.
Collapse
Affiliation(s)
- Irene Tagliaro
- Department of Materials Science, University of Milano-Bicocca, 20125 Milan, Italy.
| | - Stefano Seccia
- Department of Materials Science, University of Milano-Bicocca, 20125 Milan, Italy.
| | - Beatrice Pellegrini
- Department of Materials Science, University of Milano-Bicocca, 20125 Milan, Italy; Istituto di Ricerche Chimiche e Biochimiche G. Ronzoni, Carbohydrate Science Department, 20133 Milan, Italy.
| | - Sabrina Bertini
- Istituto di Ricerche Chimiche e Biochimiche G. Ronzoni, Carbohydrate Science Department, 20133 Milan, Italy.
| | - Carlo Antonini
- Department of Materials Science, University of Milano-Bicocca, 20125 Milan, Italy.
| |
Collapse
|
4
|
Sreekumar S, Wattjes J, Niehues A, Mengoni T, Mendes AC, Morris ER, Goycoolea FM, Moerschbacher BM. Biotechnologically produced chitosans with nonrandom acetylation patterns differ from conventional chitosans in properties and activities. Nat Commun 2022; 13:7125. [PMID: 36418307 PMCID: PMC9684148 DOI: 10.1038/s41467-022-34483-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 10/27/2022] [Indexed: 11/24/2022] Open
Abstract
Chitosans are versatile biopolymers with multiple biological activities and potential applications. They are linear copolymers of glucosamine and N-acetylglucosamine defined by their degree of polymerisation (DP), fraction of acetylation (FA), and pattern of acetylation (PA). Technical chitosans produced chemically from chitin possess defined DP and FA but random PA, while enzymatically produced natural chitosans probably have non-random PA. This natural process has not been replicated using biotechnology because chitin de-N-acetylases do not efficiently deacetylate crystalline chitin. Here, we show that such enzymes can partially N-acetylate fully deacetylated chitosan in the presence of excess acetate, yielding chitosans with FA up to 0.7 and an enzyme-dependent non-random PA. The biotech chitosans differ from technical chitosans both in terms of physicochemical and nanoscale solution properties and biological activities. As with synthetic block co-polymers, controlling the distribution of building blocks within the biopolymer chain will open a new dimension of chitosan research and exploitation.
Collapse
Affiliation(s)
- Sruthi Sreekumar
- grid.5949.10000 0001 2172 9288Institute for Biology and Biotechnology of Plants, University of Münster, 48143 Münster, Germany ,grid.5170.30000 0001 2181 8870Research Group for Food Production Engineering, Laboratory of Nano-BioScience, National Food Institute, Technical University of Denmark, 2800 Kgs Lyngby, Denmark ,grid.9909.90000 0004 1936 8403School of Food Science and Nutrition, University of Leeds, LS2 9JT Leeds, United Kingdom
| | - Jasper Wattjes
- grid.5949.10000 0001 2172 9288Institute for Biology and Biotechnology of Plants, University of Münster, 48143 Münster, Germany ,grid.5170.30000 0001 2181 8870Research Group for Food Production Engineering, Laboratory of Nano-BioScience, National Food Institute, Technical University of Denmark, 2800 Kgs Lyngby, Denmark
| | - Anna Niehues
- grid.5949.10000 0001 2172 9288Institute for Biology and Biotechnology of Plants, University of Münster, 48143 Münster, Germany
| | - Tamara Mengoni
- grid.5949.10000 0001 2172 9288Institute for Biology and Biotechnology of Plants, University of Münster, 48143 Münster, Germany
| | - Ana C. Mendes
- grid.5170.30000 0001 2181 8870Research Group for Food Production Engineering, Laboratory of Nano-BioScience, National Food Institute, Technical University of Denmark, 2800 Kgs Lyngby, Denmark
| | - Edwin R. Morris
- grid.7872.a0000000123318773School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | - Francisco M. Goycoolea
- grid.5949.10000 0001 2172 9288Institute for Biology and Biotechnology of Plants, University of Münster, 48143 Münster, Germany ,grid.9909.90000 0004 1936 8403School of Food Science and Nutrition, University of Leeds, LS2 9JT Leeds, United Kingdom
| | - Bruno M. Moerschbacher
- grid.5949.10000 0001 2172 9288Institute for Biology and Biotechnology of Plants, University of Münster, 48143 Münster, Germany
| |
Collapse
|
5
|
Optimizing Chitin Depolymerization by Lysozyme to Long-Chain Oligosaccharides. Mar Drugs 2021; 19:md19060320. [PMID: 34072871 PMCID: PMC8229320 DOI: 10.3390/md19060320] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 01/17/2023] Open
Abstract
Chitin oligosaccharides (COs) hold high promise as organic fertilizers in the ongoing agro-ecological transition. Short- and long-chain COs can contribute to the establishment of symbiotic associations between plants and microorganisms, facilitating the uptake of soil nutrients by host plants. Long-chain COs trigger plant innate immunity. A fine investigation of these different signaling pathways requires improving the access to high-purity COs. Here, we used the response surface methodology to optimize the production of COs by enzymatic hydrolysis of water-soluble chitin (WSC) with hen egg-white lysozyme. The influence of WSC concentration, its acetylation degree, and the reaction time course were modelled using a Box–Behnken design. Under optimized conditions, water-soluble COs up to the nonasaccharide were formed in 51% yield and purified to homogeneity. This straightforward approach opens new avenues to determine the complex roles of COs in plants.
Collapse
|
6
|
|
7
|
Cord-Landwehr S, Richter C, Wattjes J, Sreekumar S, Singh R, Basa S, El Gueddari NE, Moerschbacher BM. Patterns matter part 2: Chitosan oligomers with defined patterns of acetylation. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2020.104577] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
8
|
Aktuganov GE, Melentiev AI, Varlamov VP. Biotechnological Aspects of the Enzymatic Preparation of Bioactive Chitooligosaccharides (Review). APPL BIOCHEM MICRO+ 2019. [DOI: 10.1134/s0003683819040021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
9
|
Tallian C, Tegl G, Quadlbauer L, Vielnascher R, Weinberger S, Cremers R, Pellis A, Salari JWO, Guebitz GM. Lysozyme-Responsive Spray-Dried Chitosan Particles for Early Detection of Wound Infection. ACS APPLIED BIO MATERIALS 2019; 2:1331-1339. [PMID: 30906927 PMCID: PMC6428144 DOI: 10.1021/acsabm.9b00023] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 02/19/2019] [Indexed: 11/30/2022]
Abstract
Infections are a severe health issue, and the need for an early point-of-care diagnostic approach for wound infections is continuously growing. Lysozyme has shown a great potential as a biomarker for rapid detection of wound infection. In this study, spray-drying of labeled and derivatized chitosans was investigated for the production of small particles responsive to lysozyme. Therefore, various chitosans, differing in their origin (snow crab, Chionoecetes sp., with medium and low molecular weight or shrimp) were N-acetylated, labeled with reactive black 5, and tested for solubility and spray-drying suitability. Reactive black-5-stained N-acetylated chitosan (low molecular weight, origin crab) was successfully spray-dried, and the obtained particles were characterized regarding size, ζ potential, and morphology. The particles showed an average hydrodynamic radius of 612.5 ± 132.8 nm. ζ potential was measured in the context of a later application as an infection detection system for wound infections in artificial wound fluid (-6.14 ± 0.16 mV) and infected wound fluid (-7.93 ± 1.35 mV). Furthermore, the aggregation behavior and surface structure were analyzed by using scanning electron microscopy and confocal laser scanning microscopy revealing spherical-shaped particles with explicit surface topologies. Spray-dried N-acetylated chitosan particles showed a 5-fold increase in lysozyme-responsive release of dyed chitosan fragments due to the enhanced surface area to volume ratio when compared to non-spray-dried N-acetylated chitosan flakes. On the basis of these results, the study showed the improved properties of N-acetylated spray-dried chitosan particles for future applications for early and rapid infection detection.
Collapse
Affiliation(s)
- Claudia Tallian
- Institute for Environmental Biotechnology, Department for Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Strasse 20, 3430 Tulln an der Donau, Austria
| | - Gregor Tegl
- Institute for Environmental Biotechnology, Department for Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Strasse 20, 3430 Tulln an der Donau, Austria
| | - Lisa Quadlbauer
- Institute for Environmental Biotechnology, Department for Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Strasse 20, 3430 Tulln an der Donau, Austria
| | - Robert Vielnascher
- Institute for Environmental Biotechnology, Department for Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Strasse 20, 3430 Tulln an der Donau, Austria.,Austrian Centre of Industrial Biotechnology, Konrad-Lorenz-Strasse 20, 3430 Tulln an der Donau, Austria
| | - Simone Weinberger
- Austrian Centre of Industrial Biotechnology, Konrad-Lorenz-Strasse 20, 3430 Tulln an der Donau, Austria
| | - Raymon Cremers
- Netherlands Institute for Applied Scientific Research, Eindhoven 5612 AP, The Netherlands
| | - Alessandro Pellis
- Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Johannes W O Salari
- Netherlands Institute for Applied Scientific Research, Eindhoven 5612 AP, The Netherlands
| | - Georg M Guebitz
- Institute for Environmental Biotechnology, Department for Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Strasse 20, 3430 Tulln an der Donau, Austria.,Austrian Centre of Industrial Biotechnology, Konrad-Lorenz-Strasse 20, 3430 Tulln an der Donau, Austria
| |
Collapse
|
10
|
Guarino V, Caputo T, Calcagnile P, Altobelli R, Demitri C, Ambrosio L. Core/shell cellulose-based microspheres for oral administration of Ketoprofen Lysinate. J Biomed Mater Res B Appl Biomater 2018; 106:2636-2644. [DOI: 10.1002/jbm.b.34080] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 01/03/2018] [Accepted: 01/08/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Vincenzo Guarino
- Department of Chemical Sciences & Materials Technology, Institute for Polymers, Composites and Biomaterials; National Research Council of Italy; 80125 Naples Italy
| | - Tania Caputo
- Department of Chemical Sciences & Materials Technology, Institute for Polymers, Composites and Biomaterials; National Research Council of Italy; 80125 Naples Italy
| | | | - Rosaria Altobelli
- Department of Chemical Sciences & Materials Technology, Institute for Polymers, Composites and Biomaterials; National Research Council of Italy; 80125 Naples Italy
| | - Christian Demitri
- Department of Engineering for Innovation; University of Salento; Lecce Italy
| | - Luigi Ambrosio
- Department of Chemical Sciences & Materials Technology, Institute for Polymers, Composites and Biomaterials; National Research Council of Italy; 80125 Naples Italy
| |
Collapse
|
11
|
Tegl G, Rollett A, Dopplinger J, Gamerith C, Guebitz GM. Chitosan based substrates for wound infection detection based on increased lysozyme activity. Carbohydr Polym 2016; 151:260-267. [DOI: 10.1016/j.carbpol.2016.05.069] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 05/20/2016] [Indexed: 11/29/2022]
|
12
|
Öhlknecht C, Tegl G, Beer B, Sygmund C, Ludwig R, Guebitz GM. Cellobiose dehydrogenase and chitosan-based lysozyme responsive materials for antimicrobial wound treatment. Biotechnol Bioeng 2016; 114:416-422. [DOI: 10.1002/bit.26070] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 07/14/2016] [Accepted: 08/01/2016] [Indexed: 12/19/2022]
Affiliation(s)
- Christoph Öhlknecht
- Institute of Environmental Biotechnology; University of Natural Resources and Life Sciences Vienna; Konrad Lorenz Straße 20 Tulln an der Donau 3430 Austria
| | - Gregor Tegl
- Institute of Environmental Biotechnology; University of Natural Resources and Life Sciences Vienna; Konrad Lorenz Straße 20 Tulln an der Donau 3430 Austria
| | - Bianca Beer
- Institute of Environmental Biotechnology; University of Natural Resources and Life Sciences Vienna; Konrad Lorenz Straße 20 Tulln an der Donau 3430 Austria
| | - Christoph Sygmund
- Department of Food Sciences and Technology; University of Natural Resources and Life Sciences; Vienna Austria
| | - Roland Ludwig
- Department of Food Sciences and Technology; University of Natural Resources and Life Sciences; Vienna Austria
| | - Georg M. Guebitz
- Institute of Environmental Biotechnology; University of Natural Resources and Life Sciences Vienna; Konrad Lorenz Straße 20 Tulln an der Donau 3430 Austria
- ACIB-Austrian Centre of Industrial Biotechnology; Tulln Austria
| |
Collapse
|
13
|
Tegl G, Öhlknecht C, Vielnascher R, Rollett A, Hofinger-Horvath A, Kosma P, Guebitz GM. Cellobiohydrolases Produce Different Oligosaccharides from Chitosan. Biomacromolecules 2016; 17:2284-92. [DOI: 10.1021/acs.biomac.6b00547] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Gregor Tegl
- Institute
of Environmental Biotechnology, University of Natural Resources and Life Sciences Vienna, Konrad Lorenz Straße 20, 3430 Tulln an der Donau, Austria
| | - Christoph Öhlknecht
- Institute
of Environmental Biotechnology, University of Natural Resources and Life Sciences Vienna, Konrad Lorenz Straße 20, 3430 Tulln an der Donau, Austria
| | - Robert Vielnascher
- Institute
of Environmental Biotechnology, University of Natural Resources and Life Sciences Vienna, Konrad Lorenz Straße 20, 3430 Tulln an der Donau, Austria
| | - Alexandra Rollett
- Institute
of Environmental Biotechnology, University of Natural Resources and Life Sciences Vienna, Konrad Lorenz Straße 20, 3430 Tulln an der Donau, Austria
| | - Andreas Hofinger-Horvath
- Department
of Chemistry, University of Natural Resources and Life Sciences Vienna, Muthgasse 18, 1190 Wien, Austria
| | - Paul Kosma
- Department
of Chemistry, University of Natural Resources and Life Sciences Vienna, Muthgasse 18, 1190 Wien, Austria
| | - Georg M. Guebitz
- Institute
of Environmental Biotechnology, University of Natural Resources and Life Sciences Vienna, Konrad Lorenz Straße 20, 3430 Tulln an der Donau, Austria
- ACIB − Austrian Centre of Industrial Biotechnology, Konrad Lorenz Straße 20, 3430 Tulln, Austria
| |
Collapse
|
14
|
Direct Determination of Chitosan–Mucin Interactions Using a Single-Molecule Strategy: Comparison to Alginate–Mucin Interactions. Polymers (Basel) 2015. [DOI: 10.3390/polym7020161] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
15
|
Kim S, Kang Y, Mercado-Pagán ÁE, Maloney WJ, Yang Y. In vitroevaluation of photo-crosslinkable chitosan-lactide hydrogels for bone tissue engineering. J Biomed Mater Res B Appl Biomater 2014; 102:1393-406. [DOI: 10.1002/jbm.b.33118] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 01/04/2014] [Accepted: 01/11/2014] [Indexed: 12/14/2022]
Affiliation(s)
- Sungwoo Kim
- Department of Orthopedic Surgery; Stanford University; Stanford California
| | - Yunqing Kang
- Department of Orthopedic Surgery; Stanford University; Stanford California
| | | | - William J. Maloney
- Department of Orthopedic Surgery; Stanford University; Stanford California
| | - Yunzhi Yang
- Department of Orthopedic Surgery; Stanford University; Stanford California
- Department of Materials Science and Engineering; Stanford University; Stanford California
| |
Collapse
|
16
|
Sletmoen M, Stokke BT. Structure-Function Relationships in Glycopolymers: Effects of Residue Sequences, Duplex, and Triplex Organization. Biopolymers 2013; 99:757-71. [DOI: 10.1002/bip.22320] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 06/07/2013] [Indexed: 12/18/2022]
Affiliation(s)
- Marit Sletmoen
- Biophysics and Medical Technology, Department of Physics, The Norwegian University of Science and Technology; Trondheim; Norway
| | - Bjørn Torger Stokke
- Biophysics and Medical Technology, Department of Physics, The Norwegian University of Science and Technology; Trondheim; Norway
| |
Collapse
|
17
|
Perry JL, Guo P, Johnson SK, Mukaibo H, Stewart JD, Martin CR. Fabrication of biodegradable nano test tubes by template synthesis. Nanomedicine (Lond) 2010; 5:1151-60. [DOI: 10.2217/nnm.10.110] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aims: Recent publications have suggested that cylindrically shaped drug-delivery carriers have an advantage over carriers based on spherical particles in both blood circulation and cell internalization rates. For this reason, this article introduces a method to fabricate hollow, uniform, biodegradable chitosan nano test tubes for applications in drug delivery. Methods: A nanoporous alumina template membrane was used to fabricate hollow chitosan nano test tubes. The chitosan nano test tubes were crosslinked with a disulfide cleavable crosslinker before being removed from the alumina template membrane. We explored two mechanisms for degrading the chitosan nano test tubes – enzymatic degradation by lysozyme and cleavage of the disulfide bond in the crosslinking agent. Results: The template synthesis method resulted in the fabrication of uniform hollow chitosan nano test tubes whose dimensions were easily manipulated based on the dimensions of the pores in the alumina template membrane. The tubes were degraded upon exposure to either lysozyme or sulfhydryl-containing reducing reagents. Conclusion: These tubes have potential for drug-delivery applications. The fact that these tubes degrade upon exposure to a sulfhydryl-containing reducing agent allows for a mechanism for intercellular drug delivery as the tubes should degrade in the presence of intercellular glutathione.
Collapse
Affiliation(s)
- Jillian L Perry
- Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Peng Guo
- Department of Chemistry & Center for Research at the Bio/Nano Interface, University of Florida, Gainesville, FL 32611-7200, USA
| | - Shannon K Johnson
- Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Hitomi Mukaibo
- Department of Chemistry & Center for Research at the Bio/Nano Interface, University of Florida, Gainesville, FL 32611-7200, USA
| | - Jon D Stewart
- Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
- Department of Chemistry & Center for Research at the Bio/Nano Interface, University of Florida, Gainesville, FL 32611-7200, USA
| | | |
Collapse
|
18
|
Sikorski P, Stokke BT, Sørbotten A, Vårum KM, Horn SJ, Eijsink VGH. Development and application of a model for chitosan hydrolysis by a family 18 chitinase. Biopolymers 2006; 77:273-85. [PMID: 15637701 DOI: 10.1002/bip.20224] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Hydrolysis of partially deacetylated chitosans by ChitinaseB (ChiBeta) from Serratia marcescens results in mixtures of oligosaccharides typically between 2 and 20 sugar residues. The amounts of different oligomer fractions depend on the degree of acetylation of the starting chitosans. We have used experimentally determined distributions of hydrolysis products to develop a model for chitosan hydrolysis by ChiB. Important elements of the model include interaction parameters for acetylated/deacetylated units in each of the six subsites in the active cleft and degree of processivity (multiple attack). The hydrolysis reaction is described as a chemical reaction with an activation barrier that depends on the substrate sequence presented to the enzyme subsites. Using a Monte Carlo approach, the interaction parameters were refined by minimizing the difference between observed and predicted amounts of hydrolysis products obtained upon degradation of chitosan with a degree of acetylation of 65%. The final model can accurately predict complex patterns of oligosaccharides produced in the hydrolysis of chitosans with various degrees of acetylation, as well as patterns observed during reactions with chito-oligosaccharides. The behavior of a ChiB mutant with a mutation in subsite +2 (Gly188Asp), which reduces the affinity for an acetylated sugar, could be predicted correctly by introducing one single change in the model parameters (the interaction energy for an acetylated unit in the +2 subsite). The proposed model may be used to explore degradation products for different enzyme-substrates combinations and to optimize conditions for preparation of specific oligosaccharides. In addition, the model provides insight into subsite interaction parameters and the degree of processivity, which complements previous experimental studies on the mode of action of ChiB.
Collapse
Affiliation(s)
- Pawel Sikorski
- Biophysics and Medical Technology, Department of Physics, NTNU, NO-7491, Trondheim, Norway.
| | | | | | | | | | | |
Collapse
|
19
|
A preliminary study on fabrication of nanoscale fibrous chitosan membranes in situ by biospecific degradation. J Memb Sci 2006. [DOI: 10.1016/j.memsci.2006.01.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
20
|
Richardson S, Gorton L. Characterisation of the substituent distribution in starch and cellulose derivatives. Anal Chim Acta 2003. [DOI: 10.1016/j.aca.2003.08.005] [Citation(s) in RCA: 139] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
21
|
Kurita K, Kaji Y, Mori T, Nishiyama Y. Enzymatic degradation of β-chitin: susceptibility and the influence of deacetylation. Carbohydr Polym 2000. [DOI: 10.1016/s0144-8617(99)00127-7] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Høidal HK, Ertesvåg H, Skjåk-Braek G, Stokke BT, Valla S. The recombinant Azotobacter vinelandii mannuronan C-5-epimerase AlgE4 epimerizes alginate by a nonrandom attack mechanism. J Biol Chem 1999; 274:12316-22. [PMID: 10212201 DOI: 10.1074/jbc.274.18.12316] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Ca2+-dependent mannuronan C-5-epimerase AlgE4 is a representative of a family of Azotobacter vinelandii enzymes catalyzing the polymer level epimerization of beta-D-mannuronic acid (M) to alpha-L-guluronic acid (G) in the commercially important polysaccharide alginate. The reaction product of recombinantly produced AlgE4 is predominantly characterized by an alternating sequence distribution of the M and G residues (MG blocks). AlgE4 was purified after intracellular overexpression in Escherichia coli, and the activity was shown to be optimal at pH values between 6.5 and 7.0, in the presence of 1-3 mM Ca2+, and at temperatures near 37 degrees C. Sr2+ was found to substitute reasonably well for Ca2+ in activation, whereas Zn2+ strongly inhibited the activity. During epimerization of alginate, the fraction of GMG blocks increased linearly as a function of the total fraction of G residues and comparably much faster than that of MMG blocks. These experimental data could not be accounted for by a random attack mechanism, suggesting that the enzyme either slides along the alginate chain during catalysis or recognizes a pre-existing G residue as a preferred substrate in its consecutive attacks.
Collapse
Affiliation(s)
- H K Høidal
- UNIGEN Center for Molecular Biology, Norwegian University of Science and Technology, N-7489 Trondheim, Norway
| | | | | | | | | |
Collapse
|
23
|
Hjerde RJ, Vårum KM, Grasdalen H, Tokura S, Smidsrød O. Chemical composition of O-(carboxymethyl)-chitins in relation to lysozyme degradation rates. Carbohydr Polym 1997. [DOI: 10.1016/s0144-8617(97)00113-6] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
24
|
Vårum KM, Myhr MM, Hjerde RJ, Smidsrød O. In vitro degradation rates of partially N-acetylated chitosans in human serum. Carbohydr Res 1997; 299:99-101. [PMID: 9129298 DOI: 10.1016/s0008-6215(96)00332-1] [Citation(s) in RCA: 211] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The initial degradation rates (r) in human serum of three chitosans with FA = 0.42, 0.51, and 0.60 were determined by measuring the decrease in viscosity as a function of time. A strong increase in r with increasing FA of the chitosans was observed, with r increasing proportionally to FA4.5. With increasing concentrations of lysozyme added to the reaction mixtures of chitosan and serum, the relative increase in degradation rate of chitosans with increasing FA was almost the same as that without lysozyme added. Addition of the chitinase inhibitor allosamidin (50 microM) did not inhibit the degradation rate of chitosan (FA = 0.60) by human serum. The results suggest that chitosans are actually mainly depolymerized by lysozyme in human serum, and not by other enzymes or other depolymerization mechanisms.
Collapse
Affiliation(s)
- K M Vårum
- Norwegian Biopolymer Laboratory (NOBIPOL), Department of Biotechnology, Norwegian University of Science and Technology, Trondheim, Norway
| | | | | | | |
Collapse
|
25
|
Vårum KM, Holme HK, Izume M, Stokke BT, Smidsrød O. Determination of enzymatic hydrolysis specificity of partially N-acetylated chitosans. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1291:5-15. [PMID: 8781519 DOI: 10.1016/0304-4165(96)00038-4] [Citation(s) in RCA: 111] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A new method for determining the specificity of hydrolysis of the linear binary heteropolysaccharide chitosan composed of (1-->4)-linked 2-acetamido-2-deoxy-beta-D-glucopyranose (GlcNAc; A-unit) and 2-amino-2-deoxy-beta-D-glucopyranose (GlcN; D-unit) residues is described. The method is based on the assignments of the 13C chemical shifts of the identity (A- or D-units) of the new reducing and non-reducing ends and the variation in their nearest neighbours, using low molecular weight chitosans with known random distribution of A- and D-units as substrate. A highly N-acetylated chitosan with fraction of acetylated units (FA) of 0.68 and a number-average degree of polymerization (DPn) of 30 was hydrolysed with hen egg-white lysozyme, showing that both the new reducing and non-reducing ends consisted exclusively of A-units, indicating a high specificity for A-units in subsites DL and EL on lysozyme. Our data suggests that the preceding unit of the reducing A-units, is invariable, and based on earlier studies, most probably an A-unit, while the unit following the non-reducing A-units can be either an A- or a D-unit. A more detailed study of the specificity of lysozyme at subsite DL was performed by hydrolyzing a more deacetylated chitosan (FA = 0.35 and DPn of 20) to a DPn of 9, showing that even for this chitosan more than 90% of the new reducing ends were acetylated units. Thus, lysozyme depolymerizes partially N-acetylated chitosans by preferentially hydrolyzing sequences of acetylated units bound to site CL, DL and EL of the active cleft, while there is no specificity between acetylated and deacetylated units to site FL. In addition, a moderately N-acetylated chitosan with fraction of acetylated units (FA) of 0.35 and a DPn of 20 was hydrolysed with Bacillus sp. No. 7-M chitosanase, showing that both the new reducing and non-reducing ends consisted exclusively of D-units. Our data suggests that the nearest neigbour to the D-unit at the reducing end is invariable, and based on earlier studies, most probably a D-unit, while the unit following the non-reducing D-units can be either an A- or a D-unit. We conclude that the Bacillus chitosanase hydrolyzes partially N-acetylated chitosan by preferentially attacking sequences of three consecutive deacetylated units, hypothetical subsites CC, DC and EC, where the cleavage occur between sugar units bound to subsites DC and EC. A hypothetical subsite FC on the chitosanase show no specificity with respect to A- and D-units. The new NMR method described herein offers a time and labour-saving alternative to the procedure of extensive hydrolysis of the binary heteropolysaccharide chitosan and subsequent isolation and characterization of the oligosaccharides.
Collapse
Affiliation(s)
- K M Vårum
- Norwegian Biopolymer Laboratory (NOBIPOL), Department of Biotechnology, Norwegian University of Science and Technology, Trondheim, Norway.
| | | | | | | | | |
Collapse
|
26
|
Kristiansen A, Vårum KM, Grasdalen H. Competitive binding of highly de-N-acetylated chitosans and N,N'-diacetylchitobiose to lysozyme from chicken egg white studied by 1H NMR spectroscopy. Carbohydr Res 1996; 289:143-50. [PMID: 8805778 DOI: 10.1016/0008-6215(96)00109-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- A Kristiansen
- Norwegian Biopolymer Laboratory, Department of Biotechnology, Norwegian University of Science and Technology, Trondheim, Norway
| | | | | |
Collapse
|
27
|
|
28
|
|