1
|
Nakagawa S, Imachi H, Shimamura S, Yanaka S, Yagi H, Yagi-Utsumi M, Sakai H, Kato S, Ohkuma M, Kato K, Takai K. Characterization of protein glycosylation in an Asgard archaeon. BBA ADVANCES 2024; 6:100118. [PMID: 39081798 PMCID: PMC11284389 DOI: 10.1016/j.bbadva.2024.100118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/30/2024] [Accepted: 07/10/2024] [Indexed: 08/02/2024] Open
Abstract
Archaeal cells are typically enveloped by glycosylated S-layer proteins. Archaeal protein glycosylation provides valuable insights not only into their adaptation to their niches but also into their evolutionary trajectory. Notably, thermophilic Thermoproteota modify proteins with N-glycans that include two GlcNAc units at the reducing end, resembling the "core structure" preserved across eukaryotes. Recently, Asgard archaea, now classified as members of the phylum Promethearchaeota, have offered unprecedented opportunities for understanding the role of archaea in eukaryogenesis. Despite the presence of genes indicative of protein N-glycosylation in this archaeal group, these have not been experimentally investigated. Here we performed a glycoproteome analysis of the firstly isolated Asgard archaeon Promethearchaeum syntrophicum. Over 700 different proteins were identified through high-resolution LC-MS/MS analysis, however, there was no evidence of either the presence or glycosylation of putative S-layer proteins. Instead, N-glycosylation in this archaeon was primarily observed in an extracellular solute-binding protein, possibly related to chemoreception or transmembrane transport of oligopeptides. The glycan modification occurred on an asparagine residue located within the conserved N-X-S/T sequon, consistent with the pattern found in other archaea, bacteria, and eukaryotes. Unexpectedly, three structurally different N-glycans lacking the conventional core structure were identified in this archaeon, presenting unique compositions that included atypical sugars. Notably, one of these sugars was likely HexNAc modified with a threonine residue, similar to modifications previously observed in mesophilic methanogens within the Methanobacteriati. Our findings advance our understanding of Asgard archaea physiology and evolutionary dynamics.
Collapse
Affiliation(s)
- Satoshi Nakagawa
- Laboratory of Marine Environmental Microbiology, Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka 273-0061, Japan
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institute of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
| | - Hiroyuki Imachi
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka 273-0061, Japan
| | - Shigeru Shimamura
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka 273-0061, Japan
| | - Saeko Yanaka
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institute of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuhoku, Nagoya 467-8603, Japan
- Institute for Molecular Science (IMS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
| | - Hirokazu Yagi
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institute of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuhoku, Nagoya 467-8603, Japan
| | - Maho Yagi-Utsumi
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institute of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuhoku, Nagoya 467-8603, Japan
- Institute for Molecular Science (IMS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
| | - Hiroyuki Sakai
- Japan Collection of Microorganisms (JCM), RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
| | - Shingo Kato
- Japan Collection of Microorganisms (JCM), RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
- Submarine Resources Research Center, JAMSTEC, Yokosuka 273-0061, Japan
| | - Moriya Ohkuma
- Japan Collection of Microorganisms (JCM), RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
| | - Koichi Kato
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institute of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuhoku, Nagoya 467-8603, Japan
- Institute for Molecular Science (IMS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
| | - Ken Takai
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka 273-0061, Japan
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institute of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
| |
Collapse
|
2
|
Huggias S, Serradell MDLÁ, Azcárate JC, Casella ML, Peruzzo PJ, Bolla PA. Catalytic Performance in Nitroarene Reduction of Nanocatalyst Based on Noble Metal Nanoparticles Supported on Polymer/s-Layer Protein Hybrids. J Phys Chem B 2024. [PMID: 38646680 DOI: 10.1021/acs.jpcb.4c00043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
We present a novel bionanocatalyst fabricated by the adsorption-reduction of metal ions on a polyurethane/S-layer protein biotemplate. The bioinspired support was obtained by the adsorption of S-layer proteins (isolated from Lentilactobacillus kefiri) on polyurethane particles. Silver and platinum nanoparticles were well-loaded on the surface of the support after the combination with metallic salts and reduction with H2 at room temperature. Transmission electron microscopy analysis revealed the strawberry-like morphology of the bionanocatalysts with a particle size, dn, of 2.39 nm for platinum and 9.60 nm for silver. Both systems catalyzed the hydrogenation of p-nitrophenol to p-aminophenol with high efficiency in water at mild conditions in the presence of NaBH4. Three different amounts of bionanocatalyst were tested, and in all cases, conversions between 97 and 99% were observed. The catalysts displayed excellent recyclability over ten cycles, and no extensive damage in their nanostructure was noted after them. The bionanocatalysts were stable during their production, storage, and use, thanks to the fact that the biosupport provides an effective driving force in the formation and stabilization of the metallic nanoparticles. The successful bioinspired production strategy and the good catalytic ability of the systems are encouraging in the search for nontoxic, simple, clean, and eco-friendly procedures for the synthesis and exploitation of nanostructures.
Collapse
Affiliation(s)
- Sofia Huggias
- Centro de Investigación y Desarrollo en Ciencias Aplicadas "Dr. Jorge J. Ronco" - CINDECA (UNLP-CONICET CCT La Plata), Calle 47 No 257, La Plata B1900AJK, Argentina
| | - María de Los Ángeles Serradell
- Cátedra de Microbiología, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), 47 y 115 s/n, La Plata 1900, Argentina
| | - Julio C Azcárate
- Centro Atómico Bariloche (CAB), Comisión Nacional de Energía Atómica - CONICET, Avda. E. Bustillo km 9500, San Carlos de Bariloche R8402AGP, Argentina
| | - Mónica L Casella
- Centro de Investigación y Desarrollo en Ciencias Aplicadas "Dr. Jorge J. Ronco" - CINDECA (UNLP-CONICET CCT La Plata), Calle 47 No 257, La Plata B1900AJK, Argentina
| | - Pablo J Peruzzo
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas - INIFTA (UNLP - CONICET CCT La Plata), Diag. 113 y 64, La Plata B1904DPIB1904DPI, Argentina
| | - Patricia A Bolla
- Centro de Investigación y Desarrollo en Ciencias Aplicadas "Dr. Jorge J. Ronco" - CINDECA (UNLP-CONICET CCT La Plata), Calle 47 No 257, La Plata B1900AJK, Argentina
| |
Collapse
|
3
|
Liu C, Mesman R, Pol A, Angius F, Op den Camp HJM. Identification and characterisation of a major outer membrane protein from Methylacidiphilum fumariolicum SolV. Antonie Van Leeuwenhoek 2023; 116:1227-1245. [PMID: 37737555 PMCID: PMC10542722 DOI: 10.1007/s10482-023-01879-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/11/2023] [Indexed: 09/23/2023]
Abstract
The outer membrane (OM) protects Gram-negative bacteria against a hostile environment. The proteins embedded in the OM fulfil a number of tasks that are crucial to the bacterial cell. In this study, we identified and characterised a major outer membrane protein (WP_009059494) from Methylacidiphilum fumariolicum SolV. PRED-TMBB and AlphaFold2 predicted this protein to form a porin with a β-barrel structure consisting of ten antiparallel β-sheets and with a small amphipathic N-terminal α-helix in the periplasm. We purified soluble recombinant protein WP_009059494 from E. coli using Tris-HCl buffer with SDS. Antibodies were raised against two peptides in the two large extracellular loops of protein WP_009059494 and immunogold localisation showed this protein to be mainly present in the OM of strain SolV. In addition, this protein is tightly associated with the OM, and is resistant to extraction. Only a small amount can be isolated from the cell envelope using harsh conditions (SDS and boiling). Despite this resistance to extraction, WP_009059494 most likely is an outer membrane protein. A regular lattice could not be detected by negative staining TEM of strain SolV and isolated protein WP_009059494. Considering the specific ecological niche of strain SolV living in a geothermal environment with low pH and high temperatures, this major protein WP_009059494 may act as barrier to resist the extreme conditions found in its natural environment. In addition, we found an absence of the BamB, BamC and BamE proteins of the canonical BAM complex, in Methylacidiphilum and Methylacidimicrobium species. This suggests that these bacteria use a simple BAM complex for folding and transport of OM proteins.
Collapse
Affiliation(s)
- Changqing Liu
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Faculty of Science, Radboud University, Nijmegen, The Netherlands
| | - Rob Mesman
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Faculty of Science, Radboud University, Nijmegen, The Netherlands
| | - Arjan Pol
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Faculty of Science, Radboud University, Nijmegen, The Netherlands
| | - Federica Angius
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Faculty of Science, Radboud University, Nijmegen, The Netherlands
| | - Huub J M Op den Camp
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Faculty of Science, Radboud University, Nijmegen, The Netherlands.
| |
Collapse
|
4
|
Simonin P, Lombard C, Huguet A, Kish A. Improved Isolation of SlaA and SlaB S-layer proteins in Sulfolobus acidocaldarius. Extremophiles 2020; 24:673-680. [PMID: 32494965 DOI: 10.1007/s00792-020-01179-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 05/15/2020] [Indexed: 01/19/2023]
Abstract
The Sulfolobus acidocaldarius S-layer is composed of two main proteins: SlaA, which forms the ordered structure of the S-layer matrix, and SlaB, which supports and anchors the S-layer into the tetraether lipid membrane. While SlaA has previously been purified by exploiting its thermotolerance and high resistance to detergents, SlaB has resisted isolation, particularly from the cell membrane. Removal of proteins other than those of the S-layer is especially difficult if large batch-scale culture volumes are unavailable. Here, we describe a benchtop-scale protocol for the purification of SlaA from S. acidocaldarius, enabling isolation of SlaB using size exclusion chromatography (gel filtration). Using this protocol, we were able to identify for the first time tetraether lipids strongly attached to SlaB via heat- and detergent-resistant interactions.
Collapse
Affiliation(s)
- Pierre Simonin
- Molécules de Communication et Adaptation des Microorganismes (MCAM), Muséum national d'Histoire naturelle, CNRS, CP 54, 57 rue Cuvier, 75005, Paris, France
| | - Carine Lombard
- Molécules de Communication et Adaptation des Microorganismes (MCAM), Muséum national d'Histoire naturelle, CNRS, CP 54, 57 rue Cuvier, 75005, Paris, France
| | - Arnaud Huguet
- Sorbonne Université, CNRS, École Pratique des Hautes Études, UMR 7619 METIS, 4, place Jussieu, 75005, Paris, France
| | - Adrienne Kish
- Molécules de Communication et Adaptation des Microorganismes (MCAM), Muséum national d'Histoire naturelle, CNRS, CP 54, 57 rue Cuvier, 75005, Paris, France.
| |
Collapse
|
5
|
Matilda C, Mannully S, Viditha R, Shanthi C. Protein profiling of metal‐resistantBacillus cereusVITSH1. J Appl Microbiol 2019; 127:121-133. [DOI: 10.1111/jam.14293] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 04/09/2019] [Accepted: 04/23/2019] [Indexed: 02/04/2023]
Affiliation(s)
- C.S. Matilda
- School of Bio Sciences and Technology Vellore Institute of Technology Vellore India
| | - S.T. Mannully
- School of Bio Sciences and Technology Vellore Institute of Technology Vellore India
| | - R.P. Viditha
- School of Bio Sciences and Technology Vellore Institute of Technology Vellore India
| | - C. Shanthi
- School of Bio Sciences and Technology Vellore Institute of Technology Vellore India
| |
Collapse
|
6
|
Luo G, Yang Q, Yao B, Tian Y, Hou R, Shao A, Li M, Feng Z, Wang W. Slp-coated liposomes for drug delivery and biomedical applications: potential and challenges. Int J Nanomedicine 2019; 14:1359-1383. [PMID: 30863066 PMCID: PMC6388732 DOI: 10.2147/ijn.s189935] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Slp forms a crystalline array of proteins on the outermost envelope of bacteria and archaea with a molecular weight of 40-200 kDa. Slp can self-assemble on the surface of liposomes in a proper environment via electrostatic interactions, which could be employed to functionalize liposomes by forming Slp-coated liposomes for various applications. Among the molecular characteristics, the stability, adhesion, and immobilization of biomacromolecules are regarded as the most meaningful. Compared to plain liposomes, Slp-coated liposomes show excellent physicochemical and biological stabilities. Recently, Slp-coated liposomes were shown to specifically adhere to the gastrointestinal tract, which was attributed to the "ligand-receptor interaction" effect. Furthermore, Slp as a "bridge" can immobilize functional biomacromol-ecules on the surface of liposomes via protein fusion technology or intermolecular forces, endowing liposomes with beneficial functions. In view of these favorable features, Slp-coated liposomes are highly likely to be an ideal platform for drug delivery and biomedical uses. This review aims to provide a general framework for the structure and characteristics of Slp and the interactions between Slp and liposomes, to highlight the unique properties and drug delivery as well as the biomedical applications of the Slp-coated liposomes, and to discuss the ongoing challenges and perspectives.
Collapse
Affiliation(s)
- Gan Luo
- Department of Pharmaceutics, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, Zhejiang, China,
- Department of Anesthesiology and Intensive Care, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qingliang Yang
- Department of Pharmaceutics, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, Zhejiang, China,
| | - Bingpeng Yao
- Department of Pharmaceutics, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, Zhejiang, China,
- Department of Green Pharmaceutics, Jianxing Honors College, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Yangfan Tian
- Department of Pediatric Surgery, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ruixia Hou
- Department of Pharmaceutics, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, Zhejiang, China,
| | - Anna Shao
- Department of Pharmaceutics, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, Zhejiang, China,
| | - Mengting Li
- Department of Pharmaceutics, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, Zhejiang, China,
| | - Zilin Feng
- Department of Pharmaceutics, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, Zhejiang, China,
| | - Wenxi Wang
- Department of Pharmaceutics, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, Zhejiang, China,
| |
Collapse
|
7
|
Abstract
The cell wall of archaea, as of any other prokaryote, is surrounding the cell outside the cytoplasmic membrane and is mediating the interaction with the environment. In this regard, it can be involved in cell shape maintenance, protection against virus, heat, acidity or alkalinity. Throughout the formation of pore like structures, it can resemble a micro sieve and thereby enable or disable transport processes. In some cases, cell wall components can make up more than 10% of the whole cellular protein. So far, a great variety of different cell envelope structures and compounds have be found and described in detail. From all archaeal cell walls described so far, the most common structure is the S-layer. Other archaeal cell wall structures are pseudomurein, methanochondroitin, glutaminylglycan, sulfated heteropolysaccharides and protein sheaths and they are sometimes associated with additional proteins and protein complexes like the STABLE protease or the bindosome. Recent advances in electron microscopy also illustrated the presence of an outer(most) cellular membrane within several archaeal groups, comparable to the Gram-negative cell wall within bacteria. Each new cell wall structure that can be investigated in detail and that can be assigned with a specific function helps us to understand, how the earliest cells on earth might have looked like.
Collapse
Affiliation(s)
- Andreas Klingl
- Plant Development and Electron Microscopy, Department of Biology I, Biocenter LMU Munich, Großhaderner Str. 2-4, 82152, Planegg-Martinsried, Germany.
| | - Carolin Pickl
- Plant Development and Electron Microscopy, Department of Biology I, Biocenter LMU Munich, Großhaderner Str. 2-4, 82152, Planegg-Martinsried, Germany
| | - Jennifer Flechsler
- Plant Development and Electron Microscopy, Department of Biology I, Biocenter LMU Munich, Großhaderner Str. 2-4, 82152, Planegg-Martinsried, Germany
| |
Collapse
|
8
|
Khursigara CM, Koval SF, Moyles DM, Harris RJ. Inroads through the bacterial cell envelope: seeing is believing. Can J Microbiol 2018; 64:601-617. [DOI: 10.1139/cjm-2018-0091] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A singular feature of all prokaryotic cells is the presence of a cell envelope composed of a cytoplasmic membrane and a cell wall. The introduction of bacterial cell fractionation techniques in the 1950s and 1960s along with developments in procedures for electron microscopy opened the window towards an understanding of the chemical composition and architecture of the cell envelope. This review traces the contribution of Terry Beveridge in these endeavours, beginning with his doctoral studies in the 1970s on the structure of paracrystalline surface arrays (S-layers), followed by an exploration of cryogenic methods for preserving bacteria for ultrastructural analyses. His insights are reflected in a current example of the contribution of cryo-electron microscopy to S-layer studies — the structure and assembly of the surface array of Caulobacter crescentus. The review then focuses on Terry’s contributions to imaging the ultrastructure of bacterial cell envelopes and to the development of cryo-electron microscopy techniques, including the use of CEMOVIS (Cryo-electron Microscopy of Vitreous Sections) to “see” the ultrastructure of the Gram-positive cell envelope — his last scientific endeavour.
Collapse
Affiliation(s)
- Cezar M. Khursigara
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
- Molecular and Cellular Imaging Facility, Advanced Analysis Centre, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Susan F. Koval
- Department of Microbiology and Immunology, University of Western Ontario, London, ON N6A 5C1, Canada
| | - Dianne M. Moyles
- Molecular and Cellular Imaging Facility, Advanced Analysis Centre, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Robert J. Harris
- Molecular and Cellular Imaging Facility, Advanced Analysis Centre, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
9
|
Malamud M, Carasi P, Freire T, Serradell MDLA. S-layer glycoprotein from Lactobacillus kefiri CIDCA 8348 enhances macrophages response to LPS in a Ca+2-dependent manner. Biochem Biophys Res Commun 2018; 495:1227-1232. [DOI: 10.1016/j.bbrc.2017.11.127] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Accepted: 11/19/2017] [Indexed: 12/27/2022]
|
10
|
Malamud M, Carasi P, Bronsoms S, Trejo SA, Serradell MDLA. Lactobacillus kefiri shows inter-strain variations in the amino acid sequence of the S-layer proteins. Antonie Van Leeuwenhoek 2016; 110:515-530. [PMID: 28004217 DOI: 10.1007/s10482-016-0820-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 12/09/2016] [Indexed: 10/20/2022]
Abstract
The S-layer is a proteinaceous envelope constituted by subunits that self-assemble to form a two-dimensional lattice that covers the surface of different species of Bacteria and Archaea, and it could be involved in cell recognition of microbes among other several distinct functions. In this work, both proteomic and genomic approaches were used to gain knowledge about the sequences of the S-layer protein (SLPs) encoding genes expressed by six aggregative and sixteen non-aggregative strains of potentially probiotic Lactobacillus kefiri. Peptide mass fingerprint (PMF) analysis confirmed the identity of SLPs extracted from L. kefiri, and based on the homology with phylogenetically related species, primers located outside and inside the SLP-genes were employed to amplify genomic DNA. The O-glycosylation site SASSAS was found in all L. kefiri SLPs. Ten strains were selected for sequencing of the complete genes. The total length of the mature proteins varies from 492 to 576 amino acids, and all SLPs have a calculated pI between 9.37 and 9.60. The N-terminal region is relatively conserved and shows a high percentage of positively charged amino acids. Major differences among strains are found in the C-terminal region. Different groups could be distinguished regarding the mature SLPs and the similarities observed in the PMF spectra. Interestingly, SLPs of the aggregative strains are 100% homologous, although these strains were isolated from different kefir grains. This knowledge provides relevant data for better understanding of the mechanisms involved in SLPs functionality and could contribute to the development of products of biotechnological interest from potentially probiotic bacteria.
Collapse
Affiliation(s)
- Mariano Malamud
- Cátedra de Microbiología, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), 47 y 115, CP 1900, La Plata, Argentina.,CCT-La Plata, CONICET, Buenos Aires, Argentina
| | - Paula Carasi
- Cátedra de Microbiología, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), 47 y 115, CP 1900, La Plata, Argentina.,CCT-La Plata, CONICET, Buenos Aires, Argentina
| | - Sílvia Bronsoms
- Unidad de Proteómica del Servicio de Proteómica y Biología Estructural (SePBioEs), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Sebastián A Trejo
- CCT-La Plata, CONICET, Buenos Aires, Argentina.,Unidad de Proteómica del Servicio de Proteómica y Biología Estructural (SePBioEs), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain.,Instituto Multidisciplinario de Biología Celular (IMBICE), CONICET, La Plata, Argentina
| | - María de Los Angeles Serradell
- Cátedra de Microbiología, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), 47 y 115, CP 1900, La Plata, Argentina. .,CCT-La Plata, CONICET, Buenos Aires, Argentina. .,Instituto de Ciencias de la Salud, Universidad Arturo Jauretche (UNAJ), Florencio Varela, Argentina.
| |
Collapse
|
11
|
Characterization of Three Different Unusual S-Layer Proteins from Viridibacillus arvi JG-B58 That Exhibits Two Super-Imposed S-Layer Proteins. PLoS One 2016; 11:e0156785. [PMID: 27285458 PMCID: PMC4902306 DOI: 10.1371/journal.pone.0156785] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 05/19/2016] [Indexed: 12/04/2022] Open
Abstract
Genomic analyses of Viridibacillus arvi JG-B58 that was previously isolated from heavy metal contaminated environment identified three different putative surface layer (S-layer) protein genes namely slp1, slp2, and slp3. All three genes are expressed during cultivation. At least two of the V. arvi JG-B58 S-layer proteins were visualized on the surface of living cells via atomic force microscopy (AFM). These S-layer proteins form a double layer with p4 symmetry. The S-layer proteins were isolated from the cells using two different methods. Purified S-layer proteins were recrystallized on SiO2 substrates in order to study the structure of the arrays and self-assembling properties. The primary structure of all examined S-layer proteins lack some features that are typical for Bacillus or Lysinibacillus S-layers. For example, they possess no SLH domains that are usually responsible for the anchoring of the proteins to the cell wall. Further, the pI values are relatively high ranging from 7.84 to 9.25 for the matured proteins. Such features are typical for S-layer proteins of Lactobacillus species although sequence comparisons indicate a close relationship to S-layer proteins of Lysinibacillus and Bacillus strains. In comparison to the numerous descriptions of S-layers, there are only a few studies reporting the concomitant existence of two different S-layer proteins on cell surfaces. Together with the genomic data, this is the first description of a novel type of S-layer proteins showing features of Lactobacillus as well as of Bacillus-type S-layer proteins and the first study of the cell envelope of Viridibacillus arvi.
Collapse
|
12
|
Preservation of Archaeal Surface Layer Structure During Mineralization. Sci Rep 2016; 6:26152. [PMID: 27221593 PMCID: PMC4879539 DOI: 10.1038/srep26152] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 04/21/2016] [Indexed: 12/18/2022] Open
Abstract
Proteinaceous surface layers (S-layers) are highly ordered, crystalline structures commonly found in prokaryotic cell envelopes that augment their structural stability and modify interactions with metals in the environment. While mineral formation associated with S-layers has previously been noted, the mechanisms were unconstrained. Using Sulfolobus acidocaldarius a hyperthermophilic archaeon native to metal-enriched environments and possessing a cell envelope composed only of a S-layer and a lipid cell membrane, we describe a passive process of iron phosphate nucleation and growth within the S-layer of cells and cell-free S-layer "ghosts" during incubation in a Fe-rich medium, independently of metabolic activity. This process followed five steps: (1) initial formation of mineral patches associated with S-layer; (2) patch expansion; (3) patch connection; (4) formation of a continuous mineral encrusted layer at the cell surface; (5) early stages of S-layer fossilization via growth of the extracellular mineralized layer and the mineralization of cytosolic face of the cell membrane. At more advanced stages of encrustation, encrusted outer membrane vesicles are formed, likely in an attempt to remove damaged S-layer proteins. The S-layer structure remains strikingly well preserved even upon the final step of encrustation, offering potential biosignatures to be looked for in the fossil record.
Collapse
|
13
|
San K, Long J, Michels CA, Gadura N. Antimicrobial copper alloy surfaces are effective against vegetative but not sporulated cells of gram-positive Bacillus subtilis. Microbiologyopen 2015; 4:753-63. [PMID: 26185055 PMCID: PMC4618608 DOI: 10.1002/mbo3.276] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 05/25/2015] [Accepted: 06/15/2015] [Indexed: 12/11/2022] Open
Abstract
This study explores the role of membrane phospholipid peroxidation in the copper alloy mediated contact killing of Bacillus subtilis, a spore-forming gram-positive bacterial species. We found that B. subtilis endospores exhibited significant resistance to copper alloy surface killing but vegetative cells were highly sensitive to copper surface exposure. Cell death and lipid peroxidation occurred in B. subtilis upon copper alloy surface exposure. In a sporulation-defective strain carrying a deletion of almost the entire SpoIIA operon, lipid peroxidation directly correlated with cell death. Moreover, killing and lipid peroxidation initiated immediately and at a constant rate upon exposure to the copper surface without the delay observed previously in E. coli. These findings support the hypothesis that membrane lipid peroxidation is the initiating event causing copper surface induced cell death of B. subtilis vegetative cells. The findings suggest that the observed differences in the kinetics of copper-induced killing compared to E. coli result from differences in cell envelop structure. As demonstrated in E. coli, DNA degradation was shown to be a secondary effect of copper exposure in a B. subtilis sporulation-defective strain.
Collapse
Affiliation(s)
- Kaungmyat San
- Department of Biological Sciences and Geology, Queensborough Community College - CUNY, 222-05 56th Avenue, Bayside, New York, 11364
| | - Janet Long
- Department of Biological Sciences and Geology, Queensborough Community College - CUNY, 222-05 56th Avenue, Bayside, New York, 11364
| | - Corinne A Michels
- Biology Department, Queens College - CUNY, 65-30 Kissena Boulevard, Flushing, New York, 11367
| | - Nidhi Gadura
- Department of Biological Sciences and Geology, Queensborough Community College - CUNY, 222-05 56th Avenue, Bayside, New York, 11364
| |
Collapse
|
14
|
Schuster B, Sleytr UB. Relevance of glycosylation of S-layer proteins for cell surface properties. Acta Biomater 2015; 19:149-157. [PMID: 25818946 PMCID: PMC4414373 DOI: 10.1016/j.actbio.2015.03.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 03/02/2015] [Accepted: 03/17/2015] [Indexed: 01/19/2023]
Abstract
Elucidating the building principles and intrinsic features modulating certain water-associated processes (e.g., surface roughness in the nanometer scale, surface hydration and accompanied antifouling property, etc.) of surface structures from (micro)organisms is nowadays a highly challenging task in fields like microbiology, biomimetic engineering and (bio)material sciences. Here, we show for the first time the recrystallization of the wild-type S-layer glycoprotein wtSgsE from Geobacillus stearothermophilus NRS 2004/3a and its recombinantly produced non-glycosylated form, rSgsE, on gold sensor surfaces. Whereas the proteinaceous lattice of the S-layer proteins is forming a rigid layer on the sensor surface, the glycan chains are developing an overall soft, highly dissipative film. Interestingly, to the wtSgsE lattice almost twice the amount of water is bound and/or coupled in comparison with the non-glycosylated rSgsE with the preferred region being the extending glycan residues. The present results are discussed in terms of the effect of the glycan residues on the recrystallization, the adjoining hydration layer, and the nanoscale roughness and fluidic behavior. The latter features may turn out to be one of the most general ones among bacterial and archaeal S-layer lattices.
Collapse
|
15
|
Giménez MI, Cerletti M, De Castro RE. Archaeal membrane-associated proteases: insights on Haloferax volcanii and other haloarchaea. Front Microbiol 2015; 6:39. [PMID: 25774151 PMCID: PMC4343526 DOI: 10.3389/fmicb.2015.00039] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 01/12/2015] [Indexed: 11/17/2022] Open
Abstract
The function of membrane proteases range from general house-keeping to regulation of cellular processes. Although the biological role of these enzymes in archaea is poorly understood, some of them are implicated in the biogenesis of the archaeal cell envelope and surface structures. The membrane-bound ATP-dependent Lon protease is essential for cell viability and affects membrane carotenoid content in Haloferax volcanii. At least two different proteases are needed in this archaeon to accomplish the posttranslational modifications of the S-layer glycoprotein. The rhomboid protease RhoII is involved in the N-glycosylation of the S-layer protein with a sulfoquinovose-containing oligosaccharide while archaeosortase ArtA mediates the proteolytic processing coupled-lipid modification of this glycoprotein facilitating its attachment to the archaeal cell surface. Interestingly, two different signal peptidase I homologs exist in H. volcanii, Sec11a and Sec11b, which likely play distinct physiological roles. Type IV prepilin peptidase PibD processes flagellin/pilin precursors, being essential for the biogenesis and function of the archaellum and other cell surface structures in H. volcanii.
Collapse
Affiliation(s)
- María I Giménez
- Instituto de Investigaciones Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Consejo Nacional de Investigaciones Científicas y Técnicas Mar del Plata, Argentina
| | - Micaela Cerletti
- Instituto de Investigaciones Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Consejo Nacional de Investigaciones Científicas y Técnicas Mar del Plata, Argentina
| | - Rosana E De Castro
- Instituto de Investigaciones Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Consejo Nacional de Investigaciones Científicas y Técnicas Mar del Plata, Argentina
| |
Collapse
|
16
|
Reitz T, Rossberg A, Barkleit A, Steudtner R, Selenska-Pobell S, Merroun ML. Spectroscopic study on uranyl carboxylate complexes formed at the surface layer of Sulfolobus acidocaldarius. Dalton Trans 2015; 44:2684-92. [DOI: 10.1039/c4dt02555e] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The complexation of U(vi) at the proteinaceous surface layer (S-layer) of the archaeal strain Sulfolobus acidocaldarius was investigated at the molecular scale using TRLFS and EXAFS spectroscopy.
Collapse
Affiliation(s)
- Thomas Reitz
- Helmholtz-Center Dresden-Rossendorf
- Institute of Resource Ecology
- 01328 Dresden
- Germany
- Helmholtz-Center for Environmental Research
| | - Andre Rossberg
- Helmholtz-Center Dresden-Rossendorf
- Institute of Resource Ecology
- 01328 Dresden
- Germany
| | - Astrid Barkleit
- Helmholtz-Center Dresden-Rossendorf
- Institute of Resource Ecology
- 01328 Dresden
- Germany
| | - Robin Steudtner
- Helmholtz-Center Dresden-Rossendorf
- Institute of Resource Ecology
- 01328 Dresden
- Germany
| | - Sonja Selenska-Pobell
- Helmholtz-Center Dresden-Rossendorf
- Institute of Resource Ecology
- 01328 Dresden
- Germany
| | | |
Collapse
|
17
|
Klingl A. S-layer and cytoplasmic membrane - exceptions from the typical archaeal cell wall with a focus on double membranes. Front Microbiol 2014; 5:624. [PMID: 25505452 PMCID: PMC4243693 DOI: 10.3389/fmicb.2014.00624] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 10/31/2014] [Indexed: 11/13/2022] Open
Abstract
The common idea of typical cell wall architecture in archaea consists of a pseudo-crystalline proteinaceous surface layer (S-layer), situated upon the cytoplasmic membrane. This is true for the majority of described archaea, hitherto. Within the crenarchaea, the S-layer often represents the only cell wall component, but there are various exceptions from this wall architecture. Beside (glycosylated) S-layers in (hyper)thermophilic cren- and euryarchaea as well as halophilic archaea, one can find a great variety of other cell wall structures like proteoglycan-like S-layers (Halobacteria), glutaminylglycan (Natronococci), methanochondroitin (Methanosarcina) or double layered cell walls with pseudomurein (Methanothermus and Methanopyrus). The presence of an outermost cellular membrane in the crenarchaeal species Ignicoccus hospitalis already gave indications for an outer membrane similar to Gram-negative bacteria. Although there is just limited data concerning their biochemistry and ultrastructure, recent studies on the euryarchaeal methanogen Methanomassiliicoccus luminyensis, cells of the ARMAN group, and the SM1 euryarchaeon delivered further examples for this exceptional cell envelope type consisting of two membranes.
Collapse
Affiliation(s)
- Andreas Klingl
- Plant Development, Department of Biology, Biocenter LMU Munich - Botany, Ludwig Maximilian University Munich Munich, Germany
| |
Collapse
|
18
|
Piotrowska M. The adsorption of ochratoxin a by lactobacillus species. Toxins (Basel) 2014; 6:2826-39. [PMID: 25247265 PMCID: PMC4179162 DOI: 10.3390/toxins6092826] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 09/09/2014] [Accepted: 09/10/2014] [Indexed: 11/24/2022] Open
Abstract
The objective of this study was to examine ochratoxin A (OTA) binding by three lactic acid bacteria (LAB) species: Lactobacillus plantarum, L. brevis, and L. sanfranciscensis. Experiments were conducted using MRS medium and PBS buffer contaminated with 1000 ng/mL OTA and inoculated with live or thermally inactivated bacterial biomass at a concentration of 1 or 5 mg dry weight/mL. It was found that, depending on the strain and biomass density, live bacterial cells reduced OTA content by 16.9% to 35% in MRS medium and by 14.8% to 26.4% in PBS after 24 h of contact. OTA binding was higher in the case of thermally inactivated bacterial biomass (46.2% to 59.8%). The process is very rapid: OTA was removed from PBS as early as after 30 min of contact. The binding of the toxin by cells was partially reversible under the treatment by water and 1 M HCl. The results show that OTA is adsorbed to the surface structures of the cell wall, which is promoted not only by the hydrophobic properties of the cell wall, but also by electron donor-acceptor and Lewis acid-base interactions.
Collapse
Affiliation(s)
- Małgorzata Piotrowska
- Institute of Fermentation Technology and Microbiology, Faculty of Biotechnology and Food Science, Lodz University of Technology, Wólczańska 171/173, Łódź 90-924, Poland.
| |
Collapse
|
19
|
Sleytr UB, Schuster B, Egelseer E, Pum D. S-layers: principles and applications. FEMS Microbiol Rev 2014; 38:823-64. [PMID: 24483139 PMCID: PMC4232325 DOI: 10.1111/1574-6976.12063] [Citation(s) in RCA: 246] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 01/10/2014] [Accepted: 01/13/2014] [Indexed: 01/12/2023] Open
Abstract
Monomolecular arrays of protein or glycoprotein subunits forming surface layers (S-layers) are one of the most commonly observed prokaryotic cell envelope components. S-layers are generally the most abundantly expressed proteins, have been observed in species of nearly every taxonomical group of walled bacteria, and represent an almost universal feature of archaeal envelopes. The isoporous lattices completely covering the cell surface provide organisms with various selection advantages including functioning as protective coats, molecular sieves and ion traps, as structures involved in surface recognition and cell adhesion, and as antifouling layers. S-layers are also identified to contribute to virulence when present as a structural component of pathogens. In Archaea, most of which possess S-layers as exclusive wall component, they are involved in determining cell shape and cell division. Studies on structure, chemistry, genetics, assembly, function, and evolutionary relationship of S-layers revealed considerable application potential in (nano)biotechnology, biomimetics, biomedicine, and synthetic biology.
Collapse
Affiliation(s)
- Uwe B. Sleytr
- Institute of BiophysicsDepartment of NanobiotechnologyUniversity of Natural Resources and Life SciencesViennaAustria
| | - Bernhard Schuster
- Institute of Synthetic BiologyDepartment of NanobiotechnologyUniversity of Natural Resources and Life SciencesViennaAustria
| | - Eva‐Maria Egelseer
- Institute of BiophysicsDepartment of NanobiotechnologyUniversity of Natural Resources and Life SciencesViennaAustria
| | - Dietmar Pum
- Institute of BiophysicsDepartment of NanobiotechnologyUniversity of Natural Resources and Life SciencesViennaAustria
| |
Collapse
|
20
|
Abstract
The cell wall of Gram-positive bacteria is a complex assemblage of glycopolymers and proteins. It consists of a thick peptidoglycan sacculus that surrounds the cytoplasmic membrane and that is decorated with teichoic acids, polysaccharides, and proteins. It plays a major role in bacterial physiology since it maintains cell shape and integrity during growth and division; in addition, it acts as the interface between the bacterium and its environment. Lactic acid bacteria (LAB) are traditionally and widely used to ferment food, and they are also the subject of more and more research because of their potential health-related benefits. It is now recognized that understanding the composition, structure, and properties of LAB cell walls is a crucial part of developing technological and health applications using these bacteria. In this review, we examine the different components of the Gram-positive cell wall: peptidoglycan, teichoic acids, polysaccharides, and proteins. We present recent findings regarding the structure and function of these complex compounds, results that have emerged thanks to the tandem development of structural analysis and whole genome sequencing. Although general structures and biosynthesis pathways are conserved among Gram-positive bacteria, studies have revealed that LAB cell walls demonstrate unique properties; these studies have yielded some notable, fundamental, and novel findings. Given the potential of this research to contribute to future applied strategies, in our discussion of the role played by cell wall components in LAB physiology, we pay special attention to the mechanisms controlling bacterial autolysis, bacterial sensitivity to bacteriophages and the mechanisms underlying interactions between probiotic bacteria and their hosts.
Collapse
|
21
|
Abstract
Prokaryotic glycosylation fulfills an important role in maintaining and protecting the structural integrity and function of the bacterial cell wall, as well as serving as a flexible adaption mechanism to evade environmental and host-induced pressure. The scope of bacterial and archaeal protein glycosylation has considerably expanded over the past decade(s), with numerous examples covering the glycosylation of flagella, pili, glycosylated enzymes, as well as surface-layer proteins. This article addresses structure, analysis, function, genetic basis, biosynthesis, and biomedical and biotechnological applications of cell-envelope glycoconjugates, S-layer glycoprotein glycans, and "nonclassical" secondary-cell wall polysaccharides. The latter group of polymers mediates the important attachment and regular orientation of the S-layer to the cell wall. The structures of these glycopolymers reveal an enormous diversity, resembling the structural variability of bacterial lipopolysaccharides and capsular polysaccharides. While most examples are presented for Gram-positive bacteria, the S-layer glycan of the Gram-negative pathogen Tannerella forsythia is also discussed. In addition, archaeal S-layer glycoproteins are briefly summarized.
Collapse
Affiliation(s)
- Paul Messner
- Department of NanoBiotechnology, NanoGlycobiology Unit, University of Natural Resources and Life Sciences, Vienna, Austria
| | | | | |
Collapse
|
22
|
Jarrell KF, Ding Y, Meyer BH, Albers SV, Kaminski L, Eichler J. N-linked glycosylation in Archaea: a structural, functional, and genetic analysis. Microbiol Mol Biol Rev 2014; 78:304-41. [PMID: 24847024 PMCID: PMC4054257 DOI: 10.1128/mmbr.00052-13] [Citation(s) in RCA: 151] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
N-glycosylation of proteins is one of the most prevalent posttranslational modifications in nature. Accordingly, a pathway with shared commonalities is found in all three domains of life. While excellent model systems have been developed for studying N-glycosylation in both Eukarya and Bacteria, an understanding of this process in Archaea was hampered until recently by a lack of effective molecular tools. However, within the last decade, impressive advances in the study of the archaeal version of this important pathway have been made for halophiles, methanogens, and thermoacidophiles, combining glycan structural information obtained by mass spectrometry with bioinformatic, genetic, biochemical, and enzymatic data. These studies reveal both features shared with the eukaryal and bacterial domains and novel archaeon-specific aspects. Unique features of N-glycosylation in Archaea include the presence of unusual dolichol lipid carriers, the use of a variety of linking sugars that connect the glycan to proteins, the presence of novel sugars as glycan constituents, the presence of two very different N-linked glycans attached to the same protein, and the ability to vary the N-glycan composition under different growth conditions. These advances are the focus of this review, with an emphasis on N-glycosylation pathways in Haloferax, Methanococcus, and Sulfolobus.
Collapse
Affiliation(s)
- Ken F Jarrell
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Yan Ding
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Benjamin H Meyer
- Molecular Biology of Archaea, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Sonja-Verena Albers
- Molecular Biology of Archaea, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Lina Kaminski
- Department of Life Sciences, Ben Gurion University, Beersheva, Israel
| | - Jerry Eichler
- Department of Life Sciences, Ben Gurion University, Beersheva, Israel
| |
Collapse
|
23
|
|
24
|
Khmelenina VN, Suzina NE, Trotsenko YA. Surface layers of methanotrophic bacteria. Microbiology (Reading) 2013. [DOI: 10.1134/s0026261713050068] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
25
|
The sll1951 gene encodes the surface layer protein of Synechocystis sp. strain PCC 6803. J Bacteriol 2013; 195:5370-80. [PMID: 24078613 DOI: 10.1128/jb.00615-13] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Sll1951 is the surface layer (S-layer) protein of the cyanobacterium Synechocystis sp. strain PCC 6803. This large, hemolysin-like protein was found in the supernatant of a strain that was deficient in S-layer attachment. An sll1951 deletion mutation was introduced into Synechocystis and was easily segregated to homozygosity under laboratory conditions. By thin-section and negative-stain transmission electron microscopy, a ~30-nm-wide S-layer lattice covering the cell surface was readily visible in wild-type cells but was absent in the Δsll1951 strain. Instead, the Δsll1951 strain displayed a smooth lipopolysaccharide surface as its most peripheral layer. In the presence of chaotropic agents, the wild type released a large (>150-kDa) protein into the medium that was identified as Sll1951 by mass spectrometry of trypsin fragments; this protein was missing in the Δsll1951 strain. In addition, Sll1951 was prominent in crude extracts of the wild type, indicating that it is an abundant protein. The carotenoid composition of the cell wall fraction of the Δsll1951 strain was similar to that of the wild type, suggesting that the S-layer does not contribute to carotenoid binding. Although the photoautotrophic growth rate of the Δsll1951 strain was similar to that of the wild-type strain, the viability of the Δsll1951 strain was reduced upon exposure to lysozyme treatment and hypo-osmotic stress, indicating a contribution of the S-layer to the integrity of the Synechocystis cell wall. This work identifies the S-layer protein in Synechocystis and shows that, at least under laboratory conditions, this very abundant, large protein has a supportive but not a critical role in the function of the cyanobacterium.
Collapse
|
26
|
Pradel N, Bartoli M, Bernadac A, Gimenez G, Ollivier B, Fardeau ML. Isolation of Thermovenabulum gondwanense from a French hot spring and emended description of the species. Antonie van Leeuwenhoek 2013; 104:271-9. [PMID: 23743634 DOI: 10.1007/s10482-013-9947-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 05/30/2013] [Indexed: 10/26/2022]
Abstract
An anaerobic thermophilic bacterium designated CA9F1 was isolated from a thermal spring in France. Strain CA9F1 was observed to grow at temperatures between 55 and 70 °C (optimum 65 °C) and at pH between 6.8 and 9.5 (optimum pH 7.4). Strain CA9F1 does not require salt for growth (0-10 g l(-1) NaCl), with an optimum at 1 g l(-1). The DNA G+C content was determined to be 38.5 mol% (Tm). The major cellular fatty acids identified were C15:0, C16:0, C17:0 iso. Based on phenotypic, chemotaxonomic and genotypic properties, strain CA9F1 was identified as Thermovenabulum gondwanense and this species was studied in more detail. Strain CA9F1 is a Gram-positive bacterium which forms a complex and regular multilayered cell wall structure, here characterised as being due to the presence of an S-layer. The network covers the entire cell surface and forms a hexagonal structure resembling that observed for Deinococcus radiodurans. The main protein component of the S-layer possesses domains comparable to that of the S-layer protein of Halothermothrix orenii. The characteristics of the strain were compared to that of T. gondwanese R270(T) isolated from microbial mats thriving in the thermal waters of a Great Artesian Basin bore runoff channel at 66 °C, in Australia. Significant differences were observed between CA9F1 and the type strain. One of the major physiological differences is the inability of CA9F1 to reduce Fe(III). An emended description of T. gondwanense is given.
Collapse
Affiliation(s)
- Nathalie Pradel
- Aix-Marseille Université, Université du Sud Toulon-Var, CNRS/INSU, IRD, MIO, UM 110, 13288, Marseille Cedex 09, France
| | | | | | | | | | | |
Collapse
|
27
|
Lederer FL, Weinert U, Günther TJ, Raff J, Weiß S, Pollmann K. Identification of multiple putative S-layer genes partly expressed by Lysinibacillus sphaericus JG-B53. Microbiology (Reading) 2013; 159:1097-1108. [DOI: 10.1099/mic.0.065763-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Franziska L. Lederer
- Helmholtz-Institute Freiberg for Resource Technology, Helmholtz-Zentrum Dresden-Rossendorf, 01314 Dresden, Germany
| | - Ulrike Weinert
- Helmholtz-Institute Freiberg for Resource Technology, Helmholtz-Zentrum Dresden-Rossendorf, 01314 Dresden, Germany
| | - Tobias J. Günther
- Helmholtz-Institute Freiberg for Resource Technology, Helmholtz-Zentrum Dresden-Rossendorf, 01314 Dresden, Germany
| | - Johannes Raff
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, 01314 Dresden, Germany
- Helmholtz-Institute Freiberg for Resource Technology, Helmholtz-Zentrum Dresden-Rossendorf, 01314 Dresden, Germany
| | - Stephan Weiß
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, 01314 Dresden, Germany
| | - Katrin Pollmann
- Helmholtz-Institute Freiberg for Resource Technology, Helmholtz-Zentrum Dresden-Rossendorf, 01314 Dresden, Germany
| |
Collapse
|
28
|
Properties of Halococcus salifodinae, an Isolate from Permian Rock Salt Deposits, Compared with Halococci from Surface Waters. Life (Basel) 2013; 3:244-59. [PMID: 25371342 PMCID: PMC4187196 DOI: 10.3390/life3010244] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2013] [Revised: 02/07/2013] [Accepted: 02/14/2013] [Indexed: 11/17/2022] Open
Abstract
Halococcus salifodinae BIpT DSM 8989T, an extremely halophilic archaeal isolate from an Austrian salt deposit (Bad Ischl), whose origin was dated to the Permian period, was described in 1994. Subsequently, several strains of the species have been isolated, some from similar but geographically separated salt deposits. Hcc. salifodinae may be regarded as one of the most ancient culturable species which existed already about 250 million years ago. Since its habitat probably did not change during this long period, its properties were presumably not subjected to the needs of mutational adaptation. Hcc. salifodinae and other isolates from ancient deposits would be suitable candidates for testing hypotheses on prokaryotic evolution, such as the molecular clock concept, or the net-like history of genome evolution. A comparison of available taxonomic characteristics from strains of Hcc. salifodinae and other Halococcus species, most of them originating from surface waters, is presented. The cell wall polymer of Hcc. salifodinae was examined and found to be a heteropolysaccharide, similar to that of Hcc. morrhuae. Polyhydroxyalkanoate granules were present in Hcc. salifodinae, suggesting a possible lateral gene transfer before Permian times.
Collapse
|
29
|
|
30
|
Moncla BJ, Pryke K, Rohan LC, Yang H. Testing of viscous anti-HIV microbicides using Lactobacillus. J Microbiol Methods 2012; 88:292-6. [PMID: 22226641 PMCID: PMC3271802 DOI: 10.1016/j.mimet.2011.12.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 12/16/2011] [Accepted: 12/16/2011] [Indexed: 11/25/2022]
Abstract
The development of topical microbicides for intravaginal use to prevent HIV infection requires that the drugs and formulated products be nontoxic to the endogenous vaginal Lactobacillus. In 30min exposure tests we found dapivirine, tenofovir and UC781 (reverse transcriptase inhibitor anti-HIV drugs) as pure drugs or formulated as film or gel products were not deleterious to Lactobacillus species; however, PSC-RANTES (a synthetic CCR5 antagonist) killed 2 strains of Lactobacillus jensenii. To demonstrate the toxicity of formulated products a new assay was developed for use with viscous and non-viscous samples that we have termed the Lactobacillus toxicity test. We found that the vortex mixing of vaginal Lactobacillus species can lead to reductions in bacterial viability. Lactobacillus can survive briefly, about 2s, but viability declines with increased vortex mixing. The addition of heat inactivated serum or bovine serum albumin, but not glycerol, prevented the decrease in bacterial viability. Bacillus atrophaeus spores also demonstrated loss of viability upon extended mixing. We observed that many of the excipients used in film formulation and the films themselves also afford protection from the killing during vortex mixing. This method is of relevance for toxicity for cidal activities of viscous products.
Collapse
Affiliation(s)
- B J Moncla
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| | | | | | | |
Collapse
|
31
|
Cui YB, Zhou Y, Liu WN, Chen QW, Ma GF, Shi WH, Wang YG, Yang L. Cloning of the surface layer gene sllB from Bacillus sphaericus ATCC 14577 and its heterologous expression and purification. Int J Mol Med 2012; 29:677-82. [PMID: 22266829 PMCID: PMC3573754 DOI: 10.3892/ijmm.2012.890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 12/13/2011] [Indexed: 01/31/2023] Open
Abstract
A cDNA fragment encoding the S-layer protein SllB cloned from Bacillus sphaericus ATCC 14577 was expressed on the surface of E. coli BL21 (DE3) cells and confirmed by the square lattice structure at the nanoscale level. The amplified gene fragment designed with PCR primers from a specified reference sequence (GenBank accession no. AJ849550) showed a high degree of sequence identity with the known sequences for S-layer protein. The best alignment scores were seen in B. sphaericus strains JG-A12 and NCTC9602, which code for a pre-form protein with a predicted cleavage site located between the two alanine residues 31 and 32. After this signal peptide sequence was removed, the mature protein had a molecular mass of 116.2613 kDa and a theoretical pI of 5.40. Further bioinformatic analysis revealed three S-layer homology (SLH) domains in the N-terminus of the mature protein, positioned at the 1–61, 63–128 and 137–197 residues. The mature S-layer protein was composed of alpha helices (24.86%), extended strands (27.01%), and rich random coils (48.13%). Bioinformatics-driven characterization of SllB may provide scientific evidence for further application of this gene in the fields of nanobiotechnology and biomimetics in the future.
Collapse
Affiliation(s)
- Yu-Bao Cui
- Department of Laboratory Medicine, Yancheng Health Vocational and Technical College, Yancheng 224006, Jiangsu Province, PR China.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Korkmaz N, Börrnert F, Köhler D, Mendes RG, Bachmatiuk A, Rümmeli MH, Büchner B, Eng LM, Rödel G. Metallization and investigation of electrical properties of in vitro recrystallized mSbsC-eGFP assemblies. NANOTECHNOLOGY 2011; 22:375606. [PMID: 21857099 DOI: 10.1088/0957-4484/22/37/375606] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Surface layer (SL) proteins are self-assembling nanosized arrays which can be recrystallized in solution or on surfaces. In this paper, we investigate the metallization, contact potential difference and conductivity of in vitro recrystallized mSbsC-eGFP tube-like assemblies for possible applications in nanobiotechnology. Treatment of mSbsC-eGFP tube-like structures with 150 mM Pt salt solution resulted in the formation of metallized SL assemblies decorated with Pt nanoparticles (∅ > 3 nm) which were closely packed and aggregated into metal clusters. Kelvin probe force microscopy (KPFM) measurements revealed that metallized and unmetallized SL templates showed different surface potential behaviours, demonstrating that the metal coating changes the electrostatic surface characteristics of SL assemblies. In situ conductivity measurements showed that unmetallized SL assemblies were not conductive. Metallized samples showed linear I-V dependence between - 1 and + 1 V with a conductivity of ∼ 10(3) S m( - 1).
Collapse
Affiliation(s)
- Nuriye Korkmaz
- Institut für Genetik, Technische Universität Dresden, 01217 Dresden, Germany. nuriye
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Low LY, Yang C, Perego M, Osterman A, Liddington R. Role of net charge on catalytic domain and influence of cell wall binding domain on bactericidal activity, specificity, and host range of phage lysins. J Biol Chem 2011; 286:34391-403. [PMID: 21816821 DOI: 10.1074/jbc.m111.244160] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The recombinant lysins of lytic phages, when applied externally to Gram-positive bacteria, can be efficient bactericidal agents, typically retaining high specificity. Their development as novel antibacterial agents offers many potential advantages over conventional antibiotics. Protein engineering could exploit this potential further by generating novel lysins fit for distinct target populations and environments. However, access to the peptidoglycan layer is controlled by a variety of secondary cell wall polymers, chemical modifications, and (in some cases) S-layers and capsules. Classical lysins require a cell wall-binding domain (CBD) that targets the catalytic domain to the peptidoglycan layer via binding to a secondary cell wall polymer component. The cell walls of Gram-positive bacteria generally have a negative charge, and we noticed a correlation between (positive) charge on the catalytic domain and bacteriolytic activity in the absence of the CBD (nonclassical behavior). We investigated a physical basis for this correlation by comparing the structures and activities of pairs of lysins where the lytic activity of one of each pair was CBD-independent. We found that by engineering a reversal of sign of the net charge of the catalytic domain, we could either eliminate or create CBD dependence. We also provide evidence that the S-layer of Bacillus anthracis acts as a molecular sieve that is chiefly size-dependent, favoring catalytic domains over full-length lysins. Our work suggests a number of facile approaches for fine-tuning lysin activity, either to enhance or reduce specificity/host range and/or bactericidal potential, as required.
Collapse
Affiliation(s)
- Lieh Yoon Low
- Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, La Jolla, California 92037, USA
| | | | | | | | | |
Collapse
|
34
|
Reitz T, Merroun ML, Rossberg A, Steudtner R, Selenska-Pobell S. Bioaccumulation of U(VI) by Sulfolobus acidocaldarius under moderate acidic conditions. RADIOCHIM ACTA 2011. [DOI: 10.1524/ract.2011.1848] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Abstract
U(VI) accumulation by the acidothermophilic archaeon Sulfolobus acidocaldarius at a moderate acidic pH of 4.5 was investigated. This pH value is relevant for some heavy metal and uranium polluted environments where populations of S. acidocaldarius were found to persist. We demonstrate that U(VI) is rapidly complexed by the archaeal cells. A combination of X-ray absorption spectroscopy and time-resolved laser-induced fluorescence spectroscopy revealed that at pH 4.5 organic phosphate and carboxylic groups are involved in the U(VI) complexation. These results are in contrast to those published for most bacteria which at this pH precipitate U(VI) mainly in inorganic uranyl phosphate phases. As demonstrated by TEM only a limited part of the added U(VI) was biomineralized extracellularly in the case of the studied archaeon. Most of the U(VI) accumulates were localized in a form of intracellular deposits which were associated with the inner side of the cytoplasma membrane. Observed differences in U(VI) bioaccumulation between the studied archaeon and bacteria can be explained by the significant differences in their cell wall structures as well as by their different physiological characteristics.
Collapse
Affiliation(s)
| | - M. L. Merroun
- Forschungszentrum Dresden-Rossendorf, Institute of Radiochemistry, Dresden, Deutschland
| | - A. Rossberg
- Forschungszentrum Rossendorf, Institute of Radiochemistry, Dresden, Deutschland
| | - Robin Steudtner
- Forschungszentrum Dresden-Rossendorf, Institute of Radiochemistry, Dresden, Deutschland
| | - Sonja Selenska-Pobell
- Forschungszentrum Dresden-Rossendorf, Institute of Radiochemistry, Dresden, Deutschland
| |
Collapse
|
35
|
Korkmaz N, Ostermann K, Rödel G. Calcium dependent formation of tubular assemblies by recombinant S-layer proteins in vivo and in vitro. NANOTECHNOLOGY 2011; 22:095601. [PMID: 21258149 DOI: 10.1088/0957-4484/22/9/095601] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Surface layer proteins have the appealing property to self-assemble in nanosized arrays in solution and on solid substrates. In this work, we characterize the formation of assembly structures of the recombinant surface layer protein SbsC of Geobacillus stearothermophilus ATTC 12980, which was tagged with enhanced green fluorescent protein and expressed in the yeast Saccharomyces cerevisiae. The tubular structures formed by the protein in vivo are retained upon bursting the cells by osmotic shock; however, their average length is decreased. During dialysis, monomers obtained by treatment with chaotropic chemicals recrystallize again to form tube-like structures. This process is strictly dependent on calcium (Ca(2+)) ions, with an optimal concentration of 10 mM. Further increase of the Ca(2+) concentration results in multiple non-productive nucleation points. We further show that the lengths of the S-layer assemblies increase with time and can be controlled by pH. After 48 h, the average length at pH 9.0 is 4.13 µm compared to 2.69 µm at pH 5.5. Successful chemical deposition of platinum indicates the potential of recrystallized mSbsC-eGFP structures for nanobiotechnological applications.
Collapse
Affiliation(s)
- Nuriye Korkmaz
- Institut für Genetik, Technische Universität Dresden, Dresden, Germany.
| | | | | |
Collapse
|
36
|
Similarities and differences in the glycosylation mechanisms in prokaryotes and eukaryotes. Int J Microbiol 2011; 2010:148178. [PMID: 21490701 PMCID: PMC3068309 DOI: 10.1155/2010/148178] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Accepted: 11/08/2010] [Indexed: 01/17/2023] Open
Abstract
Recent years have witnessed a rapid growth in the number and diversity of prokaryotic proteins shown to carry N- and/or O-glycans, with protein glycosylation now considered as fundamental to the biology of these organisms as it is in eukaryotic systems. This article overviews the major glycosylation pathways that are known to exist in eukarya, bacteria and archaea. These are (i) oligosaccharyltransferase (OST)-mediated N-glycosylation which is abundant in eukarya and archaea, but is restricted to a limited range of bacteria; (ii) stepwise cytoplasmic N-glycosylation that has so far only been confirmed in the bacterial domain; (iii) OST-mediated O-glycosylation which appears to be characteristic of bacteria; and (iv) stepwise O-glycosylation which is common in eukarya and bacteria. A key aim of the review is to integrate information from the three domains of life in order to highlight commonalities in glycosylation processes. We show how the OST-mediated N- and O-glycosylation pathways share cytoplasmic assembly of lipid-linked oligosaccharides, flipping across the ER/periplasmic/cytoplasmic membranes, and transferring “en bloc” to the protein acceptor. Moreover these hallmarks are mirrored in lipopolysaccharide biosynthesis. Like in eukaryotes, stepwise O-glycosylation occurs on diverse bacterial proteins including flagellins, adhesins, autotransporters and lipoproteins, with O-glycosylation chain extension often coupled with secretory mechanisms.
Collapse
|
37
|
Dohm N, Petri A, Schlander M, Schlott B, König H, Claus H. Molecular and biochemical properties of the S-layer protein from the wine bacterium Lactobacillus hilgardii B706. Arch Microbiol 2011; 193:251-61. [PMID: 21221529 DOI: 10.1007/s00203-010-0670-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 12/09/2010] [Accepted: 12/20/2010] [Indexed: 10/18/2022]
Abstract
Different strains of the genus Lactobacillus can be regularly isolated from must and wine samples. By various physiological activities, they can improve or reduce the wine quality. Lactobacillus hilgardii that is known to survive under harsh wine conditions is classified as a spoilage bacterium, e.g. due to the production of histamine. Many lactobacilli form an S-layer as the outermost cell wall component which has been found to facilitate the colonization of special ecological niches. A detailed understanding of the properties related to their S-layer proteins is necessary to improve the knowledge of the interactions between different bacterial cells and with the surrounding environments. The S-layer protein from the wine-related L. hilgardii strain B706 has been isolated and its gene sequence determined. The deduced amino acid sequence corresponds to a 41 kDa protein with an isoelectric point of 9.6 without additional posttranslational modifications after splitting off the leader peptide. The complete protein is organized in a 32 amino acids signal sequence for membrane translocation, a positively charged N-terminal domain that binds to the cell wall and a negatively charged C-terminal domain. When the S-layer was removed, the corresponding L. hilgardii B706 cells became more sensitive to bacteriolytic enzymes and some wine-related stress conditions. From a practical point of view, the S-layer may be considered as a target for the inhibition of food-spoiling lactobacilli.
Collapse
Affiliation(s)
- Nina Dohm
- Institute of Microbiology and Wine Research, Johannes Gutenberg-University of Mainz, Becherweg 15, 55099, Mainz, Germany
| | | | | | | | | | | |
Collapse
|
38
|
Sleytr UB, Schuster B, Egelseer EM, Pum D, Horejs CM, Tscheliessnig R, Ilk N. Nanobiotechnology with S-layer proteins as building blocks. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 103:277-352. [PMID: 21999999 DOI: 10.1016/b978-0-12-415906-8.00003-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
One of the key challenges in nanobiotechnology is the utilization of self- assembly systems, wherein molecules spontaneously associate into reproducible aggregates and supramolecular structures. In this contribution, we describe the basic principles of crystalline bacterial surface layers (S-layers) and their use as patterning elements. The broad application potential of S-layers in nanobiotechnology is based on the specific intrinsic features of the monomolecular arrays composed of identical protein or glycoprotein subunits. Most important, physicochemical properties and functional groups on the protein lattice are arranged in well-defined positions and orientations. Many applications of S-layers depend on the capability of isolated subunits to recrystallize into monomolecular arrays in suspension or on suitable surfaces (e.g., polymers, metals, silicon wafers) or interfaces (e.g., lipid films, liposomes, emulsomes). S-layers also represent a unique structural basis and patterning element for generating more complex supramolecular structures involving all major classes of biological molecules (e.g., proteins, lipids, glycans, nucleic acids, or combinations of these). Thus, S-layers fulfill key requirements as building blocks for the production of new supramolecular materials and nanoscale devices as required in molecular nanotechnology, nanobiotechnology, biomimetics, and synthetic biology.
Collapse
Affiliation(s)
- Uwe B Sleytr
- Department of NanoBiotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
39
|
The Structure of Bacterial S-Layer Proteins. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 103:73-130. [DOI: 10.1016/b978-0-12-415906-8.00004-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
40
|
Biosynthesis and role of N-linked glycosylation in cell surface structures of archaea with a focus on flagella and s layers. Int J Microbiol 2010; 2010:470138. [PMID: 20976295 PMCID: PMC2952790 DOI: 10.1155/2010/470138] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Accepted: 08/01/2010] [Indexed: 11/17/2022] Open
Abstract
The genetics and biochemistry of the N-linked glycosylation system of Archaea have been investigated over the past 5 years using flagellins and S layers as reporter proteins in the model organisms, Methanococcus voltae, Methanococcus maripaludis, and Haloferax volcanii. Structures of archaeal N-linked glycans have indicated a variety of linking sugars as well as unique sugar components. In M. voltae, M. maripaludis, and H. volcanii, a number of archaeal glycosylation genes (agl) have been identified by deletion and complementation studies. These include many of the glycosyltransferases and the oligosaccharyltransferase needed to assemble the glycans as well as some of the genes encoding enzymes required for the biosynthesis of the sugars themselves. The N-linked glycosylation system is not essential for any of M. voltae, M. maripaludis, or H. volcanii, as demonstrated by the successful isolation of mutants carrying deletions in the oligosaccharyltransferase gene aglB (a homologue of the eukaryotic Stt3 subunit of the oligosaccharyltransferase complex). However, mutations that affect the glycan structure have serious effects on both flagellation and S layer function.
Collapse
|
41
|
Analysis of the intact surface layer of Caulobacter crescentus by cryo-electron tomography. J Bacteriol 2010; 192:5855-65. [PMID: 20833802 DOI: 10.1128/jb.00747-10] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The surface layers (S layers) of those bacteria and archaea that elaborate these crystalline structures have been studied for 40 years. However, most structural analysis has been based on electron microscopy of negatively stained S-layer fragments separated from cells, which can introduce staining artifacts and allow rearrangement of structures prone to self-assemble. We present a quantitative analysis of the structure and organization of the S layer on intact growing cells of the Gram-negative bacterium Caulobacter crescentus using cryo-electron tomography (CET) and statistical image processing. Instead of the expected long-range order, we observed different regions with hexagonally organized subunits exhibiting short-range order and a broad distribution of periodicities. Also, areas of stacked double layers were found, and these increased in extent when the S-layer protein (RsaA) expression level was elevated by addition of multiple rsaA copies. Finally, we combined high-resolution amino acid residue-specific Nanogold labeling and subtomogram averaging of CET volumes to improve our understanding of the correlation between the linear protein sequence and the structure at the 2-nm level of resolution that is presently available. The results support the view that the U-shaped RsaA monomer predicted from negative-stain tomography proceeds from the N terminus at one vertex, corresponding to the axis of 3-fold symmetry, to the C terminus at the opposite vertex, which forms the prominent 6-fold symmetry axis. Such information will help future efforts to analyze subunit interactions and guide selection of internal sites for display of heterologous protein segments.
Collapse
|
42
|
Korkmaz N, Ostermann K, Rödel G. Expression and Assembly of Recombinant Surface Layer Proteins in Saccharomyces cerevisiae. Curr Microbiol 2010; 62:366-73. [DOI: 10.1007/s00284-010-9715-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Accepted: 07/06/2010] [Indexed: 11/30/2022]
|
43
|
Dagan T, Roettger M, Bryant D, Martin W. Genome networks root the tree of life between prokaryotic domains. Genome Biol Evol 2010; 2:379-92. [PMID: 20624742 PMCID: PMC2997548 DOI: 10.1093/gbe/evq025] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Eukaryotes arose from prokaryotes, hence the root in the tree of life resides among the prokaryotic domains. The position of the root is still debated, although pinpointing it would aid our understanding of the early evolution of life. Because prokaryote evolution was long viewed as a tree-like process of lineage bifurcations, efforts to identify the most ancient microbial lineage split have traditionally focused on positioning a root on a phylogenetic tree constructed from one or several genes. Such studies have delivered widely conflicting results on the position of the root, this being mainly due to methodological problems inherent to deep gene phylogeny and the workings of lateral gene transfer among prokaryotes over evolutionary time. Here, we report the position of the root determined with whole genome data using network-based procedures that take into account both gene presence or absence and the level of sequence similarity among all individual gene families that are shared across genomes. On the basis of 562,321 protein-coding gene families distributed across 191 genomes, we find that the deepest divide in the prokaryotic world is interdomain, that is, separating the archaebacteria from the eubacteria. This result resonates with some older views but conflicts with the results of most studies over the last decade that have addressed the issue. In particular, several studies have suggested that the molecular distinctness of archaebacteria is not evidence for their antiquity relative to eubacteria but instead stems from some kind of inherently elevated rate of archaebacterial sequence change. Here, we specifically test for such a rate elevation across all prokaryotic lineages through the analysis of all possible quartets among eight genes duplicated in all prokaryotes, hence the last common ancestor thereof. The results show that neither the archaebacteria as a group nor the eubacteria as a group harbor evidence for elevated evolutionary rates in the sampled genes, either in the recent evolutionary past or in their common ancestor. The interdomain prokaryotic position of the root is thus not attributable to lineage-specific rate variation.
Collapse
Affiliation(s)
- Tal Dagan
- Institute of Botany III, Heinrich-Heine University of Düsseldorf, Düsseldorf, Germany.
| | | | | | | |
Collapse
|
44
|
Lau JHY, Nomellini JF, Smit J. Analysis of high-level S-layer protein secretion inCaulobacter crescentus. Can J Microbiol 2010; 56:501-14. [DOI: 10.1139/w10-036] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Caulobacter crescentus exhibits a hexagonally arranged protein layer on its outermost surface. RsaA, the sole protein of this “S-layer”, is secreted by a type I (ABC) transporter. Few type I transporters show high-level secretion, and few bacterial S-layers have been carefully examined for the amount of protein synthesis capacity needed to maintain cell coverage. Here we determined RsaA levels by quantitative immunoblotting methods, learned that very stable mRNA is a key factor in high-level secretion, and found that the transporter was capable of still higher secretion. A propensity for RsaA to aggregate was a barrier to quantitation, but with the use of S-layer shedding mutants and methods to keep RsaA soluble, we learned that ~31% of cell protein is RsaA. When multiple copies of rsaA were introduced, the level increased to ~51% of cell protein, a higher level than we are aware of for any protein in any bacterium. Unexpectedly, in comparing normal and S-layer shedding strains, an assembled S-layer was not a significant barrier to elevated secretion. The rsaA mRNA half-life was determined by real-time PCR to be 36 min, ranking with the most stable known in bacteria. A modification of the 5′ region resulted in a shorter half-life and a reduction in maximum protein synthesis levels. If secretion was prevented by knockout of type I transporter genes, RsaA levels dropped to 10% or less of normal, but with no significant reduction in rsaA mRNA. Overall, normal levels of RsaA were unexpectedly high, and still higher levels were not limited by transporter capability, the presence of an assembled S-layer, or the capacity of the cell’s physiology to produce large amounts of one protein. The normal upper limit of RsaA production appears to be controlled only by the level of an unusually stable message. Significant down-regulation is possible and is accomplished posttranscriptionally.
Collapse
Affiliation(s)
- Janny Ho Yu Lau
- Department of Microbiology and Immunology, University of British Columbia, 2509-2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - John F. Nomellini
- Department of Microbiology and Immunology, University of British Columbia, 2509-2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - John Smit
- Department of Microbiology and Immunology, University of British Columbia, 2509-2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
45
|
Bruender NA, Thoden JB, Holden HM. X-ray structure of kijd3, a key enzyme involved in the biosynthesis of D-kijanose. Biochemistry 2010; 49:3517-24. [PMID: 20334431 DOI: 10.1021/bi100318v] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
D-kijanose is an unusual nitrosugar found attached to the antibiotic kijanimicin. Ten enzymes are required for its production in Actinomadura kijaniata, a soil-dwelling actinomycete. The focus of this investigation is on the protein encoded by the kijd3 gene and hereafter referred to as KijD3. On the basis of amino acid sequence analyses, KijD3 has been proposed to be an FAD-dependent oxidoreductase, which catalyzes the sixth step in d-kijanose biosynthesis by converting dTDP-3-amino-2,3,6-trideoxy-4-keto-3-methyl-d-glucose into its C-3' nitro derivative. This putative activity, however, has never been demonstrated in vivo or in vitro. Here we report the first structural study of this enzyme. For our investigation, crystals of KijD3 were grown in the presence of dTDP, and the structure was solved to 2.05-A resolution. The enzyme is a tetramer with each subunit folding into three distinct regions: a five alpha-helical bundle, an eight-stranded beta-sheet, and a second five alpha-helical bundle. The dTDP moiety is anchored to the protein via the side chains of Glu 113, Gln 254, and Arg 330. The overall fold of KijD3 places it into the well-characterized fatty acyl-CoA dehydrogenase superfamily. There is a decided cleft in each subunit with the appropriate dimensions to accommodate a dTDP-linked sugar. Strikingly, the loop defined by Phe 383 to Ala 388, which projects into the active site, contains two adjacent cis-peptide bonds, Pro 386 and Tyr 387. Activity assays demonstrate that KijD3 requires FAD for activity and that it produces a hydroxylamino product. The molecular architecture of KijD3 described in this report serves as a paradigm for a new family of enzymes that function on dTDP-linked sugar substrates.
Collapse
Affiliation(s)
- Nathan A Bruender
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | |
Collapse
|
46
|
Kroutil M, Pavkov T, Birner-Gruenberger R, Tesarz M, Sleytr UB, Egelseer EM, Keller W. Towards the structure of the C-terminal part of the S-layer protein SbsC. Acta Crystallogr Sect F Struct Biol Cryst Commun 2009; 65:1042-7. [PMID: 19851018 PMCID: PMC2765897 DOI: 10.1107/s1744309109035386] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2009] [Accepted: 09/02/2009] [Indexed: 11/10/2022]
Abstract
The S-layer protein SbsC from Geobacillus stearothermophilus ATCC 12980 is the most prevalent single protein produced by the bacterium and covers the complete bacterial surface in the form of a two-dimensional crystalline monolayer. In order to elucidate the structural features of the assembly domains, several N-terminally truncated fragments of SbsC have been crystallized. Crystals obtained from recombinant fragments showed anisotropic diffraction to a maximum of 3.5 A resolution using synchrotron radiation. The best diffracting crystals were obtained from rSbsC(755-1099), an unintentional in situ proteolytic degradation product of rSbsC(447-1099). Crystals were obtained in two different space groups, P2(1) and P4(1)2(1)2, and diffracted to 2.6 and 3 A resolution, respectively. Native and heavy-atom derivative data have been collected. The structure of the C-terminal part will yield atomic resolution information for the domains that are crucial for the assembly of the two-dimensional lattice.
Collapse
Affiliation(s)
- Markus Kroutil
- Karl-Franzens University, Institute of Molecular Biosciences, Graz, Austria
| | - Tea Pavkov
- Karl-Franzens University, Institute of Molecular Biosciences, Graz, Austria
| | - Ruth Birner-Gruenberger
- Medical University of Graz, Center for Medical Research, Proteomics Core Facility, Graz, Austria
| | - Manfred Tesarz
- Department of NanoBiotechnology, University of Natural Resources and Applied Life Sciences, Vienna, Austria
| | - Uwe B. Sleytr
- Department of NanoBiotechnology, University of Natural Resources and Applied Life Sciences, Vienna, Austria
| | - Eva M. Egelseer
- Department of NanoBiotechnology, University of Natural Resources and Applied Life Sciences, Vienna, Austria
| | - Walter Keller
- Karl-Franzens University, Institute of Molecular Biosciences, Graz, Austria
| |
Collapse
|
47
|
Species-specific cell wall binding affinity of the S-layer proteins of mosquitocidal bacterium Bacillus sphaericus C3-41. Appl Environ Microbiol 2009; 75:3891-5. [PMID: 19395560 DOI: 10.1128/aem.00356-09] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The binding affinities and specificities of six truncated S-layer homology domain (SLH) polypeptides of mosquitocidal Bacillus sphaericus strain C3-41 with the purified cell wall sacculi have been assayed. The results indicated that the SLH polypeptide comprised of amino acids 31 to 210 was responsible for anchoring the S-layer subunits to the rigid cell wall layer via a distinct type of secondary cell wall polymer and that a motif of the recombinant SLH polypeptide comprising amino acids 152 to 210 (rSLH(152-210)) was essential for the stable binding of the S-layer with the bacterial cell walls. The quantitative assays revealed that the K(D) (equilibrium dissociation constant) values of rSLH(152-210) and rSLH(31-210) with purified cell wall sacculi were 1.11 x 10(-6) M and 1.40 x 10(-6) M, respectively. The qualitative assays demonstrated that the SLH domain of strain C3-41 could bind only to the cell walls or the cells treated with 5 M guanidinium hydrochloride of both toxic and nontoxic B. sphaericus strains but not to those from other bacteria, indicating the species-specific binding of the SLH polypeptide of B. sphaericus with bacterial cell walls.
Collapse
|
48
|
Francoleon DR, Boontheung P, Yang Y, Kim U, Ytterberg AJ, Denny PA, Denny PC, Loo JA, Gunsalus RP, Ogorzalek Loo RR. S-layer, surface-accessible, and concanavalin A binding proteins of Methanosarcina acetivorans and Methanosarcina mazei. J Proteome Res 2009; 8:1972-82. [PMID: 19228054 PMCID: PMC2666069 DOI: 10.1021/pr800923e] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The outermost cell envelope structure of many archaea and bacteria contains a proteinaceous lattice termed the surface layer or S-layer. It is typically composed of only one or two abundant, often posttranslationally modified proteins that self-assemble to form the highly organized arrays. Surprisingly, over 100 proteins were annotated to be S-layer components in the archaeal species Methanosarcina acetivorans C2A and Methanosarcina mazei Gö1, reflecting limitations of current predictions. An in vivo biotinylation methodology was devised to affinity tag surface-exposed proteins while overcoming unique challenges in working with these fragile organisms. Cells were adapted to growth under N2 fixing conditions, thus, minimizing free amines reactive to the NHS-label, and high pH media compatible with the acylation chemistry was used. A 3-phase separation procedure was employed to isolate intact, labeled cells from lysed-cell derived proteins. Streptavidin affinity enrichment followed by stringent wash conditions removed nonspecifically bound proteins. This methodology revealed S-layer proteins in M. acetivorans C2A and M. mazei Gö1 to be MA0829 and MM1976, respectively. Each was demonstrated to exist as multiple glycosylated forms using SDS-PAGE coupled with glycoprotein-specific staining, and by interaction with the lectin, Concanavalin A. A number of additional surface-exposed proteins and glycoproteins were identified and included all three subunits of the thermosome: the latter suggests that the chaperonin complex is both surface- and cytoplasmically localized. This approach provides an alternative strategy to study surface proteins in the archaea.
Collapse
Affiliation(s)
- Deborah R. Francoleon
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
| | - Pinmanee Boontheung
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
| | - Yanan Yang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
| | - Unmi Kim
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA 90095
| | - A. Jimmy Ytterberg
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
| | - Patricia A. Denny
- University of Southern California School of Dentistry, Los Angeles, CA 90089
| | - Paul C. Denny
- University of Southern California School of Dentistry, Los Angeles, CA 90089
| | - Joseph A. Loo
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
- Department of Biological Chemistry, University of California, Los Angeles, CA 90095
| | - Robert P. Gunsalus
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA 90095
| | | |
Collapse
|
49
|
Blättel V, Wirth K, Claus H, Schlott B, Pfeiffer P, König H. A lytic enzyme cocktail from Streptomyces sp. B578 for the control of lactic and acetic acid bacteria in wine. Appl Microbiol Biotechnol 2009; 83:839-48. [PMID: 19277643 DOI: 10.1007/s00253-009-1926-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Revised: 02/20/2009] [Accepted: 02/20/2009] [Indexed: 10/21/2022]
Abstract
Beside yeasts, lactic acid bacteria (LAB) are the most abundant microbes in must during vinification. Whereas Oenococcos oeni is commercially used as a starter culture for the biological acid reduction in wines, other species are responsible for different types of wine spoilage. Members of the genera Pediococcus, Weissella, Leuconostoc, and Lactobacillus are producers of exopolysaccharide slimes, biogenic amines, acetic acid, and other off-flavors. In order to control microbial growth, different procedures such as heating of must and addition of sulfite or lysozyme from egg white are generally applied. Yet, because of health risks, the application of sulfite should be reduced and lysozyme is not effective against all LAB. In this study, we describe exoenzymes from a Streptomyces sp. strain B578 lysing nearly all wine-relevant strains of LAB and Gram-negative acetic acid bacteria. The lytic enzymes were active under wine-making conditions, such as the presence of sulfite and ethanol, low temperatures, and low pH values. The analysis of the exoenzyme composition revealed a synergistic action of different cell wall hydrolases. In conclusion, the lytic cocktail of Streptomyces sp. B578 is a promising tool for the control of wine-spoiling bacteria.
Collapse
Affiliation(s)
- V Blättel
- Institute for Microbiology and Wine Research, Johannes Gutenberg University of Mainz, Becherweg, Germany
| | | | | | | | | | | |
Collapse
|
50
|
Kalmokoff ML, Austin JW, Cyr TD, Hefford MA, Teather RM, Selinger LB. Physical and genetic characterization of an outer-membrane protein (OmpM1) containing an N-terminal S-layer-like homology domain from the phylogenetically Gram-positive gut anaerobe Mitsuokella multacida. Anaerobe 2009; 15:74-81. [PMID: 19344649 DOI: 10.1016/j.anaerobe.2009.01.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2008] [Revised: 06/17/2008] [Accepted: 01/09/2009] [Indexed: 12/12/2022]
Abstract
Thin sectioning and freeze-fracture-etch of the ovine ruminal isolate Mitsuokella multacida strain 46/5(2) revealed a Gram-negative envelope ultra-structure consisting of a peptidoglycan wall overlaid by an outer membrane. Sodium-dodecyl-sulfate-polyacrylamide gel electrophoretic (SDS-PAGE) analysis of whole cells, cell envelopes and Triton X-100 extracted envelopes in combination with thin-section and N-terminal sequence analyses demonstrated that the outer membrane contained two major proteins (45 and 43 kDa) sharing identical N-termini (A-A-N-P-F-S-D-V-P-A-D-H-W-A-Y-D). A gene encoding a protein with a predicted N-terminus identical to those of the 43 and 45 kDa outer-membrane proteins was cloned. The 1290 bp open reading frame encoded a 430 amino acid polypeptide with a predicted molecular mass of 47,492 Da. Cleavage of a predicted 23 amino acid leader sequence would yield a protein with a molecular mass of 45,232 Da. Mass spectroscopic analysis confirmed that the cloned gene (ompM1) encoded the 45 kDa outer-membrane protein. The N-terminus of the mature OmpM1 protein (residues 24-70) shared homology with surface-layer homology (SLH) domains found in a wide variety of regularly structured surface-layers (S-layers). However, the outer-membrane locale, resistance to denaturation by SDS and high temperatures and the finding that the C-terminal residue was a phenylalanine suggested that ompM1 encoded a porin. Threading analysis in combination with the identification of membrane spanning domains indicated that the C-terminal region of OmpM1 (residues 250-430) likely forms a 16-strand beta-barrel and appears to be related to the unusual N-terminal SLH-domain-containing beta-barrel-porins previously described in the cyanobacterium Synechococcus PCC6301.
Collapse
Affiliation(s)
- M L Kalmokoff
- Atlantic Food and Horticulture Research Centre, Agriculture and Agri-Food Canada, Kentville, NS, Canada
| | | | | | | | | | | |
Collapse
|