1
|
Çomaklı S, Kandemir FM, Küçükler S, Özdemir S. Morin mitigates ifosfamide induced nephrotoxicity by regulation of NF-kappaB/p53 and Bcl-2 expression. Biotech Histochem 2022; 97:423-432. [PMID: 35037524 DOI: 10.1080/10520295.2021.2021449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Ifosfamide (IFO) is used for treating childhood solid tumors, but its use is limited by its adverse effects on kidneys. Morin may be used to prevent nephrotoxic and other side effects. We investigated the underlying mechanisms of the protective effects of morin on IFO induced nephrotoxicity. We used 35 male rats divided into five groups of seven: control group, morin group, IFO group, 100 mg/kg morin + IFO group and 200 mg/kg morin + IFO group. We measured kidney tissue oxidant, antioxidant and inflammatory parameters using ELISA, and apoptosis was evaluated using immunohistochemistry and real time PCR. Serum urea, creatinine and kidney injury molecule-1 (KIM-1) levels were increased by IFO treatment; elevated levels were decreased significantly by treatment with both 100 and 200 mg/kg morin. Morin treatment also decreased oxidative stress and lipid oxidation in IFO treated rats. The ameliorative effect of morin on inflammatory response was due to reduced levels of NF-κB and TNF-α. Morin also reduced NF-κB/p53 levels by increasing Bcl-2 expression in IFO treated kidneys. Morin may prevent IFO induced nephrotoxicity via the NF-κB/p53 and Bcl-2 signaling pathways.
Collapse
Affiliation(s)
- Selim Çomaklı
- Department of Pathology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Fatih Mehmet Kandemir
- Department of Biochemistry, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Sefa Küçükler
- Department of Biochemistry, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Selçuk Özdemir
- Department of Genetics, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| |
Collapse
|
2
|
AlMotwaa SM, Alkhatib MH, Alkreathy HM. Incorporating ifosfamide into salvia oil-based nanoemulsion diminishes its nephrotoxicity in mice inoculated with tumor. ACTA ACUST UNITED AC 2019; 10:9-16. [PMID: 31988852 PMCID: PMC6977592 DOI: 10.15171/bi.2020.02] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/23/2019] [Accepted: 05/14/2019] [Indexed: 01/24/2023]
Abstract
![]()
Introduction: Nephrotoxicity is one of the major side effects of the chemotherapeutic drug, ifosfamide (IFO). In this study, IFO was solubilized in nanoemulsion (NE) containing salvia (SAL) essential oil to investigate its adverse side effects in mice.
Methods: One hundred female Swiss albino mice (n = 20/group) were split into five groups. Group I (Normal) received saline solution (0.9% (w/v) NaCl) while groups II-V were intraperitoneally (I.P.) injected with 2.5 × 106 Ehrlich ascetic carcinoma (EAC) cells/mouse. Group II (EAC) represented the untreated EAC-bearing mice. Group III (IFO) was treated with IFO at a dose of 60 mg/kg/d (I.P. 0.3 mL/mouse). Group IV (SAL) was treated with 0.3 mL blank NE-based SAL oil/mouse. Group V (SAL-IFO) was treated with IFO, loaded in 0.3 mL of blank SAL-NE, at a dose of 60 mg/kg/d (I.P. 0.3 mL/mouse). Groups III-V were treated for three consecutive days.
Results: There was a double increase in the survival percentage of the SAL-IFO group (60%) relative to the IFO group (30%). Renal damage with the presence of Fanconi syndrome was indicated in the IFO group through a significant elevation in the levels of serum creatinine, blood urea nitrogen, urine bicarbonate, and phosphate in addition to a reduced level of glucose compared to the normal group. On the other hand, the administration of SAL-IFO into the mice reversed this effect. Additionally, the oxidative stress in the kidney tissues of the SAL-IFO group was ameliorated when compared to the IFO group.
Conclusion: Incorporating IFO into SAL-NE has protected the kidneys from the damage induced by IFO.
Collapse
Affiliation(s)
- Sahar M AlMotwaa
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.,Chemistry Department, College of Science and Humanities, Shaqra University, Shagra, Saudi Arabia
| | - Mayson H Alkhatib
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.,Regenerative Medicine Unit, King Fahd Center for Medical Research, Jeddah, Saudi Arabia
| | - Huda M Alkreathy
- Department of Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
3
|
Panezai MA, Owen C, Szerlip HM. Partial Fanconi syndrome induced by ifosfamide. Proc (Bayl Univ Med Cent) 2019; 32:73-74. [PMID: 30956588 DOI: 10.1080/08998280.2018.1536020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 10/05/2018] [Accepted: 10/11/2018] [Indexed: 10/27/2022] Open
Abstract
Ifosfamide-induced proximal tubular nephropathy can present as a spectrum of disease, from isolated hyperaminoaciduria to a partial or complete Fanconi syndrome. We report a case of ifosfamide-induced partial Fanconi syndrome in a man with metastatic progressive Ewing sarcoma and put forth a hypothesis on the mechanism.
Collapse
Affiliation(s)
| | - Charles Owen
- Division of Nephrology, Baylor University Medical CenterDallasTexas
| | - Harold M Szerlip
- Division of Nephrology, Baylor University Medical CenterDallasTexas
| |
Collapse
|
4
|
Qiu X, Zhou X, Miao Y, Li B. An in vitro method for nephrotoxicity evaluation using HK-2 human kidney epithelial cells combined with biomarkers of nephrotoxicity. Toxicol Res (Camb) 2018; 7:1205-1213. [PMID: 30510689 DOI: 10.1039/c8tx00095f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 08/06/2018] [Indexed: 02/02/2023] Open
Abstract
The kidney is one of the major target organs for drug-induced toxicity. During drug development, the traditional markers of nephrotoxicity indicate only severe and late damage, which leads to high costs. The new biomarkers are needed for a more sensitive and reliable evaluation of nephrotoxicity, especially for the regulatory accepted and validated in vitro model. We developed an in vitro model based on the HK-2 cell using the biomarkers of nephrotoxicity as endpoints for the evaluation of nephrotoxicity. The predictive performance of the biomarkers including LDH, GGT, KIM-1, clusterin, CysC, NGAL, TIMP-1, GSTπ and osteopontin was evaluated with 22 well characterized compounds. The area under the curve (AUC) values of KIM-1, clusterin, CysC and osteopontin ranged between 0.79 and 0.84. The combination of clusterin, KIM-1 and/or osteopontin improved the AUC value (ranging between 0.88 and 0.95) compared to one biomarker. Taken together, these results suggest that the model based on the HK-2 cell using clusterin, osteopontin, CysC and KIM-1 as endpoints would allow the prediction of nephrotoxicity at early preclinical stages.
Collapse
Affiliation(s)
- Xuan Qiu
- Chinese Academy of Medical Sciences & Peking Union Medical College , No. 9 , Dongdan Santiao , Dongcheng District , Beijing 100730 , China . .,National Center for Safety Evaluation of Drugs , National Institutes for Food and Drug Control , A8 Hongda Middle Street , Beijing Economic-Technological Development Area , Beijing 100176 , China
| | - Xiaobing Zhou
- National Center for Safety Evaluation of Drugs , National Institutes for Food and Drug Control , A8 Hongda Middle Street , Beijing Economic-Technological Development Area , Beijing 100176 , China
| | - Yufa Miao
- National Center for Safety Evaluation of Drugs , National Institutes for Food and Drug Control , A8 Hongda Middle Street , Beijing Economic-Technological Development Area , Beijing 100176 , China
| | - Bo Li
- Chinese Academy of Medical Sciences & Peking Union Medical College , No. 9 , Dongdan Santiao , Dongcheng District , Beijing 100730 , China . .,National Center for Safety Evaluation of Drugs , National Institutes for Food and Drug Control , A8 Hongda Middle Street , Beijing Economic-Technological Development Area , Beijing 100176 , China
| |
Collapse
|
5
|
Helal MAM. The effects ofN-acetyl-l-cysteine on the female reproductive performance and nephrotoxicity in rats. Ren Fail 2016; 38:311-20. [DOI: 10.3109/0886022x.2015.1127742] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
6
|
Arga M, Oguz A, Pinarli FG, Karadeniz C, Citak EC, Emeksiz HC, Duran EA, Soylemezoglu O. Risk factors for cisplatin-induced long-term nephrotoxicity in pediatric cancer survivors. Pediatr Int 2015; 57:406-13. [PMID: 25441241 DOI: 10.1111/ped.12542] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 09/29/2014] [Accepted: 11/17/2014] [Indexed: 11/30/2022]
Abstract
BACKGROUND The aim of this study was to compare the nephrotoxicity risk of cisplatin (CPL) and ifosfamide (IFO) combination treatment (CT) with that of CPL alone and to evaluate the prevalence of CPL-induced long-term nephrotoxicity in pediatric cancer survivors (CS). METHODS A total of 33 patients with pediatric solid tumors who have been cured of their disease were included in the study. They were divided into two groups based on the type of chemotherapeutics, either CPL (n = 21) or CT (n = 12), given during cancer treatment and were evaluated for glomerular and tubular function using the Skinner grading system. RESULTS Nephrotoxicity was found in 15 CS (45.4%): seven (21.3%) of those had moderate, six (18.2%) had mild, and two (6.1%) had severe nephrotoxicity. Neither the rates of overall nephrotoxicity, glomerular toxicity and tubular toxicity, nor the mean overall, glomerular and tubular toxicity scores differed significantly among the CPL and CT groups (P > 0.05 for all parameters). Cumulative IFO dose and age at treatment were found to be independent risk factors for both development and severity of CPL-induced nephrotoxicity (P = 0.025 and P = 0.036 for development of nephrotoxicity; P = 0.004 and P = 0.050 for severity of nephrotoxicity, respectively). CONCLUSIONS Although CPL-induced long-term nephrotoxicity was found in half of the pediatric CS of solid tumors, clinically significant nephrotoxicity was detected only in a minority of them. Both higher cumulative IFO dose and younger age at treatment were found to be independent risk factors for both development and severity of CPL-induced nephrotoxicity.
Collapse
Affiliation(s)
- Mustafa Arga
- Department of Pediatrics, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Aynur Oguz
- Department of Pediatric Oncology, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Faruk Guclu Pinarli
- Department of Pediatric Oncology, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Ceyda Karadeniz
- Department of Pediatric Oncology, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Elvan Caglar Citak
- Department of Pediatric Oncology, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Hamdi Cihan Emeksiz
- Department of Pediatrics, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Esra Akdeniz Duran
- Department of Statistics, Istanbul Medeniyet University, Istanbul, Turkey
| | - Oguz Soylemezoglu
- Department of Pediatric Nephrology, Faculty of Medicine, Gazi University, Ankara, Turkey
| |
Collapse
|
7
|
|
8
|
Wallace GC, Haar CP, Vandergrift WA, Giglio P, Dixon-Mah YN, Varma AK, Ray SK, Patel SJ, Banik NL, Das A. Multi-targeted DATS prevents tumor progression and promotes apoptosis in ectopic glioblastoma xenografts in SCID mice via HDAC inhibition. J Neurooncol 2013; 114:43-50. [PMID: 23754639 DOI: 10.1007/s11060-013-1165-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Accepted: 05/25/2013] [Indexed: 11/25/2022]
Abstract
Glioblastoma, the most lethal brain tumor, remains incurable despite aggressive chemotherapy and surgical interventions. New chemotherapeutics for glioblastoma have been explored in preclinical models and some agents have reached the clinical setting. However, success rates are not significant. Previous investigations involving diallyl trisulfide (DATS), a garlic compound, indicated significant anti-cancer effects in glioblastoma in vitro. DATS has also been shown to inhibit histone deacetylase activity and impede glioblastoma tumor progression. We hypothesized that DATS would block ectopic U87MG tumor by multiple pro-apoptotic pathways via inhibiting histone deacetylase (HDAC). To prove this, we developed ectopic U87MG tumors in SCID mice and treated them daily with intraperitoneal injections of DATS for 7 days. Results indicated that DATS (10 μg/kg-10 mg/kg) dose-dependently reduced tumor mass and number of mitotic cells within tumors. Histological and biochemical assays demonstrated that DATS reduced mitosis in tumors, decreased HDAC activity, increased acetylation of H3 and H4, inhibited cell cycle progression, decreased pro-tumor markers (e.g., survivin, Bcl-2, c-Myc, mTOR, EGFR, VEGF), promoted apoptotic factors (e.g., bax, mcalpian, active caspase-3), and induced DNA fragmentation. Our data also demonstrated an increase in p21Waf1 expression, which correlated with increased p53 expression and MDM2 degradation following DATS treatment. Finally, histological assessment and enzyme assays showed that even the highest dose of DATS did not negatively impact hepatic function. Collectively, our results clearly demonstrated that DATS could be an effective therapeutic agent in preventing tumor progression and inducing apoptosis in human glioblastoma in vivo, without impairing hepatic function.
Collapse
Affiliation(s)
- Gerald C Wallace
- Department of Neurosciences (Neurology and Neuro-oncology) and MUSC Brain & Spine Tumor Program, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
El-Sisi AEDE, El-Syaad ME, El-Desoky KI, Moussa EA. Protective effects of alpha lipoic acid versus N-acetylcysteine on ifosfamide-induced nephrotoxicity. Toxicol Ind Health 2013; 31:97-107. [DOI: 10.1177/0748233712469649] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Ifosfamide (IFO) is a highly effective chemotherapeutic agent for treating a variety of pediatric solid tumors. However, its use is limited due to its serious side effect on kidneys. The side-chain oxidation of IFO in renal tubular cells produces a reactive toxic metabolite that is believed to be responsible for its nephrotoxic effect. Therefore, this study was carried out to investigate the possible underlying mechanisms that may be involved in IFO-induced nephrotoxicity, including free radical generation and the possible role of alpha lipoic acid (ALA) versus N-acetylcysteine (NAC) in protection against this toxicity. Male albino rats were injected intraperitoneally with saline, IFO (50 mg/kg daily for 5 days), IFO + ALA (100 mg/kg daily for 8 days) and IFO + NAC (200 mg/kg daily for 8 days). Kidney malondialdehyde, nitric oxide and glutathione contents and serum biochemical parameters and histopathological analysis were determined. Both ALA and NAC markedly reduced the severity of renal dysfunction induced by IFO. NAC was more nephroprotective than ALA. This study suggests that oxidative stress is possibly involved in the IFO-induced nephrotoxicity in rats. The study also suggests the potential therapeutic role for ALA and NAC against IFO-induced nephrotoxicity.
Collapse
Affiliation(s)
- Alaa El-Din E El-Sisi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tanta, Tanta, Egypt
| | - Magda E El-Syaad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tanta, Tanta, Egypt
| | - Karima I El-Desoky
- Department of Pathology, Faculty of Medicine, University of Tanta, Tanta, Egypt
| | - Ethar A Moussa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tanta, Tanta, Egypt
| |
Collapse
|
10
|
Choucha-Snouber L, Aninat C, Grsicom L, Madalinski G, Brochot C, Poleni PE, Razan F, Guillouzo CG, Legallais C, Corlu A, Leclerc E. Investigation of ifosfamide nephrotoxicity induced in a liver-kidney co-culture biochip. Biotechnol Bioeng 2012; 110:597-608. [PMID: 22887128 DOI: 10.1002/bit.24707] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 08/01/2012] [Accepted: 08/02/2012] [Indexed: 11/06/2022]
Abstract
In this article, we present a liver-kidney co-culture model in a micro fluidic biochip. The liver was modeled using HepG2/C3a and HepaRG cell lines and the kidney using MDCK cell lines. To demonstrate the synergic interaction between both organs, we investigated the effect of ifosfamide, an anticancerous drug. Ifosfamide is a prodrug which is metabolized by the liver to isophosforamide mustard, an active metabolite. This metabolism process also leads to the formation of chloroacetaldehyde, a nephrotoxic metabolite and acrolein a urotoxic one. In the biochips of MDCK cultures, we did not detect any nephrotoxic effects after 72 h of 50 µM ifosfamide exposure. However, in the liver-kidney biochips, the same 72 h exposure leads to a nephrotoxicity illustrated by a reduction of the number of MDCK cells (up to 30% in the HepaRG-MDCK) when compared to untreated co-cultures or treated MDCK monocultures. The reduction of the MDCK cell number was not related to a modification of the cell cycle repartition in ifosfamide treated cases when compared to controls. The ifosfamide biotransformation into 3-dechloroethylifosfamide, an equimolar byproduct of the chloroacetaldehyde production, was detected by mass spectrometry at a rate of apparition of 0.3 ± 0.1 and 1.1 ± 0.3 pg/h/biochips in HepaRG monocultures and HepaRG-MDCK co-cultures respectively. Any metabolite was detected in HepG2/C3a cultures. Furthermore, the ifosfamide treatment in HepaRG-MDCK co-culture system triggered an increase in the intracellular calcium release in MDCK cells on contrary to the treatment on MDCK monocultures. As 3-dechloroethylifosfamide is not toxic, we have tested the effect of equimolar choloroacetaldehyde concentration onto the MDCK cells. At this concentration, we found a quite similar calcium perturbation and MDCK nephrotoxicity via a reduction of 30% of final cell numbers such as in the ifosfamide HepaRG-MDCK co-culture experiments. Our results suggest that ifosfamide nephrotoxicity in a liver-kidney micro fluidic co-culture model using HepaRG-MDCK cells is induced by the metabolism of ifosfamide into chloroacetaldehyde whereas this pathway is not functional in HepG2/C3a-MDCK model. This study demonstrates the interest in the development of systemic organ-organ interactions using micro fluidic biochips. It also illustrated their potential in future predictive toxicity model using in vitro models as alternative methods.
Collapse
Affiliation(s)
- Leila Choucha-Snouber
- CNRS UMR 7338, Laboratoire de Biomécanique et Bio Ingénierie, Université de Technologie de Compiègne, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Chen N, Hanly L, Rieder M, Yeger H, Koren G. The effect of N-acetylcysteine on the antitumor activity of ifosfamide. Can J Physiol Pharmacol 2011; 89:335-43. [PMID: 21609276 DOI: 10.1139/y11-028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ifosfamide-induced nephrotoxicity is a serious adverse effect in children undergoing chemotherapy. Our previous cell and rodent models have shown that the antioxidant N-acetylcysteine (NAC), used extensively as an antidote for acetaminophen poisoning, protects renal tubular cells from ifosfamide-induced nephrotoxicity at a clinically relevant concentration. For the use of NAC to be clinically relevant in preventing ifosfamide nephrotoxicity, we must ensure there is no effect of NAC on the antitumor activity of ifosfamide. Common pediatric tumors that are sensitive to ifosfamide, human neuroblastoma SK-N-BE(2) and rhabdomyosarcoma RD114-B cells, received either no pretreatment or pretreatment with 400 µmol/L of NAC, followed by concurrent treatment with NAC and either ifosfamide or the active agent ifosfamide mustard. Ifosfamide mustard significantly decreased the growth of both cancer cell lines in a dose-dependent manner (p < 0.001). The different combined treatments of NAC alone, sodium 2-mercaptoethanesulfonate alone, or NAC plus sodium 2-mercaptoethanesulfonate did not significantly interfere with the tumor cytotoxic effect of ifosfamide mustard. These observations suggest that NAC may improve the risk/benefit ratio of ifosfamide by decreasing ifosfamide-induced nephrotoxicity without interfering with its antitumor effect in cancer cells clinically treated with ifosfamide.
Collapse
Affiliation(s)
- Nancy Chen
- Department of Physiology and Pharmacology, The University of Western Ontario, London, Canada
| | | | | | | | | |
Collapse
|
12
|
Gunness P, Aleksa K, Kosuge K, Ito S, Koren G. Comparison of the novel HK-2 human renal proximal tubular cell line with the standard LLC-PK1 cell line in studying drug-induced nephrotoxicity. Can J Physiol Pharmacol 2010; 88:448-55. [PMID: 20555413 DOI: 10.1139/y10-023] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Established cell lines are widely used as in vitro models in toxicology studies. The choice of an appropriate cell line is critical when performing studies to elucidate drug-induced toxicity in humans. The porcine renal proximal tubular cell line LLC-PK1 is routinely used to study the nephrotoxic effects of drugs in humans. However, there are significant interspecies differences in drug pharmacokinetics and pharmacodynamics. The objective of this study was to determine whether the human renal proximal tubular cell line HK-2 is an acceptable model to use when performing in vitro toxicity studies to predict effects in humans. We examined 2 nephrotoxic agents, ifosfamide (IFO) and acyclovir, that exhibit different clinical nephrotoxic patterns. HK-2 cells metabolized IFO to its nephrotoxic metabolite, chloroacetaldehyde (CAA). Acyclovir induced a concentration-dependent decrease in HK-2 cell viability, suggesting that acyclovir may induce direct insult to renal proximal tubular cells. The results support clinical pathology data in humans and suggest that HK-2 cells are a suitable model to use in in vitro toxicity studies to determine drug-induced nephrotoxicity in humans.
Collapse
Affiliation(s)
- Patrina Gunness
- Division of Clinical Pharmacology and Toxicology, The Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8, Canada
| | | | | | | | | |
Collapse
|
13
|
Abstract
Chronic renal impairment in children with cancer may be caused by the malignant process itself or result from adverse effects of treatment including cytotoxic drugs, radiotherapy, surgery or supportive treatment. Although severe renal chronic disease is uncommon, occurring in only 0.8% of long-term survivors of childhood cancer, 1.9% of all cases of established renal failure are due to malignancy and 0.8% to drug nephrotoxicity. The relative risk of severe renal chronic disease (compared with siblings) is 8.1, and that of renal failure or the need for dialysis is 8.9. The cytotoxic drugs most likely to cause important chronic nephrotoxicity are ifosfamide and cisplatin, both of which are used widely in many solid tumors and may cause chronic glomerular and/or renal tubular toxicity in 30–60% of treated children. Significant renal toxicity is less frequent with other chemotherapeutic drugs, but may result from treatment with carboplatin, methotrexate and nitrosoureas. Other cytotoxic drugs occasionally cause specific patterns of glomerular or tubular toxicity in children. Partial or unilateral nephrectomy leads to hypertrophy and hyperfiltration of the remaining renal tissue, and may result in microalbuminuria, hypertension and in rare cases, chronic renal impairment. Radiotherapy to a field including renal tissue may cause late onset chronic renal damage, manifest by hematuria, proteinuria, hypertension and anemia, sometimes progressing to chronic renal failure. Chronic nephrotoxicity is also common in survivors of hemopoietic stem cell transplantation, and is often multifactorial with contributions from prior chemotherapy, total body irradiation, immunosuppressive drugs and transplant complications, such as infection or hemorrhage. Patients at risk of renal damage should be monitored regularly with a defined surveillance protocol to enable timely management. General measures often employed to prevent or reduce nephrotoxicity include the use of intravenous hydration during drug administration and avoidance of known risk factors, such as high drug doses. Although numerous potentially nephroprotective drugs have been suggested and investigated, none have yet been introduced into clinical use in children due to the lack of proven efficacy. Improved understanding of the pathogenesis of nephrotoxicity is necessary to reduce the frequency and severity of this potentially serious complication of treatment in children with cancer.
Collapse
Affiliation(s)
- Roderick Skinner
- Department of Pediatric & Adolescent Oncology, Newcastle upon Tyne Hospitals NHS Foundation Trust, Queen Victoria Road, Newcastle upon Tyne, NE1 4LP, UK
| |
Collapse
|
14
|
Giraud B, Hebert G, Deroussent A, Veal GJ, Vassal G, Paci A. Oxazaphosphorines: new therapeutic strategies for an old class of drugs. Expert Opin Drug Metab Toxicol 2010; 6:919-38. [DOI: 10.1517/17425255.2010.487861] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
15
|
Aleksa K, Nava-Ocampo A, Koren G. Detection and quantification of (R) and (S)-dechloroethylifosfamide metabolites in plasma from children by enantioselective LC/MS/MS. Chirality 2009; 21:674-80. [DOI: 10.1002/chir.20662] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
16
|
|
17
|
Abstract
BACKGROUND AND PURPOSE Ifosfamide nephrotoxicity is a serious adverse effect for children undergoing cancer chemotherapy. Our recent in vitro studies have shown that the antioxidant N-acetylcysteine (NAC), which is used extensively as an antidote for paracetamol (acetaminophen) poisoning in children, protects renal tubular cells from ifosfamide-induced toxicity at a clinically relevant concentration. To further validate this observation, an animal model of ifosfamide-induced nephrotoxicity was used to determine the protective effect of NAC. EXPERIMENTAL APPROACH Male Wistar albino rats were injected intraperitoneally with saline, ifosfamide (50 or 80 mg kg(-1) daily for 5 days), NAC (1.2 g kg(-1) daily for 6 days) or ifosfamide+NAC (for 6 days). Twenty-four hours after the last injection, rats were killed and serum and urine were collected for biochemical analysis. Kidney tissues were obtained for analysis of glutathione, glutathione S-transferase and lipid peroxide levels as well as histology analysis. KEY RESULTS NAC markedly reduces the severity of renal dysfunction induced by ifosfamide with a significant decrease in elevations of serum creatinine (57.8+/-2.3 vs 45.25+/-2.1 micromol l(-1)) as well as a reduced elevation of beta2-microglobulin excretion (25.44+/-3.3 vs 8.83+/-1.3 nmol l(-1)) and magnesium excretion (19.5+/-1.5 vs 11.16+/-1.5 mmol l(-1)). Moreover, NAC significantly improved the ifosfamide-induced glutathione depletion and the decrease of glutathione S-transferase activity, lowered the elevation of lipid peroxides and prevented typical morphological damages in renal tubules and glomeruli. CONCLUSIONS AND IMPLICATIONS Our results suggest a potential therapeutic role for NAC in paediatric patients in preventing ifosfamide nephrotoxicity.
Collapse
|
18
|
Koren G, Chen N, Aleksa K. Drug-induced nephrotoxicity in children: pharmacologically based prevention of long-term impairment. Paediatr Drugs 2007; 9:139-42. [PMID: 17523693 DOI: 10.2165/00148581-200709030-00001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Gideon Koren
- Division of Clinical Pharmacology, The Hospital for Sick Children and University of Toronto, Toronto, Ontario, Canada.
| | | | | |
Collapse
|
19
|
Chen N, Aleksa K, Woodland C, Rieder M, Koren G. The effect of N-acetylcysteine on ifosfamide-induced nephrotoxicity: in vitro studies in renal tubular cells. Transl Res 2007; 150:51-7. [PMID: 17585863 DOI: 10.1016/j.trsl.2007.02.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2006] [Revised: 01/22/2007] [Accepted: 02/11/2007] [Indexed: 10/23/2022]
Abstract
Ifosfamide (IF) nephrotoxicity is a serious adverse effect in children undergoing chemotherapy. Previous studies have shown that, in addition to the renal production of chloroacetaldehyde, a toxic metabolite of IF, lower levels of glutathione (GSH) may predispose the kidney to damage. The antioxidant N-acetylcysteine (NAC) is used extensively as an antidote for acetaminophen poisoning in children by replenishing GSH levels. As it has been safely and effectively used clinically, the objective of this study was to test whether the reversal of ifosfamide-induced nephrotoxicity can be achieved by administering NAC. Supplementation with NAC may reduce or prevent the degree of cellular cytotoxicity induced by IF. Porcine renal proximal tubular (LLCPK-1) cells were treated with NAC (0.4 mM or 2.5 mM) concurrently with 1 mM IF and 50 microM L-buthionine sulfoximine (BSO). Cellular viability was assessed by alamarBlue assay at 96 h. Intracellular GSH and oxidized GSH (GSSG) levels were determined using a GSH/GSSG colorimetric detection kit. A significant 60% decrease in cellular viability occurred when cells were treated daily with BSO and IF for 96 h. This decrease was significantly reduced when cells were concurrently treated with NAC in a concentration-dependent manner. Intracellular and total GSH levels in cells receiving concurrent treatment of NAC were significantly higher than those without NAC treatment. NAC protects renal tubular cells from IF-induced cytotoxicity. It is likely that NAC is protecting the cells by partially acting as a precursor for GSH synthesis. This mode of therapy may allow for protecting children from life-threatening nephrotoxicity induced by IF.
Collapse
Affiliation(s)
- Nancy Chen
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | | | | | | | | |
Collapse
|
20
|
Abstract
Ifosfamide (IF), a potent chemotherapeutic agent for solid tumors, is known to cause high rates of nephrotoxicity, which is most likely due to the renal production of the metabolite chloroacetaldehyde. Enantioselective oxidation of IF has been shown in the liver but has never been reported in the kidney. Using porcine and human kidney samples, as well as the renal porcine cell line LLCPK-1, we document enantioselective metabolism of IF with prevalent production of the N-dechloroethylifosfamide (DCEIF) metabolites from the (S)-IF enantiomer compared to the amount of N-DCEIF metabolites produced from the (R)-IF enantiomers. Since IF enantiomers appear to be equally effective in chemotherapy, these results suggest that replacing the clinically standard racemic mixture of IF with (R)-IF may decrease renal metabolism of the drug and hence may decrease nephrotoxicity.
Collapse
Affiliation(s)
- Katarina Aleksa
- Division of Clinical Pharmacology and Toxicology, Hospital for Sick Children, Toronto, Canada
| | | | | |
Collapse
|
21
|
Hansen RJ, Ludeman SM, Paikoff SJ, Pegg AE, Dolan ME. Role of MGMT in protecting against cyclophosphamide-induced toxicity in cells and animals. DNA Repair (Amst) 2007; 6:1145-54. [PMID: 17485251 PMCID: PMC1989758 DOI: 10.1016/j.dnarep.2007.03.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
O(6)-Methylguanine-DNA methyltransferase (MGMT) is a DNA repair protein that protects cells from the biological consequences of alkylating agents by removing alkyl groups from the O(6)-position of guanine. Cyclophosphamide and ifosfamide are oxazaphosphorines used clinically to treat a wide variety of cancers; however, the role of MGMT in recognizing DNA damage induced by these agents is unclear. In vitro evidence suggests that MGMT may protect against the urotoxic oxazaphosphorine metabolite, acrolein. Here, we demonstrate that Chinese hamster ovary cells transfected with MGMT are protected against cytotoxicity following treatment with chloroacetaldehyde (CAA), a neuro- and nephrotoxic metabolite of cyclophosphamide and ifosfamide. The mechanism by which MGMT recognizes damage induced by acrolein and CAA is unknown. CHO cells expressing a mutant form of MGMT (MGMT(R128A)), known to have >1000-fold less repair activity towards alkylated DNA while maintaining full active site transferase activity towards low molecular weight substrates, exhibited equivalent CAA- and acrolein-induced cytotoxicity to that of CHO cells transfected with plasmid control. These results imply that direct reaction of acrolein or CAA with the active site cysteine residue of MGMT, i.e. scavenging, is unlikely a mechanism to explain MGMT protection from CAA and acrolein-induced toxicity. In vivo, no difference was detected between Mgmt-/- and Mgmt+/+ mice in the lethal effects of cyclophosphamide. While MGMT may be important at the cellular level, mice deficient in MGMT are not significantly more susceptible to cyclophosphamide, acrolein or CAA. Thus, our data does not support targeting MGMT to improve oxazaphosphorine therapy.
Collapse
Affiliation(s)
- Ryan J. Hansen
- Committee on Cancer Biology, The University of Chicago, 5841 S. Maryland Avenue, Chicago, IL 60637
| | - Susan M. Ludeman
- Duke Comprehensive Cancer Center and Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710
| | - Sari J. Paikoff
- Duke Comprehensive Cancer Center and Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710
| | - Anthony E. Pegg
- Departments of Cellular and Molecular Physiology and Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - M. Eileen Dolan
- Committee on Cancer Biology, Department of Medicine and Committee on Clinical Pharmacology and Pharmacogenomics, The University of Chicago, 5841 S. Maryland Avenue, Chicago, IL 60637
| |
Collapse
|
22
|
Benesic A, Schwerdt G, Freudinger R, Mildenberger S, Groezinger F, Wollny B, Kirchhoff A, Gekle M. Chloroacetaldehyde as a Sulfhydryl Reagent: The Role of Critical Thiol Groups in Ifosfamide Nephropathy. Kidney Blood Press Res 2006; 29:280-93. [PMID: 17035713 DOI: 10.1159/000096177] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2006] [Accepted: 09/11/2006] [Indexed: 11/19/2022] Open
Abstract
Chloroacetaldehyde (CAA) is a metabolite of the alkylating agent ifosfamide (IFO) and putatively responsible for renal damage following anti-tumor therapy with IFO. Depletion of sulfhydryl (SH) groups has been reported from cell culture, animal and clinical studies. In this work the effect of CAA on human proximal tubule cells in primary culture (hRPTEC) was investigated. Toxicity of CAA was determined by protein content, cell number, LDH release, trypan blue exclusion assay and caspase-3 activity. Free thiols were measured by the method of Ellman. CAA reduced hRPTEC cell number and protein, induced a loss in free intracellular thiols and an increase in necrosis markers. CAA but not acrolein inhibited the cysteine proteases caspase-3, caspase-8 and cathepsin B. Caspase activation by cisplatin was inhibited by CAA. In cells stained with fluorescent dyes targeting lysosomes, CAA induced an increase in lysosomal size and lysosomal leakage. The effects of CAA on cysteine protease activities and thiols could be reproduced in cell lysate. Acidification, which slowed the reaction of CAA with thiol donors, could also attenuate effects of CAA on necrosis markers, thiol depletion and cysteine protease inhibition in living cells. Thus, CAA directly reacts with cellular protein and non-protein thiols, mediating its toxicity on hRPTEC. This effect can be reduced by acidification. Therefore, urinary acidification could be an option to prevent IFO nephropathy in patients.
Collapse
Affiliation(s)
- Andreas Benesic
- Department of Physiology, University of Würzburg, Würzburg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Zhang J, Tian Q, Yung Chan S, Chuen Li S, Zhou S, Duan W, Zhu YZ. Metabolism and transport of oxazaphosphorines and the clinical implications. Drug Metab Rev 2006; 37:611-703. [PMID: 16393888 DOI: 10.1080/03602530500364023] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The oxazaphosphorines including cyclophosphamide (CPA), ifosfamide (IFO), and trofosfamide represent an important group of therapeutic agents due to their substantial antitumor and immuno-modulating activity. CPA is widely used as an anticancer drug, an immunosuppressant, and for the mobilization of hematopoetic progenitor cells from the bone marrow into peripheral blood prior to bone marrow transplantation for aplastic anemia, leukemia, and other malignancies. New oxazaphosphorines derivatives have been developed in an attempt to improve selectivity and response with reduced toxicity. These derivatives include mafosfamide (NSC 345842), glufosfamide (D19575, beta-D-glucosylisophosphoramide mustard), NSC 612567 (aldophosphamide perhydrothiazine), and NSC 613060 (aldophosphamide thiazolidine). This review highlights the metabolism and transport of these oxazaphosphorines (mainly CPA and IFO, as these two oxazaphosphorine drugs are the most widely used alkylating agents) and the clinical implications. Both CPA and IFO are prodrugs that require activation by hepatic cytochrome P450 (CYP)-catalyzed 4-hydroxylation, yielding cytotoxic nitrogen mustards capable of reacting with DNA molecules to form crosslinks and lead to cell apoptosis and/or necrosis. Such prodrug activation can be enhanced within tumor cells by the CYP-based gene directed-enzyme prodrug therapy (GDEPT) approach. However, those newly synthesized oxazaphosphorine derivatives such as glufosfamide, NSC 612567 and NSC 613060, do not need hepatic activation. They are activated through other enzymatic and/or non-enzymatic pathways. For example, both NSC 612567 and NSC 613060 can be activated by plain phosphodiesterase (PDEs) in plasma and other tissues or by the high-affinity nuclear 3'-5' exonucleases associated with DNA polymerases, such as DNA polymerases and epsilon. The alternative CYP-catalyzed inactivation pathway by N-dechloroethylation generates the neurotoxic and nephrotoxic byproduct chloroacetaldehyde (CAA). Various aldehyde dehydrogenases (ALDHs) and glutathione S-transferases (GSTs) are involved in the detoxification of oxazaphosphorine metabolites. The metabolism of oxazaphosphorines is auto-inducible, with the activation of the orphan nuclear receptor pregnane X receptor (PXR) being the major mechanism. Oxazaphosphorine metabolism is affected by a number of factors associated with the drugs (e.g., dosage, route of administration, chirality, and drug combination) and patients (e.g., age, gender, renal and hepatic function). Several drug transporters, such as breast cancer resistance protein (BCRP), multidrug resistance associated proteins (MRP1, MRP2, and MRP4) are involved in the active uptake and efflux of parental oxazaphosphorines, their cytotoxic mustards and conjugates in hepatocytes and tumor cells. Oxazaphosphorine metabolism and transport have a major impact on pharmacokinetic variability, pharmacokinetic-pharmacodynamic relationship, toxicity, resistance, and drug interactions since the drug-metabolizing enzymes and drug transporters involved are key determinants of the pharmacokinetics and pharmacodynamics of oxazaphosphorines. A better understanding of the factors that affect the metabolism and transport of oxazaphosphorines is important for their optional use in cancer chemotherapy.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore
| | | | | | | | | | | | | |
Collapse
|