1
|
Yeh CH, Tsai TH, Chen CH, Chou YJ, Mao CT, Su TP, Yang NI, Lai CC, Chen CT, Sytwu HK, Tsai TF. Artificial intelligence-enhanced electrocardiography improves the detection of coronary artery disease. Comput Struct Biotechnol J 2024; 27:278-286. [PMID: 39881827 PMCID: PMC11774641 DOI: 10.1016/j.csbj.2024.12.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/23/2024] [Accepted: 12/26/2024] [Indexed: 01/31/2025] Open
Abstract
An AI-assisted algorithm has been developed to improve the detection of significant coronary artery disease (CAD) in high-risk individuals who have normal electrocardiograms (ECGs). This retrospective study analyzed ECGs from patients aged ≥ 18 years who were undergoing coronary angiography to obtain a clinical diagnosis at Chang Gung Memorial Hospital in Taiwan. Utilizing 12-lead ECG datasets, the algorithm integrated features like time intervals, amplitudes, and slope between peaks, a total of 561 features, with the XGBoost model yielding the best performance. The AI-enhanced ECG algorithm demonstrated high sensitivity (0.82-0.84) when detecting CAD in patients with normal ECGs and gave remarkably high prediction rates among those with abnormal ECGs, both with and without ischemia (92 %-95 % and 80 %-83 %, respectively). Notably, the algorithm's top features, mostly related to slope and amplitude differences, are challenging for clinicians to discern manually. Additionally, the study highlights significant sex differences regarding feature prediction and ranking. Comparatively, the AI-enhanced ECG's detection capability matched that of myocardial perfusion scintigraphy, which is a costly nuclear medicine test, and offers a more accessible alternative for identifying significant CAD, especially among patients with atypical ECG readings.
Collapse
Affiliation(s)
- Chi-Hsiao Yeh
- Department of Thoracic and Cardiovascular Surgery, Chang Gung Memorial Hospital, Linkou, Taoyuan 333, Taiwan
- Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung 204, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | | | - Chun-Hung Chen
- Advanced Tech BU, Acer Inc., New Taipei City 221, Taiwan
| | - Yi-Ju Chou
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli 350, Taiwan
| | - Chun-Tai Mao
- Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung 204, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Keelung 204, Taiwan
| | - Tzu-Pei Su
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Department of Nuclear Medicine, Chang Gung Memorial Hospital, Keelung 204, Taiwan
| | - Ning-I Yang
- Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung 204, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Keelung 204, Taiwan
| | - Chi-Chun Lai
- Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung 204, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Department of Ophthalmology, Chang Gung Memorial Hospital, Keelung 204, Taiwan
| | - Chien-Tzung Chen
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Department of Plastic & Reconstructive Surgery, Chang Gung Memorial Hospital, Linkou, Taoyuan 333, Taiwan
| | - Huey-Kang Sytwu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli 350, Taiwan
- Department & Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei 114, Taiwan
| | - Ting-Fen Tsai
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli 350, Taiwan
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Center for Healthy Longevity and Aging Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| |
Collapse
|
2
|
Antzelevitch C, Di Diego JM. J wave syndromes: What's new? Trends Cardiovasc Med 2022; 32:350-363. [PMID: 34256120 PMCID: PMC8743304 DOI: 10.1016/j.tcm.2021.07.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 07/03/2021] [Accepted: 07/04/2021] [Indexed: 12/19/2022]
Abstract
Among the inherited ion channelopathies associated with potentially life-threatening ventricular arrhythmia syndromes in nominally structurally normal hearts are the J wave syndromes, which include the Brugada (BrS) and early repolarization (ERS) syndromes. These ion channelopathies are responsible for sudden cardiac death (SCD), most often in young adults in the third and fourth decade of life. Our principal goal in this review is to briefly outline the clinical characteristics, as well as the molecular, ionic, cellular, and genetic mechanisms underlying these primary electrical diseases that have challenged the cardiology community over the past two decades. In addition, we discuss our recently developed whole-heart experimental model of BrS, providing compelling evidence in support of the repolarization hypothesis for the BrS phenotype as well as novel findings demonstrating that voltage-gated sodium and transient outward current channels can modulate each other's function via trafficking and gating mechanisms with implications for improved understanding of the genetics of both cardiac and neuronal syndromes.
Collapse
Affiliation(s)
- Charles Antzelevitch
- Distinguished Professor Emeritus and Executive Director, Cardiovascular Research, Lankenau Institute for Medical Research, Wynnewood, PA 19096, USA; Lankenau Institute for Medical Research, Wynnwoddm PA USA; Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia PA, USA.
| | | |
Collapse
|
3
|
Tsutsui H, Isobe M, Ito H, Ito H, Okumura K, Ono M, Kitakaze M, Kinugawa K, Kihara Y, Goto Y, Komuro I, Saiki Y, Saito Y, Sakata Y, Sato N, Sawa Y, Shiose A, Shimizu W, Shimokawa H, Seino Y, Node K, Higo T, Hirayama A, Makaya M, Masuyama T, Murohara T, Momomura SI, Yano M, Yamazaki K, Yamamoto K, Yoshikawa T, Yoshimura M, Akiyama M, Anzai T, Ishihara S, Inomata T, Imamura T, Iwasaki YK, Ohtani T, Onishi K, Kasai T, Kato M, Kawai M, Kinugasa Y, Kinugawa S, Kuratani T, Kobayashi S, Sakata Y, Tanaka A, Toda K, Noda T, Nochioka K, Hatano M, Hidaka T, Fujino T, Makita S, Yamaguchi O, Ikeda U, Kimura T, Kohsaka S, Kosuge M, Yamagishi M, Yamashina A. JCS 2017/JHFS 2017 Guideline on Diagnosis and Treatment of Acute and Chronic Heart Failure - Digest Version. Circ J 2019; 83:2084-2184. [PMID: 31511439 DOI: 10.1253/circj.cj-19-0342] [Citation(s) in RCA: 451] [Impact Index Per Article: 75.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Affiliation(s)
- Hiroyuki Tsutsui
- Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences
| | | | - Hiroshi Ito
- Department of Cardiovascular and Respiratory Medicine, Akita University Graduate School of Medicine
| | - Hiroshi Ito
- Department of Cardiovascular Medicine, Division of Biophysiological Sciences, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
| | - Ken Okumura
- Division of Cardiology, Saiseikai Kumamoto Hospital Cardiovascular Center
| | - Minoru Ono
- Department of Cardiac Surgery, Graduate School of Medicine, The University of Tokyo
| | - Masafumi Kitakaze
- Department of Clinical Medicine and Development, National Cerebral and Cardiovascular Center
| | | | - Yasuki Kihara
- Department of Cardiovascular Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University
| | | | - Issei Komuro
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo
| | - Yoshikatsu Saiki
- Department of Cardiovascular Surgery, Tohoku University Graduate School of Medicine
| | - Yoshihiko Saito
- Department of Cardiovascular Medicine, Nara Medical University
| | - Yasushi Sakata
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine
| | - Naoki Sato
- Department of Cardiovascular Medicine, Kawaguchi Cardiovascular and Respiratory Hospital
| | - Yoshiki Sawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine
| | - Akira Shiose
- Department of Cardiovascular Surgery, Kyushu University Graduate School of Medical Sciences
| | - Wataru Shimizu
- Department of Cardiovascular Medicine, Nippon Medical School
| | - Hiroaki Shimokawa
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine
| | | | - Koichi Node
- Department of Cardiovascular Medicine, Saga University
| | - Taiki Higo
- Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences
| | - Atsushi Hirayama
- The Division of Cardiology, Department of Medicine, Nihon University Graduate School of Medicine
| | | | - Tohru Masuyama
- Cardiovascular Division, Department of Internal Medicine, Hyogo College of Medicine
| | - Toyoaki Murohara
- Department of Cardiology, Nagoya University Graduate School of Medicine
| | | | - Masafumi Yano
- Department of Medicine and Clinical Science, Yamaguchi University Graduate School of Medicine
| | - Kenji Yamazaki
- Department of Cardiology Surgery, Tokyo Women's Medical University
| | - Kazuhiro Yamamoto
- Department of Molecular Medicine and Therapeutics, Faculty of Medicine, Tottori University
| | | | - Michihiro Yoshimura
- Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine
| | - Masatoshi Akiyama
- Department of Cardiovascular Surgery, Tohoku University Graduate School of Medicine
| | - Toshihisa Anzai
- Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine
| | - Shiro Ishihara
- Department of Cardiology, Nippon Medical School Musashi-Kosugi Hospital
| | - Takayuki Inomata
- Department of Cardiovascular Medicine, Kitasato University Kitasato Institute Hospital
| | | | - Yu-Ki Iwasaki
- Department of Cardiovascular Medicine, Nippon Medical School
| | - Tomohito Ohtani
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine
| | | | - Takatoshi Kasai
- Cardiovascular Respiratory Sleep Medicine, Department of Cardiovascular Medicine, Juntendo University Graduate School of Medicine
| | - Mahoto Kato
- Department of Cardiovascular Medicine, Nihon University Graduate School of Medicine
| | - Makoto Kawai
- Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine
| | | | - Shintaro Kinugawa
- Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine
| | - Toru Kuratani
- Department of Minimally Invasive Cardiovascular Medicine, Osaka University Graduate School of Medicine
| | - Shigeki Kobayashi
- Department of Medicine and Clinical Science, Yamaguchi University Graduate School of Medicine
| | - Yasuhiko Sakata
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine
| | | | - Koichi Toda
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine
| | - Takashi Noda
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center
| | - Kotaro Nochioka
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine
| | - Masaru Hatano
- Department of Cardiovascular Medicine, The University of Tokyo Hospital
| | | | - Takeo Fujino
- Department of Advanced Cardiopulmonary Failure, Kyushu University Graduate School of Medical Sciences
| | - Shigeru Makita
- Department of Cardiac Rehabilitation, Saitama Medical University International Medical Center
| | - Osamu Yamaguchi
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine
| | | | - Takeshi Kimura
- Department of Cardiovascular Medicine, Graduate School of Medicine and Faculty of Medicine, Kyoto University
| | - Shun Kohsaka
- Department of Cardiology, Keio University School of Medicine
| | - Masami Kosuge
- Division of Cardiology, Yokohama City University Medical Center
| | - Masakazu Yamagishi
- Department of Cardiovascular and Internal Medicine, Kanazawa University Graduate School of Medicine
| | - Akira Yamashina
- Medical Education Promotion Center, Tokyo Medical University
| |
Collapse
|
4
|
Baidyuk EV, Sakuta GA, Vorobev ML, Stepanov AV, Karpov AA, Rogoza OV, Kudryavtsev BN. Rat Left Ventricular Cardiomyocytes Characterization in the Process of Postinfarction Myocardial Remodeling. Cytometry A 2019; 95:730-736. [PMID: 30852842 DOI: 10.1002/cyto.a.23739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 01/28/2019] [Accepted: 02/18/2019] [Indexed: 11/05/2022]
Abstract
Ischemic lesions of the heart, including myocardial infarction, are the most common pathologies of human cardiovascular system. Despite all the research and achievements of medicine in this field, the mortality from this disease remains heavy. Therefore, studying of processes occurring in the myocardium in the early and late postinfarction periods remains important. Rat left ventricular cardiomyocyte (CMC) ploidy, hypertrophy, hyperplasia, and ultrastructure were investigated in 2, 6, and 26 weeks after experimental myocardial infarction, caused by permanent ligation of left coronary artery. Cytofluorimetric study of CMC ploidy revealed no difference between normal, sham-operated, and infarcted animals for all the tested stages. However, interference microscopy indicated significant changes in cells size. CMC dry mass of infarcted rats in 2 weeks after surgery was 1.5 times lower than in control and sham operated groups. Electron microscopy analysis of CMC revealed disruption of sarcomere structure. However, in 6 weeks after surgery CMC dry mass was 1.6 times higher than in control. In 26 weeks after myocardial infarction CMC dry mass exceeded control only in peri-infarction zone. Cell counting showed that the number of left ventricular CMC, reduced as a result of myocardial infarction, was not restored during myocardial remodeling. © 2019 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Ekaterina V Baidyuk
- Laboratory of Cell Pathology, Institute of Cytology of the Russian Academy of Sciences, Saint-Petersburg, Russia
| | - Galina A Sakuta
- Laboratory of Cell Pathology, Institute of Cytology of the Russian Academy of Sciences, Saint-Petersburg, Russia
| | - Mikhail L Vorobev
- Laboratory of Cell Pathology, Institute of Cytology of the Russian Academy of Sciences, Saint-Petersburg, Russia
| | - Andrei V Stepanov
- Laboratory of Cell Pathology, Institute of Cytology of the Russian Academy of Sciences, Saint-Petersburg, Russia
| | - Andrei A Karpov
- Laboratory of Nanotechnology, Almazov National Medical Research Center, Saint-Petersburg, Russia
| | - Olga V Rogoza
- Pathoanatomic laboratory of medical rehabilitation complex, Almazov National Medical Research Center, Saint-Petersburg, Russia
| | - Boris N Kudryavtsev
- Laboratory of Cell Pathology, Institute of Cytology of the Russian Academy of Sciences, Saint-Petersburg, Russia
| |
Collapse
|
5
|
Belenkov YN, Snezhitskiy VA, Gizatulina TP, Shpak NV, Kuznetsov VA, Martyanova LU, Ardashev AV. [Not Available]. KARDIOLOGIIA 2018; 58:41-52. [PMID: 30625077 DOI: 10.18087/cardio.2018.11.10196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Accepted: 11/24/2018] [Indexed: 06/09/2023]
Abstract
This review includes main positions of the revision of diagnostic criteria of "J-wave syndromes in the J-Wave Syndromes Expert Consensus Conference Report: Emerging Concepts and Gaps in Knowledge" (2016). The article, systematized according to the sections of the above-mentioned document, outlines the questions of terminology, new criteria for diagnosis of the Brugada syndrome (BrS) and early repolarization syndrome (ERS). The section devoted to ERS on the issues of new terminology and standardization of measurements, is supplemented with material from the Consensus Paper - The Early Repolarization Pattern (2015). The article also presents the issues of differential diagnosis in BrS, presents modulating factors, defines acquired Brugada-pattern and Brugada phenocopies. The similarities and differences between BrS and ERS are presented in a comparative aspect.
Collapse
Affiliation(s)
- Yu N Belenkov
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University).
| | | | | | | | | | | | | |
Collapse
|
6
|
Nikolic Turnic TR, Jakovljevic VL, Djuric DM, Jeremic NS, Jeremic JN, Milosavljevic IM, Srejovic IM, Selakovic DV, Zivkovic VI. Efficiency of atorvastatin and simvastatin in improving cardiac function during the different degrees of hyperhomocysteinemia. Can J Physiol Pharmacol 2018; 96:1040-1049. [DOI: 10.1139/cjpp-2018-0102] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aim of this study was to assess the impact of atorvastatin and simvastatin on myocardial contractility during the different degrees of hyperhomocysteinemia (HHcy) in rats. Study was conducted on adult male Wistar albino rats (n = 90; 4 weeks old; 100 ± 15 g body mass) in which HHcy was achieved by dietary manipulation. Animals were exposed to pharmacology treatment with atorvastatin in dose of 3 mg/kg per day i.p. or simvastatin in dose of 5 mg/kg per day i.p. at the same time every day, according to equivalent therapeutic doses of these statins (10 mg atorvastatin = 20 mg simvastatin). After the dietary manipulation and pharmacological treatment and confirmation of HHcy, all animals were sacrificed, hearts were isolated, and cardiac function was tested according to the Langendorff technique. Size of recovery of maximum rate of left ventricular development (dp/dtmax), minimum rate of left ventricular development (dp/dtmin), systolic left ventricular development, diastolic left ventricular development, heart rate, and coronary flow at the 40, 60, 80, 100, and 120 cmH2O coronary perfusion pressure were measured in state of physiological condition (homocysteine less than 15 μmol/L), mild HHcy, and moderate HHcy. Atorvastatin treatment significantly attenuated homocysteine-induced impairment of myocyte contractility and dominantly decreased dp/dtmax, dp/dtmin, and heart rate and induced greater changes in systolic left ventricular development compared with simvastatin. Treatment with atorvastatin seems able to revert systolic abnormalities and improve contractility during the different degrees of HHcy.
Collapse
Affiliation(s)
- Tamara R. Nikolic Turnic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Vladimir Lj. Jakovljevic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
- Department of Human Pathology, IM Sechenov 1st Moscow State Medical University, Moscow, Russian Federation
| | - Dragan M. Djuric
- Institute of Medical Physiology “Richard Burian”, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Nevena S. Jeremic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Jovana N. Jeremic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Isidora M. Milosavljevic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Ivan M. Srejovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Dragica V. Selakovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Vladimir I. Zivkovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| |
Collapse
|
7
|
Ziegler T, Bähr A, Howe A, Klett K, Husada W, Weber C, Laugwitz KL, Kupatt C, Hinkel R. Tβ4 Increases Neovascularization and Cardiac Function in Chronic Myocardial Ischemia of Normo- and Hypercholesterolemic Pigs. Mol Ther 2018; 26:1706-1714. [PMID: 29929787 DOI: 10.1016/j.ymthe.2018.06.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 06/05/2018] [Accepted: 06/05/2018] [Indexed: 12/11/2022] Open
Abstract
Translations of new therapeutic options for cardiovascular disease from animal studies into a clinical setting have been hampered, in part by an improper reflection of a relevant patient population in animal models. In this study, we investigated the impact of thymosin β4 (Tβ4), which promotes collateralization and capillarization, during hypercholesterolemia, a known risk factor of coronary artery disease. Initial in vitro results highlighted an improved endothelial cell function upon Tβ4 treatment under control conditions and during hypercholesterolemic stress (scratch area [pixels]: oxidized low-density lipoprotein [oxLDL], 191,924 ± 7,717; and oxLDL + Tβ4, 105,621 ± 11,245). To mimic the common risk factor of hypercholesterolemia in vivo, pigs on regular (NC) or high-fat (HC) diet underwent chronic myocardial ischemia followed by recombinant adeno-associated virus (rAAV)-mediated transduction of Tβ4 or LacZ as a control. We show that Tβ4 overexpression improves capillarization and collateralization (collaterals: NC + rAAV.LacZ, 2.1 ± 0.5; NC + rAAV.Tβ4, 6.7 ± 0.5; HC + rAAV.LacZ, 3.0 ± 0.3; and HC + rAAV.Tβ4, 6.0 ± 0.4), ultimately leading to an improved myocardial function in both diet groups (ejection fraction [EF] at day 56 [%]: NC + rAAV.LacZ, 26 ± 1.1; NC + rAAV.Tβ4, 45 ± 1.5; HC + rAAV.LacZ, 26 ± 2.5; and HC + rAAV.Tβ4, 41 ± 2.6). These results demonstrate the potency of Tβ4 in a patient-relevant large animal model of chronic myocardial ischemia.
Collapse
Affiliation(s)
- Tilman Ziegler
- Klinik und Poliklinik Innere Medizin I, Klinikum rechts der Isar - Technical University of Munich, 81675 Munich, Germany; DZHK (German Centre for Cardiovascular Research) - partner site Munich Heart Alliance, 81675 Munich, Germany
| | - Andrea Bähr
- Klinik und Poliklinik Innere Medizin I, Klinikum rechts der Isar - Technical University of Munich, 81675 Munich, Germany; DZHK (German Centre for Cardiovascular Research) - partner site Munich Heart Alliance, 81675 Munich, Germany
| | - Andrea Howe
- Klinik und Poliklinik Innere Medizin I, Klinikum rechts der Isar - Technical University of Munich, 81675 Munich, Germany
| | - Katharina Klett
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität (LMU), 80336 Munich, Germany; DZHK (German Centre for Cardiovascular Research) - partner site Munich Heart Alliance, 81675 Munich, Germany
| | - Wira Husada
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität (LMU), 80336 Munich, Germany
| | - Christian Weber
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität (LMU), 80336 Munich, Germany; DZHK (German Centre for Cardiovascular Research) - partner site Munich Heart Alliance, 81675 Munich, Germany
| | - Karl-Ludwig Laugwitz
- Klinik und Poliklinik Innere Medizin I, Klinikum rechts der Isar - Technical University of Munich, 81675 Munich, Germany; DZHK (German Centre for Cardiovascular Research) - partner site Munich Heart Alliance, 81675 Munich, Germany
| | - Christian Kupatt
- Klinik und Poliklinik Innere Medizin I, Klinikum rechts der Isar - Technical University of Munich, 81675 Munich, Germany; DZHK (German Centre for Cardiovascular Research) - partner site Munich Heart Alliance, 81675 Munich, Germany
| | - Rabea Hinkel
- Klinik und Poliklinik Innere Medizin I, Klinikum rechts der Isar - Technical University of Munich, 81675 Munich, Germany; Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität (LMU), 80336 Munich, Germany; DZHK (German Centre for Cardiovascular Research) - partner site Munich Heart Alliance, 81675 Munich, Germany.
| |
Collapse
|
8
|
Nofi C, Bogatyryov Y, Dedkov EI. Preservation of Functional Microvascular Bed Is Vital for Long-Term Survival of Cardiac Myocytes Within Large Transmural Post-Myocardial Infarction Scar. J Histochem Cytochem 2017; 66:99-120. [PMID: 29116876 DOI: 10.1369/0022155417741640] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
This study was aimed to understand the mechanism of persistent cardiac myocyte (CM) survival in myocardial infarction (MI) scars. A transmural MI was induced in 12-month-old Sprague-Dawley rats by permanent coronary artery ligation. The hearts were collected 3 days, 1, 2, 4, 8, and 12 weeks after MI and evaluated with histology, immunohistochemistry, and quantitative morphometry. Vasculature patency was assessed in 4-, 8-, and 12-week-old scars by infusion of 15-micron microspheres into the left ventricle before euthanasia. The infarcted/scarred area has a small continually retained population of surviving CMs in subendocardial and subepicardial regions. Surprisingly, whereas the transverse area of subepicardial CMs remained relatively preserved or even enlarged over 12 post-MI weeks, subendocardial CMs underwent progressive atrophy. Nevertheless, the fractional volume of viable CMs remained comparable in mature scars 4, 8, and 12 weeks after MI (3.6 ± 0.4%, 3.4 ± 0.5%, and 2.5 ± 0.3%, respectively). Despite the opposite dynamics of changes in size, CMs of both regions displayed sarcomeres and gap junctions. Most importantly, surviving CMs were always accompanied by patent microvessels linked to a venous network composed of Thebesian veins, intramural sinusoids, and subepicardial veins. Our findings reveal that long-term survival of CMs in transmural post-MI scars is sustained by a local microcirculatory bed.
Collapse
Affiliation(s)
- Colleen Nofi
- Department of Biomedical Sciences, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, New York
| | - Yevgen Bogatyryov
- Department of Biomedical Sciences, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, New York
| | - Eduard I Dedkov
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, New Jersey
| |
Collapse
|
9
|
Souto ALM, Souto RM, Teixeira ICR, Nacif MS. Myocardial Viability on Cardiac Magnetic Resonance. Arq Bras Cardiol 2017; 108:458-469. [PMID: 28591322 PMCID: PMC5444893 DOI: 10.5935/abc.20170056] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 10/10/2016] [Indexed: 11/20/2022] Open
Abstract
The study of myocardial viability is of great importance in the orientation and management of patients requiring myocardial revascularization or angioplasty. The technique of delayed enhancement (DE) is accurate and has transformed the study of viability into an easy test, not only for the detection of fibrosis but also as a binary test detecting what is viable or not. On DE, fibrosis equal to or greater than 50% of the segmental area is considered as non-viable, whereas that below 50% is considered viable. During the same evaluation, cardiac magnetic resonance (CMR) may also use other techniques for functional and perfusion studies to obtain a global evaluation of ischemic heart disease. This study aims to highlight the current concepts and broadly emphasize the use of CMR as a method that over the last 20 years has become a reference in the detection of infarction and assessment of myocardial viability. Resumo O estudo de viabilidade miocárdica é de grande importância para a orientação e manejo de pacientes que necessitam de cirurgia de revascularização miocárdica ou angioplastia. A técnica de realce tardio (RT) é precisa e transformou o estudo de viabilidade em um teste fácil, não só para a detecção de fibrose, mas também como um modelo binário para a detecção do que é ou não é viável. Uma fibrose identificada pelo RT é considerada como não viável quando igual ou maior do que 50% da área segmentar e como viável quando menor que 50%. A ressonância magnética cardíaca (RMC) também pode lançar mão de outras técnicas para estudo funcional e de perfusão para uma avaliação global da doença isquêmica do coração no mesmo exame. Este estudo tem como objetivo destacar os conceitos atuais e enfatizar amplamente o uso da RMC como um método que nos últimos 20 anos se tornou referência na detecção de infarto e avaliação de viabilidade miocárdica.
Collapse
Affiliation(s)
| | | | | | - Marcelo Souto Nacif
- Universidade Federal Fluminense, Niterói, RJ - Brazil.,Centro de Imagem Complexo Hospitalar de Niterói, Niterói, RJ - Brazil.,Unidade de Radiologia Clínica - Hospital Vivalle - Rede D´Or - São Luiz, São José dos Campo, SP - Brazil
| |
Collapse
|
10
|
Antzelevitch C, Yan GX, Ackerman MJ, Borggrefe M, Corrado D, Guo J, Gussak I, Hasdemir C, Horie M, Huikuri H, Ma C, Morita H, Nam GB, Sacher F, Shimizu W, Viskin S, Wilde AA. J-Wave syndromes expert consensus conference report: Emerging concepts and gaps in knowledge. Europace 2017; 19:665-694. [PMID: 28431071 PMCID: PMC5834028 DOI: 10.1093/europace/euw235] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
| | - Gan-Xin Yan
- Lankenau Medical Center, Wynnewood, Pennsylvania
| | - Michael J. Ackerman
- Departments of Cardiovascular Diseases, Pediatrics, and Molecular Pharmacology & Experimental Therapeutics, Divisions of Heart Rhythm Services and Pediatric Cardiology, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester,Minnesota
| | - Martin Borggrefe
- 1st Department of Medicine–Cardiology, University Medical Centre Mannheim, and DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Mannheim, Germany
| | - Domenico Corrado
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padua Medical School, Padua, Italy
| | - Jihong Guo
- Division of Cardiology, Peking University of People's Hospital, Beijing, China
| | - Ihor Gussak
- Rutgers University, New Brunswick, New Jersey
| | - Can Hasdemir
- Department of Cardiology, Ege University School of Medicine, Izmir, Turkey
| | - Minoru Horie
- Shiga University of Medical Sciences, Ohtsu, Shiga, Japan
| | - Heikki Huikuri
- Research Unit of Internal Medicine, Medical Research Center, Oulu University Hospital, and University of Oulu, Oulu, Finland
| | - Changsheng Ma
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, National Clinical Research Center for Cardiovascular Diseases, Beijing, China
| | - Hiroshi Morita
- Department of Cardiovascular Therapeutics, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Gi-Byoung Nam
- Heart Institute, Asan Medical Center, and Department of Internal Medicine, University of Ulsan College of Medicine Seoul, Seoul, Korea
| | - Frederic Sacher
- Bordeaux University Hospital, LIRYC Institute/INSERM 1045, Bordeaux, France
| | - Wataru Shimizu
- Department of Cardiovascular Medicine, Nippon Medical School, Tokyo, Japan
| | - Sami Viskin
- Tel-Aviv Sourasky Medical Center and Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Arthur A.M. Wilde
- Heart Center, Department of Clinical and Experimental Cardiology, Academic Medical Center, University of Amsterdam, the Netherlands and Princess Al-Jawhara Al-Brahim Centre of Excellence in Research of Hereditary Disorders, Jeddah, Kingdom of Saudi Arabia
| |
Collapse
|
11
|
Abstract
Ischemic disorders, such as myocardial infarction, stroke, and peripheral vascular disease, are the most common causes of debilitating disease and death in westernized cultures. The extent of tissue injury relates directly to the extent of blood flow reduction and to the length of the ischemic period, which influence the levels to which cellular ATP and intracellular pH are reduced. By impairing ATPase-dependent ion transport, ischemia causes intracellular and mitochondrial calcium levels to increase (calcium overload). Cell volume regulatory mechanisms are also disrupted by the lack of ATP, which can induce lysis of organelle and plasma membranes. Reperfusion, although required to salvage oxygen-starved tissues, produces paradoxical tissue responses that fuel the production of reactive oxygen species (oxygen paradox), sequestration of proinflammatory immunocytes in ischemic tissues, endoplasmic reticulum stress, and development of postischemic capillary no-reflow, which amplify tissue injury. These pathologic events culminate in opening of mitochondrial permeability transition pores as a common end-effector of ischemia/reperfusion (I/R)-induced cell lysis and death. Emerging concepts include the influence of the intestinal microbiome, fetal programming, epigenetic changes, and microparticles in the pathogenesis of I/R. The overall goal of this review is to describe these and other mechanisms that contribute to I/R injury. Because so many different deleterious events participate in I/R, it is clear that therapeutic approaches will be effective only when multiple pathologic processes are targeted. In addition, the translational significance of I/R research will be enhanced by much wider use of animal models that incorporate the complicating effects of risk factors for cardiovascular disease. © 2017 American Physiological Society. Compr Physiol 7:113-170, 2017.
Collapse
Affiliation(s)
- Theodore Kalogeris
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Christopher P. Baines
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA
- Department of Biomedical Sciences, University of Missouri College of Veterinary Medicine, Columbia, Missouri, USA
| | - Maike Krenz
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA
| | - Ronald J. Korthuis
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
12
|
Antzelevitch C, Yan GX, Ackerman MJ, Borggrefe M, Corrado D, Guo J, Gussak I, Hasdemir C, Horie M, Huikuri H, Ma C, Morita H, Nam GB, Sacher F, Shimizu W, Viskin S, Wilde AA. J-Wave syndromes expert consensus conference report: Emerging concepts and gaps in knowledge. J Arrhythm 2016; 32:315-339. [PMID: 27761155 PMCID: PMC5063270 DOI: 10.1016/j.joa.2016.07.002] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
| | - Gan-Xin Yan
- Lankenau Medical Center, Wynnewood, PA, United States
| | - Michael J. Ackerman
- Departments of Cardiovascular Diseases, Pediatrics, and Molecular Pharmacology & Experimental Therapeutics, Divisions of Heart Rhythm Services and Pediatric Cardiology, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, MN, United States
| | - Martin Borggrefe
- 1st Department of Medicine–Cardiology, University Medical Centre Mannheim, and DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Mannheim, Germany
| | - Domenico Corrado
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padua Medical School, Padua, Italy
| | - Jihong Guo
- Division of Cardiology, Peking University of People׳s Hospital, Beijing, China
| | - Ihor Gussak
- Rutgers University, New Brunswick, NJ, United States
| | - Can Hasdemir
- Department of Cardiology, Ege University School of Medicine, Izmir, Turkey
| | - Minoru Horie
- Shiga University of Medical Sciences, Ohtsu, Shiga, Japan
| | - Heikki Huikuri
- Research Unit of Internal Medicine, Medical Research Center, Oulu University Hospital, and University of Oulu, Oulu, Finland
| | - Changsheng Ma
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, National Clinical Research Center for Cardiovascular Diseases, Beijing, China
| | - Hiroshi Morita
- Department of Cardiovascular Therapeutics, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Gi-Byoung Nam
- Heart Institute, Asian Medical Center, and Department of Internal Medicine, University of Ulsan College of Medicine Seoul, Seoul, South Korea
| | - Frederic Sacher
- Bordeaux University Hospital, LIRYC Institute/INSERM 1045, Bordeaux, France
| | - Wataru Shimizu
- Department of Cardiovascular Medicine, Nippon Medical School, Tokyo, Japan
| | - Sami Viskin
- Tel-Aviv Sourasky Medical Center and Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Arthur A.M. Wilde
- Heart Center, Department of Clinical and Experimental Cardiology, Academic Medical Center, University of Amsterdam, The Netherlands
- Jawhara Al-Brahim Centre of Excellence in Research of Hereditary Disorders, Jeddah, Saudi Arabia
| |
Collapse
|
13
|
Antzelevitch C, Yan GX, Ackerman MJ, Borggrefe M, Corrado D, Guo J, Gussak I, Hasdemir C, Horie M, Huikuri H, Ma C, Morita H, Nam GB, Sacher F, Shimizu W, Viskin S, Wilde AAM. J-Wave syndromes expert consensus conference report: Emerging concepts and gaps in knowledge. Heart Rhythm 2016; 13:e295-324. [PMID: 27423412 PMCID: PMC5035208 DOI: 10.1016/j.hrthm.2016.05.024] [Citation(s) in RCA: 236] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Indexed: 12/16/2022]
Affiliation(s)
| | - Gan-Xin Yan
- Lankenau Medical Center, Wynnewood, Pennsylvania
| | - Michael J Ackerman
- Departments of Cardiovascular Diseases, Pediatrics, and Molecular Pharmacology & Experimental Therapeutics, Divisions of Heart Rhythm Services and Pediatric Cardiology, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester,Minnesota
| | - Martin Borggrefe
- 1st Department of Medicine-Cardiology, University Medical Centre Mannheim, and DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Mannheim, Germany
| | - Domenico Corrado
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padua Medical School, Padua, Italy
| | - Jihong Guo
- Division of Cardiology, Peking University of People's Hospital, Beijing, China
| | - Ihor Gussak
- Rutgers University, New Brunswick, New Jersey
| | - Can Hasdemir
- Department of Cardiology, Ege University School of Medicine, Izmir, Turkey
| | - Minoru Horie
- Shiga University of Medical Sciences, Ohtsu, Shiga, Japan
| | - Heikki Huikuri
- Research Unit of Internal Medicine, Medical Research Center, Oulu University Hospital, and University of Oulu, Oulu, Finland
| | - Changsheng Ma
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, National Clinical Research Center for Cardiovascular Diseases, Beijing, China
| | - Hiroshi Morita
- Department of Cardiovascular Therapeutics, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Gi-Byoung Nam
- Heart Institute, Asan Medical Center, and Department of Internal Medicine, University of Ulsan College of Medicine Seoul, Seoul, Korea
| | - Frederic Sacher
- Bordeaux University Hospital, LIRYC Institute/INSERM 1045, Bordeaux, France
| | - Wataru Shimizu
- Department of Cardiovascular Medicine, Nippon Medical School, Tokyo, Japan
| | - Sami Viskin
- Tel-Aviv Sourasky Medical Center and Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Arthur A M Wilde
- Heart Center, Department of Clinical and Experimental Cardiology, Academic Medical Center, University of Amsterdam, the Netherlands and Princess Al-Jawhara Al-Brahim Centre of Excellence in Research of Hereditary Disorders, Jeddah, Kingdom of Saudi Arabia
| |
Collapse
|
14
|
Abstract
Myocardial fibrosis is common in patients with congenital heart disease (CHD) and has been associated with arrhythmias, decreased functional status, and adverse ventricular mechanics. There are multiple types of myocardial fibrosis that occur in response to different pathophysiologic stimuli. Recent advances in imaging technology have made detection and quantification of the types of myocardial fibrosis possible. In this review, we describe the pathophysiology of myocardial fibrosis, examine the imaging techniques used to evaluate fibrosis, and discuss the relationship between myocardial fibrosis and clinical outcomes in CHD. (Circ J 2016; 80: 1300-1307).
Collapse
Affiliation(s)
- Rahul H Rathod
- Department of Cardiology, Boston Children's Hospital and Department of Pediatrics, Harvard Medical School
| | | | | |
Collapse
|
15
|
Álvarez P, Tapia L, Mardones LA, Pedemonte JC, Farías JG, Castillo RL. Cellular mechanisms against ischemia reperfusion injury induced by the use of anesthetic pharmacological agents. Chem Biol Interact 2014; 218:89-98. [PMID: 24835546 DOI: 10.1016/j.cbi.2014.04.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 04/20/2014] [Accepted: 04/28/2014] [Indexed: 12/15/2022]
Abstract
Ischemia-reperfusion (IR) cycle in the myocardium is associated with activation of an injurious cascade, thus leading to new myocardial challenges, which account for up to 50% of infarct size. Some evidence implicates reactive oxygen species (ROS) as a probable cause of myocardial injury in prooxidant clinical settings. Damage occurs during both ischemia and post-ischemic reperfusion in animal and human models. The mechanisms that contribute to this damage include the increase in cellular calcium (Ca(2+)) concentration and induction of ROS sources during reperfusion. Pharmacological preconditioning, which includes pharmacological strategies that counteract the ROS burst and Ca(2+) overload followed to IR cycle in the myocardium, could be effective in limiting injury. Currently widespread evidence supports the use of anesthetics agents as an important cardioprotective strategy that act at various levels such as metabotropic receptors, ion channels or mitochondrial level. Their administration before a prolonged ischemic episode is known as anesthetic preconditioning, whereas when given at the very onset of reperfusion, is termed anesthetic postconditioning. Both types of anesthetic conditioning reduce, albeit not to the same degree, the extent of myocardial injury. This review focuses on cellular and pathophysiological concepts on the myocardial damage induced by IR and how anesthetic pharmacological agents commonly used could attenuate the functional and structural effects induced by oxidative stress in cardiac tissue.
Collapse
Affiliation(s)
- P Álvarez
- Critical Care Unit, Hospital Clínico Metropolitano La Florida, Santiago, Chile; Faculty of Medicine, University Finis Terrae, Chile; Pathophysiology Program, Faculty of Medicine, University of Chile, Chile
| | - L Tapia
- Pathophysiology Program, Faculty of Medicine, University of Chile, Chile; Emergency Unit, Clínica Dávila, Santiago, Chile
| | - L A Mardones
- Pathophysiology Program, Faculty of Medicine, University of Chile, Chile
| | - J C Pedemonte
- Anesthesia Unit, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - J G Farías
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de la Frontera, Casilla 54-D, Temuco, Chile
| | - R L Castillo
- Pathophysiology Program, Faculty of Medicine, University of Chile, Chile.
| |
Collapse
|
16
|
Abstract
Coronary artery disease (CAD) is the leading cause of death worldwide. There are several presenting clinical syndromes, including sudden cardiac death. Risk factor analysis can help the primary care provider identify patients who may need more extensive evaluation or treatment. Treatment may be medical or surgical and depends on the individual patient's comorbidities and preferences. In the future, growth of new blood vessels or cardiac cells may aid in the treatment of CAD.
Collapse
Affiliation(s)
- Michele A Hanson
- Department of Family Medicine, Mayo Clinic, 200 First Street Southwest, Rochester, MN 55905, USA.
| | | | | | | | | |
Collapse
|
17
|
Giordano C, Kuraitis D, Beanlands RSB, Suuronen EJ, Ruel M. Cell-based vasculogenic studies in preclinical models of chronic myocardial ischaemia and hibernation. Expert Opin Biol Ther 2012; 13:411-28. [PMID: 23256710 DOI: 10.1517/14712598.2013.748739] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
INTRODUCTION Coronary artery disease commonly leads to myocardial ischaemia and hibernation. Relevant preclinical models of these conditions are essential to evaluate new therapeutic options such as cell-based vasculogenic therapies. AREAS COVERED In this article, the authors first review basic concepts of myocardial ischaemia/hibernation and relevant techniques to assess myocardial viability. Then, preclinical models of chronic myocardial ischaemia and hibernation, induced by devices such as ameroid constrictors, Delrin stenosis, hydraulic occluders, and coils/stents are described. Lastly, the authors discuss cell-based vasculogenic therapy, and summarise studies conducted in large animal models of chronic myocardial ischaemia and hibernation. EXPERT OPINION Approximately one-third of patients with viable myocardium do not undergo revascularisation; however, this population is at high risk for cardiac events and would surely benefit from effective cell-based therapy. Because of the modest benefits in clinical studies, preclinical models accurately representing clinical myocardial ischemia/hibernation are necessary to better understand and appropriately direct regenerative therapy research.
Collapse
Affiliation(s)
- Céline Giordano
- University of Ottawa Heart Institute, Division of Cardiac Surgery, 40 Ruskin Street, Suite 3403, Ottawa, Ontario, K1Y 4W7, Canada
| | | | | | | | | |
Collapse
|
18
|
Myocardial viability: what we knew and what is new. Cardiol Res Pract 2012; 2012:607486. [PMID: 22988540 PMCID: PMC3440854 DOI: 10.1155/2012/607486] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 05/29/2012] [Accepted: 06/09/2012] [Indexed: 12/12/2022] Open
Abstract
Some patients with chronic ischemic left ventricular dysfunction have shown significant improvements of contractility with favorable long-term prognosis after revascularization. Several imaging techniques are available for the assessment of viable myocardium, based on the detection of preserved perfusion, preserved glucose metabolism, intact cell membrane and mitochondria, and presence of contractile reserve. Nuclear cardiology techniques, dobutamine echocardiography and positron emission tomography are used to assess myocardial viability. In recent years, new advances have improved methods of detecting myocardial viability. This paper summarizes the pathophysiology, methods, and impact of detection of myocardial viability, concentrating on recent advances in such methods. We reviewed the literature using search engines MIDLINE, SCOUPS, and EMBASE from 1988 to February 2012. We used key words: myocardial viability, hibernation, stunning, and ischemic cardiomyopathy. Recent studies showed that the presence of viable myocardium was associated with a greater likelihood of survival in patients with coronary artery disease and LV dysfunction, but the assessment of myocardial viability did not identify patients with survival benefit from revascularization, as compared with medical therapy alone. This topic is still debatable and needs more evidence.
Collapse
|
19
|
Kalogeris T, Baines CP, Krenz M, Korthuis RJ. Cell biology of ischemia/reperfusion injury. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 298:229-317. [PMID: 22878108 PMCID: PMC3904795 DOI: 10.1016/b978-0-12-394309-5.00006-7] [Citation(s) in RCA: 1455] [Impact Index Per Article: 111.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Disorders characterized by ischemia/reperfusion (I/R), such as myocardial infarction, stroke, and peripheral vascular disease, continue to be among the most frequent causes of debilitating disease and death. Tissue injury and/or death occur as a result of the initial ischemic insult, which is determined primarily by the magnitude and duration of the interruption in the blood supply, and then subsequent damage induced by reperfusion. During prolonged ischemia, ATP levels and intracellular pH decrease as a result of anaerobic metabolism and lactate accumulation. As a consequence, ATPase-dependent ion transport mechanisms become dysfunctional, contributing to increased intracellular and mitochondrial calcium levels (calcium overload), cell swelling and rupture, and cell death by necrotic, necroptotic, apoptotic, and autophagic mechanisms. Although oxygen levels are restored upon reperfusion, a surge in the generation of reactive oxygen species occurs and proinflammatory neutrophils infiltrate ischemic tissues to exacerbate ischemic injury. The pathologic events induced by I/R orchestrate the opening of the mitochondrial permeability transition pore, which appears to represent a common end-effector of the pathologic events initiated by I/R. The aim of this treatise is to provide a comprehensive review of the mechanisms underlying the development of I/R injury, from which it should be apparent that a combination of molecular and cellular approaches targeting multiple pathologic processes to limit the extent of I/R injury must be adopted to enhance resistance to cell death and increase regenerative capacity in order to effect long-lasting repair of ischemic tissues.
Collapse
Affiliation(s)
- Theodore Kalogeris
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, USA
| | | | | | | |
Collapse
|
20
|
Metabolic dysfunction in the post-resuscitation heart. Resuscitation 2011; 83:e35-6. [PMID: 22056267 DOI: 10.1016/j.resuscitation.2011.09.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Accepted: 09/19/2011] [Indexed: 11/23/2022]
|
21
|
Dual-Energy Computed Tomography for the Detection of Late Enhancement in Reperfused Chronic Infarction. Invest Radiol 2011; 46:450-6. [DOI: 10.1097/rli.0b013e3182145b4f] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
Dries JL, Kent SD, Virag JAI. Intramyocardial administration of chimeric ephrinA1-Fc promotes tissue salvage following myocardial infarction in mice. J Physiol 2011; 589:1725-40. [PMID: 21282286 DOI: 10.1113/jphysiol.2010.202366] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The purpose of this study was to investigate the role of intramyocardial administration of chimeric ephrinA1-Fc in modulating the extent of injury and inflammation in non reperfused myocardial infarction (MI). Our results show that intramyocardial injection of 6 μg ephrinA1-Fc into the border zone immediately after permanent coronary artery ligation in B6129s mice resulted in 50% reduction of infarct size, 64% less necrosis, 35% less chamber dilatation and 32% less left ventricular free wall thinning at 4 days post-MI. In the infarct zone, Ly6G+ neutrophil density was 57% reduced and CD45+ leukocyte density was 21% reduced. Myocyte damage was also reduced in ephrinA1-Fc-treated hearts, as evidenced by 54% reduced serum cardiac troponin I. Further, we observed decreased cleaved PARP, increased BAG-1 protein expression, increased phosphorylated AKT/total AKT protein, and reduced NF-κB protein with ephrinA1-Fc administration, indicating improved cellular survival. Of the eight EphA receptors known to be expressed in mice (A1–A8), RT-PCR revealed that A1–A4, A6 and A7 were expressed in the uninjured adult myocardium. Expression of EphA1–A3 and EphA7 were significantly increased following MI while EphA6 expression decreased. Treatment with ephrinA1-Fc further increased EphA1 and EphA2 gene expression and resulted in a 2-fold increase in EphA4. Upregulation and combinatorial activation of these receptors may promote tissue survival. We have identified a novel, beneficial role for ephrinA1-Fc administration at the time of MI, and propose this as a promising new target for infarct salvage in non reperfused MI. More experiments are in progress to identify receptor-expressing cell types as well as the functional implications of receptor activation.
Collapse
Affiliation(s)
- Jessica L Dries
- Department of Physiology, Brody School of Medicine, East Carolina University, 600 Moye Blvd, Greenville, NC 27834, USA
| | | | | |
Collapse
|
23
|
Cadenas S, Aragonés J, Landázuri MO. Mitochondrial reprogramming through cardiac oxygen sensors in ischaemic heart disease. Cardiovasc Res 2010; 88:219-28. [PMID: 20679415 DOI: 10.1093/cvr/cvq256] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Under hypoxic conditions, mitochondria can represent a threat to the cell because of their capacity to generate toxic reactive oxygen species (ROS). However, cardiomyocytes are equipped with an oxygen-sensing pathway that involves prolyl hydroxylase oxygen sensors and hypoxia-inducible factors (HIFs), which induces a tightly regulated programme to keep ischaemic mitochondrial activity under control. The aim of this review is to provide an update on the pathways leading to mitochondrial reprogramming, which occurs in the myocardium during ischaemia, with particular emphasis on those induced by HIF activation. We start by studying the mechanisms of mitochondrial damage during ischaemia and upon reperfusion, highlighting the importance of the formation of the mitochondrial permeability transition pore during reperfusion and its consequences for cardiomyocyte survival. Next, we analyse hypoxia-induced metabolic reprogramming through HIF and its important consequences for mitochondrial bioenergetics, as well as the phenomenon known as the hibernating myocardium. Subsequently, we examine the mechanisms underlying ischaemic preconditioning, focusing, in particular, on those that involve the HIF pathway, such as adenosine signalling, sub-lethal ROS generation, and nitric oxide production. Finally, the role of the mitochondrial uncoupling proteins in ischaemia tolerance is discussed.
Collapse
Affiliation(s)
- Susana Cadenas
- Servicio de Inmunología, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa , Diego de León 62, 28006 Madrid, Spain.
| | | | | |
Collapse
|
24
|
Stanton T, Marwick TH. Assessment of Subendocardial Structure and Function. JACC Cardiovasc Imaging 2010; 3:867-75. [DOI: 10.1016/j.jcmg.2010.05.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Revised: 04/28/2010] [Accepted: 05/04/2010] [Indexed: 10/19/2022]
|
25
|
Effects of the intermittent pneumatic circulator on blood pressure during hemodialysis. SENSORS 2010; 10:10014-26. [PMID: 22163454 PMCID: PMC3230995 DOI: 10.3390/s101110014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Revised: 09/10/2010] [Accepted: 10/23/2010] [Indexed: 02/03/2023]
Abstract
Hypotension is frequently reported during hemodialysis. This study aimed to examine the effect of the intermittent pneumatic circulator on blood pressure during hemodialysis. Sixteen subjects with chronic hemodialysis were recruited. Each subject randomly received two test conditions on separate days, hemodialysis with and without the circulator. The circulator was applied to the subject on lower extremities during 0.5–1 hr, 1.5–2 hr, 2.5–3 hr, and 3.5–4 hr of hemodialysis. Systolic and diastolic blood pressures (SBP and DBP) and heart rate (HR) were analyzed at pre-dialysis, 1 hr, 2 hr, and 3 hr of hemodialysis. Stroke volume (SV) and cardiac output (CO) were evaluated between 2.5 and 3.0 hr of hemodialysis. Blood chemicals (sodium, calcium, potassium, and phosphorous) and Kt/V before and after each hemodialysis session were analyzed. The number of episodes of hypotension was also recorded. The circulator intervention significantly improved SBP and DBP across all time points (P = 0.002 for SBP; P = 0.002 for DBP). The frequency of hypotension was significantly decreased (P = 0.028). SV and CO were significantly improved with the circulator intervention (P = 0.017 for SV; P = 0.026 for CO) and no statistical significances were found on blood chemicals or Kt/V analyses. The results suggested that the circulator intervention helps stabilize blood pressure and appears to be a practical treatment. Future studies are suggested to develop new circulator innovations with sensor feedback systems to enhance safety and maximize treatment efficiency.
Collapse
|