Vinturache AE, Smith FG. Angiotensin receptors modulate the renal hemodynamic effects of nitric oxide in conscious newborn lambs.
Physiol Rep 2014;
2:e12027. [PMID:
24872358 PMCID:
PMC4098750 DOI:
10.14814/phy2.12027]
[Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 04/28/2014] [Accepted: 05/01/2014] [Indexed: 12/20/2022] Open
Abstract
This study aimed to elucidate the roles of both angiotensin II (ANG II) receptors - type 1 (AT1Rs) and type 2 (AT2Rs) - separately and together in influencing hemodynamic effects of endogenously produced nitric oxide (NO) during postnatal development. In conscious, chronically instrumented lambs aged ~1 week (8 ± 1 days, N = 8) and ~6 weeks (41 ± 2 days, N = 8), systolic, diastolic, and mean arterial pressure (SAP, DAP, MAP) and venous pressure (MVP), renal blood flow (RBF), and renal vascular resistance (RVR) were measured in response to the l-arginine analog, l-NAME after pretreatment with either the AT1R antagonist, ZD 7155, the AT2R antagonist, PD 123319, or both antagonists. The increase in SAP, DAP, and MAP by l-NAME was not altered by either ATR antagonist in either age group. The increase in RBF after l-NAME was, however, altered by both ATR antagonists in an age-dependent manner, which was mediated predominantly through AT2Rs in newborn lambs. These findings reveal that there is an age-dependent interaction between the renin-angiotensin (RAS) and the NO pathway in regulating renal but not systemic hemodynamics through both ATRs, whereas AT2Rs appear to be important in the renal hemodynamic effects of NO early in life.
Collapse