1
|
Wang Q, Zhao Y, Dong X, Li C, Zhou L, Zou C, Li X, Zhou N, Liu J, Sun Y, Wang J. The Occurrence of Valvular Atrial Fibrillation: Involvement of NGF/TrKA Signaling Pathway. J INVEST SURG 2020; 34:1379-1386. [PMID: 32781864 DOI: 10.1080/08941939.2020.1798570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
OBJECTIVE Nerve growth factor (NGF) and tropomyosin kinase receptors A (TrKA) exert a crucial effect on the regulation of autonomic nervous system which contributes to the progress of atrial fibrillation (AF). Valvular heart disease (VHD) patients are more easily to induce the AF. We investigated whether NGF/TrKA could impact the occurrence of AF in VHD patients. MATERIALS AND METHODS Atrial tissues were resected from 30 VHD patients with chronic AF (n = 15, AF >6 months) or sinus rhythm (SR, n = 15). The expression of NGF, TrKA, protein kinase B (PKB/Akt), beta-isoforms of glycogen synthase kinase-3 (GSK3β), Serine473 phosphorylation of Akt (p-Ser473 Akt), Serine9 phosphorylation of GSK-3β (p-Ser9 GSK3β) in right atrial tissues and peripheral blood lymphocyte were quantified by Western blot. The localization of those genes expression was measured by immunohistochemistry. Double sandwich enzyme-linked immunosorbent assay was used to observe the trace changes of NGF-β in peripheral plasma. RESULTS Our results revealed that the NGF expression was markedly elevated in the tissue of right atrial appendage and peripheral blood lymphocytes from AF patients compared with the SR patients. But, the expression of TrKA, GSK3β, p-Akt and p-GSK3β were decreased. There was no difference about the expression of Akt from the AF patients and the SR patients. The NGF-β level in peripheral blood plasma of patients with AF and SR was not statistical difference. CONCLUSION Thus, we thought that NGF/TrKA signaling pathway may be involved in the AF in the patients with VHD, inactivation of GSK3β could increase the incidence of AF, but not relevant to phosphorylation.
Collapse
Affiliation(s)
- Qianli Wang
- Department of Geriatric Cardiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, PR China.,Cardiovascular Surgery Intensive Care Unit, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, PR China
| | - Yong Zhao
- Department of Geriatric Cardiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, PR China.,Department of Geriatric Cardiology, Shandong Provincial Hospital, Shandong First Medical University, Jinan, PR China
| | - Xin Dong
- Department of Cardiology, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Cong Li
- Intensive Care Unit, Shouguang People's Hospital, Shouguang, PR China
| | - Lin Zhou
- Department of Geriatric Cardiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, PR China.,Department of Geriatric Cardiology, Shandong Provincial Hospital, Shandong First Medical University, Jinan, PR China
| | - Chengwei Zou
- Department of Geriatric Cardiology, Shandong Provincial Hospital, Shandong First Medical University, Jinan, PR China.,Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, PR China
| | - Xiaodong Li
- Department of Geriatric Cardiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, PR China.,Department of Geriatric Cardiology, Shandong Provincial Hospital, Shandong First Medical University, Jinan, PR China
| | - Nannan Zhou
- Department of Geriatric Cardiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, PR China.,Department of Geriatric Cardiology, Shandong Provincial Hospital, Shandong First Medical University, Jinan, PR China
| | - Junni Liu
- Department of Geriatric Cardiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, PR China.,Department of Geriatric Cardiology, Shandong Provincial Hospital, Shandong First Medical University, Jinan, PR China
| | - Yuanyuan Sun
- Department of Geriatric Cardiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, PR China.,Department of Geriatric Cardiology, Shandong Provincial Hospital, Shandong First Medical University, Jinan, PR China
| | - Jianchun Wang
- Department of Geriatric Cardiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, PR China.,Department of Geriatric Cardiology, Shandong Provincial Hospital, Shandong First Medical University, Jinan, PR China
| |
Collapse
|
2
|
Traister A, Li M, Aafaqi S, Lu M, Arab S, Radisic M, Gross G, Guido F, Sherret J, Verma S, Slorach C, Mertens L, Hui W, Roy A, Delgado-Olguín P, Hannigan G, Maynes JT, Coles JG. Integrin-linked kinase mediates force transduction in cardiomyocytes by modulating SERCA2a/PLN function. Nat Commun 2014; 5:4533. [PMID: 25208486 DOI: 10.1038/ncomms5533] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 06/25/2014] [Indexed: 12/17/2022] Open
Abstract
Human dilated cardiomyopathy (DCM) manifests as a profound reduction in biventricular cardiac function that typically progresses to death or cardiac transplantation. There is no effective mechanism-based therapy currently available for DCM, in part because the transduction of mechanical load into dynamic changes in cardiac contractility (termed mechanotransduction) remains an incompletely understood process during both normal cardiac function and in disease states. Here we show that the mechanoreceptor protein integrin-linked kinase (ILK) mediates cardiomyocyte force transduction through regulation of the key calcium regulatory protein sarcoplasmic/endoplasmic reticulum Ca(2+)ATPase isoform 2a (SERCA-2a) and phosphorylation of phospholamban (PLN) in the human heart. A non-oncogenic ILK mutation with a synthetic point mutation in the pleckstrin homology-like domain (ILK(R211A)) is shown to enhance global cardiac function through SERCA-2a/PLN. Thus, ILK serves to link mechanoreception to the dynamic modulation of cardiac contractility through a previously undiscovered interaction with the functional SERCA-2a/PLN module that can be exploited to rescue impaired mechanotransduction in DCM.
Collapse
Affiliation(s)
- Alexandra Traister
- Cardiology Division, Department of Paediatrics, Hospital for Sick Children, Toronto, Ontario, Canada M5G 1X8
| | - Mark Li
- Cardiology Division, Department of Paediatrics, Hospital for Sick Children, Toronto, Ontario, Canada M5G 1X8
| | - Shabana Aafaqi
- Cardiology Division, Department of Paediatrics, Hospital for Sick Children, Toronto, Ontario, Canada M5G 1X8
| | - Mingliang Lu
- Cardiology Division, Department of Paediatrics, Hospital for Sick Children, Toronto, Ontario, Canada M5G 1X8
| | - Sara Arab
- University Health Network, University of Toronto, Toronto, Ontario, Canada M5S 2J7
| | - Milica Radisic
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada M5S 3G9
| | - Gil Gross
- Cardiology Division, Department of Paediatrics, Hospital for Sick Children, Toronto, Ontario, Canada M5G 1X8
| | - Fiorella Guido
- Cardiology Division, Department of Paediatrics, Hospital for Sick Children, Toronto, Ontario, Canada M5G 1X8
| | - John Sherret
- Cardiology Division, Department of Paediatrics, Hospital for Sick Children, Toronto, Ontario, Canada M5G 1X8
| | - Subodh Verma
- Keenan Research Centre of the Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, Ontario, Canada M5B 1W8
| | - Cameron Slorach
- Cardiology Division, Department of Paediatrics, Hospital for Sick Children, Toronto, Ontario, Canada M5G 1X8
| | - Luc Mertens
- Cardiology Division, Department of Paediatrics, Hospital for Sick Children, Toronto, Ontario, Canada M5G 1X8
| | - Wei Hui
- Cardiology Division, Department of Paediatrics, Hospital for Sick Children, Toronto, Ontario, Canada M5G 1X8
| | - Anna Roy
- 1] Program in Physiology and Experimental Medicine, Hospital for Sick Children, Toronto, Ontario, Canada M5G 1X8 [2] Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | - Paul Delgado-Olguín
- 1] Program in Physiology and Experimental Medicine, Hospital for Sick Children, Toronto, Ontario, Canada M5G 1X8 [2] Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada M5S 1A8 [3] Heart &Stroke Richard Lewar Centre of Excellence, Toronto, Ontario, Canada M5B 1W8
| | - Gregory Hannigan
- Cell Adhesion Signaling Laboratory, Monash Institute of Medical Research, Monash University, Melbourne, Victoria 3800, Australia
| | - Jason T Maynes
- 1] Department of Anesthesia and Pain Medicine, Division of Molecular Structure and Function, Hospital for Sick Children, Toronto, Ontario, Canada M5G 1X8 [2] Departments of Anesthesia and Biochemistry, Universtiy of Toronto, Toronto, Ontario, Canada M5S 2J7
| | - John G Coles
- Cardiology Division, Department of Paediatrics, Hospital for Sick Children, Toronto, Ontario, Canada M5G 1X8
| |
Collapse
|
3
|
Rowell J, Koitabashi N, Kass DA, Barth AS. Dynamic gene expression patterns in animal models of early and late heart failure reveal biphasic-bidirectional transcriptional activation of signaling pathways. Physiol Genomics 2014; 46:779-87. [PMID: 25159852 DOI: 10.1152/physiolgenomics.00054.2014] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Altered cardiac gene expression in heart failure (HF) has mostly been identified by single-point analysis of end-stage disease. This may miss earlier changes in gene expression that are transient and/or directionally opposite to those observed later. Myocardial datasets from the largest microarray data repository (Gene Expression Omnibus) yielded six HF studies with time-course data. Differentially expressed transcripts between nonfailing controls, early HF (<3 days after cardiac insult) and late HF (usually >2 wk) were determined, and analysis of KEGG pathways and predicted regulatory control elements performed. We found that gene expression followed varying patterns: Downregulation of metabolic pathways occurred early and was sustained into late-stage HF. In contrast, most signaling pathways undergo a complex biphasic pattern: Calcium signaling, p53, apoptosis, and MAPK pathways displayed a bidirectional response, declining early but rising late. These profiles were compatible with specific microRNA (miRNA) and transcription regulators: Estrogen-related receptor-α and myocyte-enhancer factor-2 binding sites were overrepresented in the promoter regions of downregulated transcripts. Concurrently, there were overrepresented binding sites for E2f and ETS family members (E-Twenty Six, including Gabp, Elf1, and Ets2), serum response and interferon regulated factor in biphasic-bidirectional and late-upregulated transcripts. Binding sites for miRNAs downregulated by HF were more common in upregulated transcripts (e.g., miRNA-22,-133a/b, and -150 in early HF and miRNA-1,-9,-499 in late HF). During the development of HF, gene expression is characterized by dynamic overlapping sets of transcripts controlled by specific interrelated regulatory mechanisms. While metabolic gene classes show early and sustained downregulation in HF, signaling pathways undergo a complex biphasic pattern with early down- and more pronounced late upregulation.
Collapse
Affiliation(s)
- Janelle Rowell
- Department of Medicine, Division of Cardiology, The Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Norimichi Koitabashi
- Department of Medicine, Division of Cardiology, The Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - David A Kass
- Department of Medicine, Division of Cardiology, The Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Andreas S Barth
- Department of Medicine, Division of Cardiology, The Johns Hopkins Medical Institutions, Baltimore, Maryland
| |
Collapse
|
4
|
Prévilon M, Pezet M, Vinet L, Mercadier JJ, Rouet-Benzineb P. Gender-specific potential inhibitory role of Ca2+/calmodulin dependent protein kinase phosphatase (CaMKP) in pressure-overloaded mouse heart. PLoS One 2014; 9:e90822. [PMID: 24608696 PMCID: PMC3946626 DOI: 10.1371/journal.pone.0090822] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 02/04/2014] [Indexed: 01/08/2023] Open
Abstract
Background Ca2+/calmodulin-dependent protein kinase phosphatase (CaMKP) has been proposed as a potent regulator of multifunctional Ca2+/calmodulin-dependent protein kinases (i.e., CaMKII). The CaMKII-dependent activation of myocyte enhancer factor 2 (MEF2) disrupts interactions between MEF2-histone deacetylases (HDACs), thereby de-repressing downstream gene transcription. Whether CaMKP modulates the CaMKII- MEF2 pathway in the heart is unknown. Here, we investigated the molecular and functional consequences of left ventricular (LV) pressure overload in the mouse of both genders, and in particular we evaluated the expression levels and localization of CaMKP and its association with CaMKII-MEF2 signaling. Methodology and Principal Findings Five week-old B6D1/F1 mice of both genders underwent a sham-operation or thoracic aortic constriction (TAC). Thirty days later, TAC was associated with pathological LV hypertrophy characterized by systolic and diastolic dysfunction. Gene expression was assessed by real-time PCR. Fetal gene program re-expression comprised increased RNA levels of brain natriuretic peptide and alpha-skeletal actin. Mouse hearts of both genders expressed both CaMKP transcript and protein. Activation of signalling pathways was studied by Western blot in LV lysates or subcellular fractions (nuclear and cytoplasmic). TAC was associated with increased CaMKP expression in male LVs whereas it tended to be decreased in females. The DNA binding activity of MEF2 was determined by spectrophotometry. CaMKP compartmentalization differed according to gender. In male TAC mice, nuclear CaMKP was associated with inactive CaMKII resulting in less MEF2 activation. In female TAC mice, active CaMKII (phospho-CaMKII) detected in the nuclear fraction, was associated with a strong MEF2 transcription factor-binding activity. Conclusions/Significance Gender-specific CaMKP compartmentalization is associated with CaMKII-mediated MEF2 activation in pressure-overloaded hearts. Therefore, CaMKP could be considered as an important novel cellular target for the development of new therapeutic strategies for heart diseases.
Collapse
Affiliation(s)
- Miresta Prévilon
- Inserm, UMRS-698, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Mylène Pezet
- CEFI-Institut Claude Bernard-IFR02, Paris, France
- Inserm, U823, Plateforme de Microscopie Photonique – Cytométrie en Flux, Institut Albert Bonniot Site Santé BP170–38042, Grenoble, France
| | - Laurent Vinet
- Inserm, UMRS-698, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
- Department of Cell Physiology and Metabolism, University of Geneva, Medical School, Genève, Switzerland
| | - Jean-Jacques Mercadier
- Université Paris Diderot, Sorbonne Paris Cité, Paris, France
- Inserm, UMRS-769, Université Paris-Sud, IFR141, LabEx LERMIT, Châtenay-Malabry, France
- AP-HP, Hôpital Bichat, Paris, France
| | | |
Collapse
|
5
|
The NO/ONOO-cycle as the central cause of heart failure. Int J Mol Sci 2013; 14:22274-330. [PMID: 24232452 PMCID: PMC3856065 DOI: 10.3390/ijms141122274] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Revised: 10/23/2013] [Accepted: 10/24/2013] [Indexed: 01/08/2023] Open
Abstract
The NO/ONOO-cycle is a primarily local, biochemical vicious cycle mechanism, centered on elevated peroxynitrite and oxidative stress, but also involving 10 additional elements: NF-κB, inflammatory cytokines, iNOS, nitric oxide (NO), superoxide, mitochondrial dysfunction (lowered energy charge, ATP), NMDA activity, intracellular Ca(2+), TRP receptors and tetrahydrobiopterin depletion. All 12 of these elements have causal roles in heart failure (HF) and each is linked through a total of 87 studies to specific correlates of HF. Two apparent causal factors of HF, RhoA and endothelin-1, each act as tissue-limited cycle elements. Nineteen stressors that initiate cases of HF, each act to raise multiple cycle elements, potentially initiating the cycle in this way. Different types of HF, left vs. right ventricular HF, with or without arrhythmia, etc., may differ from one another in the regions of the myocardium most impacted by the cycle. None of the elements of the cycle or the mechanisms linking them are original, but they collectively produce the robust nature of the NO/ONOO-cycle which creates a major challenge for treatment of HF or other proposed NO/ONOO-cycle diseases. Elevated peroxynitrite/NO ratio and consequent oxidative stress are essential to both HF and the NO/ONOO-cycle.
Collapse
|
6
|
Prévilon M, Le Gall M, Chafey P, Federeci C, Pezet M, Clary G, Broussard C, François G, Mercadier JJ, Rouet-Benzineb P. Comparative differential proteomic profiles of nonfailing and failing hearts after in vivo thoracic aortic constriction in mice overexpressing FKBP12.6. Physiol Rep 2013; 1:e00039. [PMID: 24303125 PMCID: PMC3834996 DOI: 10.1002/phy2.39] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 06/25/2013] [Accepted: 06/28/2013] [Indexed: 02/06/2023] Open
Abstract
Chronic pressure overload (PO) induces pathological left ventricular hypertrophy (LVH) leading to congestive heart failure (HF). Overexpression of FKBP12.6 (FK506-binding protein [K]) in mice should prevent Ca2+-leak during diastole and may improve overall cardiac function. In order to decipher molecular mechanisms involved in thoracic aortic constriction (TAC)-induced cardiac remodeling and the influence of gender and genotype, we performed a proteomic analysis using two-dimensional differential in-gel electrophoresis (2D-DIGE), mass spectrometry, and bioinformatics techniques to identify alterations in characteristic biological networks. Wild-type (W) and K mice of both genders underwent TAC. Thirty days post-TAC, the altered cardiac remodeling was accompanied with systolic and diastolic dysfunction in all experimental groups. A gender difference in inflammatory protein expression (fibrinogen, α-1-antitrypsin isoforms) and in calreticulin occurred (males > females). Detoxification enzymes and cytoskeletal proteins were noticeably increased in K mice. Both non- and congestive failing mouse heart exhibited down- and upregulation of proteins related to mitochondrial function and purine metabolism, respectively. HF was characterized by a decrease in enzymes related to iron homeostasis, and altered mitochondrial protein expression related to fatty acid metabolism, glycolysis, and redox balance. Moreover, two distinct differential protein profiles characterized TAC-induced pathological LVH and congestive HF in all TAC mice. FKBP12.6 overexpression did not influence TAC-induced deleterious effects. Huntingtin was revealed as a potential mediator for HF. A broad dysregulation of signaling proteins associated with congestive HF suggested that different sets of proteins could be selected as useful biomarkers for HF progression and might predict outcome in PO-induced pathological LVH.
Collapse
|
7
|
Nadadur RD, Umar S, Wong G, Eghbali M, Iorga A, Matori H, Partow-Navid R, Eghbali M. Reverse right ventricular structural and extracellular matrix remodeling by estrogen in severe pulmonary hypertension. J Appl Physiol (1985) 2012; 113:149-58. [PMID: 22628376 DOI: 10.1152/japplphysiol.01349.2011] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Chronic pulmonary hypertension (PH) leads to right-ventricular failure (RVF) characterized by RV remodeling. Ventricular remodeling is emerging as an important process during heart failure and recovery. Remodeling in RVF induced by PH is not fully understood. Recently we discovered that estrogen (E2) therapy can rescue severe preexisting PH. Here, we focused on whether E2 (42.5 μg·kg(-1)·day(-1), 10 days) can reverse adverse RV structural and extracellular matrix (ECM) remodeling induced by PH using monocrotaline (MCT, 60 mg/kg). RV fibrosis was evident in RVF males. Intact females developed less severe RV remodeling compared with males and ovariectomized (OVX) females. Novel ECM-degrading disintegrin-metalloproteinases ADAM15 and ADAM17 transcripts were elevated ∼2-fold in all RVF animals. E2 therapy reversed RV remodeling in all groups. In vitro, E2 directly inhibited ANG II-induced expression of fibrosis markers as well as the metalloproteinases in cultured cardiac fibroblasts. Estrogen receptor-β agonist diarylpropionitrile (DPN) but not estrogen receptor-α agonist 4,4',4″-(4-propyl-[1H]-pyrazole-1,3,5-triyl)trisphenol (PPT) was as effective as E2 in inhibiting expression of these genes. Expression of ECM-interacting cardiac fetal-gene osteopontin (OPN) also increased ∼9-fold in RVF males. Intact females were partially protected from OPN upregulation (∼2-fold) but OVX females were not. E2 reversed OPN upregulation in all groups. Upregulation of OPN was also reversed in vitro by E2. Plasma OPN was elevated in RVF (∼1.5-fold) and decreased to control levels in the E2 group. RVF resulted in elevated Akt phosphorylation, but not ERK, in the RV, and E2 therapy restored Akt phosphorylation. In conclusion, E2 therapy reverses adverse RV remodeling associated with PH by reversing fibrosis and upregulation of novel ECM enzymes ADAM15, ADAM17, and OPN. These effects are likely mediated through estrogen receptor-β.
Collapse
Affiliation(s)
- Rangarajan D Nadadur
- Department of Anesthesiology, Division of Molecular Medicine, University of California at Los Angeles, Los Angeles, California 90095-7115, USA
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Frantz S, Klaiber M, Baba HA, Oberwinkler H, Völker K, Gaβner B, Bayer B, Abeβer M, Schuh K, Feil R, Hofmann F, Kuhn M. Stress-dependent dilated cardiomyopathy in mice with cardiomyocyte-restricted inactivation of cyclic GMP-dependent protein kinase I. Eur Heart J 2011; 34:1233-44. [PMID: 22199120 PMCID: PMC3631523 DOI: 10.1093/eurheartj/ehr445] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
AIMS Cardiac hypertrophy is a common and often lethal complication of arterial hypertension. Elevation of myocyte cyclic GMP levels by local actions of endogenous atrial natriuretic peptide (ANP) and C-type natriuretic peptide (CNP) or by pharmacological inhibition of phosphodiesterase-5 was shown to counter-regulate pathological hypertrophy. It was suggested that cGMP-dependent protein kinase I (cGKI) mediates this protective effect, although the role in vivo is under debate. Here, we investigated whether cGKI modulates myocyte growth and/or function in the intact organism. METHODS AND RESULTS To circumvent the systemic phenotype associated with germline ablation of cGKI, we inactivated the murine cGKI gene selectively in cardiomyocytes by Cre/loxP-mediated recombination. Mice with cardiomyocyte-restricted cGKI deletion exhibited unaltered cardiac morphology and function under resting conditions. Also, cardiac hypertrophic and contractile responses to β-adrenoreceptor stimulation by isoprenaline (at 40 mg/kg/day during 1 week) were unaltered. However, angiotensin II (Ang II, at 1000 ng/kg/min for 2 weeks) or transverse aortic constriction (for 3 weeks) provoked dilated cardiomyopathy with marked deterioration of cardiac function. This was accompanied by diminished expression of the [Ca(2+)]i-regulating proteins SERCA2a and phospholamban (PLB) and a reduction in PLB phosphorylation at Ser16, the specific target site for cGKI, resulting in altered myocyte Ca(2+)i homeostasis. In isolated adult myocytes, CNP, but not ANP, stimulated PLB phosphorylation, Ca(2+)i-handling, and contractility via cGKI. CONCLUSION These results indicate that the loss of cGKI in cardiac myocytes compromises the hypertrophic program to pathological stimulation, rendering the heart more susceptible to dysfunction. In particular, cGKI mediates stimulatory effects of CNP on myocyte Ca(2+)i handling and contractility.
Collapse
Affiliation(s)
- Stefan Frantz
- Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|