1
|
Hou J, Deng Q, Qiu X, Liu S, Li Y, Huang C, Wang X, Zhang Q, Deng X, Zhong Z, Zhong W. Proteomic analysis of plasma proteins from patients with cardiac rupture after acute myocardial infarction using TMT-based quantitative proteomics approach. Clin Proteomics 2024; 21:18. [PMID: 38429673 PMCID: PMC10908035 DOI: 10.1186/s12014-024-09474-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 02/23/2024] [Indexed: 03/03/2024] Open
Abstract
BACKGROUND Cardiac rupture (CR) is a rare but catastrophic mechanical complication of acute myocardial infarction (AMI) that seriously threatens human health. However, the reliable biomarkers for clinical diagnosis and the underlying signaling pathways insights of CR has yet to be elucidated. METHODS In the present study, a quantitative approach with tandem mass tag (TMT) labeling and liquid chromatography-tandem mass spectrometry was used to characterize the differential protein expression profiles of patients with CR. Plasma samples were collected from patients with CR (n = 37), patients with AMI (n = 47), and healthy controls (n = 47). Candidate proteins were selected for validation by multiple reaction monitoring (MRM) and enzyme-linked immunosorbent assay (ELISA). RESULTS In total, 1208 proteins were quantified and 958 differentially expressed proteins (DEPs) were identified. The difference in the expression levels of the DEPs was more noticeable between the CR and Con groups than between the AMI and Con groups. Bioinformatics analysis showed most of the DEPs to be involved in numerous crucial biological processes and signaling pathways, such as RNA transport, ribosome, proteasome, and protein processing in the endoplasmic reticulum, as well as necroptosis and leukocyte transendothelial migration, which might play essential roles in the complex pathological processes associated with CR. MRM analysis confirmed the accuracy of the proteomic analysis results. Four proteins i.e., C-reactive protein (CRP), heat shock protein beta-1 (HSPB1), vinculin (VINC) and growth/differentiation factor 15 (GDF15), were further validated via ELISA. By receiver operating characteristic (ROC) analysis, combinations of these four proteins distinguished CR patients from AMI patients with a high area under the curve (AUC) value (0.895, 95% CI, 0.802-0.988, p < 0.001). CONCLUSIONS Our study highlights the value of comprehensive proteomic characterization for identifying plasma proteome changes in patients with CR. This pilot study could serve as a valid foundation and initiation point for elucidation of the mechanisms of CR, which might aid in identifying effective diagnostic biomarkers in the future.
Collapse
Affiliation(s)
- Jingyuan Hou
- Research Experimental Center, Meizhou Clinical Institute of Shantou University Medical College, Meizhou, Guangdong, 514031, China
- GuangDong Engineering Technology Research Center for Molecular Diagnostics of Cardiovascular Diseases, Meizhou, Guangdong, 514031, China
| | - Qiaoting Deng
- Research Experimental Center, Meizhou Clinical Institute of Shantou University Medical College, Meizhou, Guangdong, 514031, China
| | - Xiaohong Qiu
- Meizhou clinical Medical School, Guangdong Medical University, Meizhou, Guangdong, 514031, China
| | - Sudong Liu
- Research Experimental Center, Meizhou Clinical Institute of Shantou University Medical College, Meizhou, Guangdong, 514031, China
| | - Youqian Li
- Center for Cardiovascular Diseases, Meizhou People's Hospital, Meizhou, Guangdong, 514031, China
| | - Changjing Huang
- Center for Cardiovascular Diseases, Meizhou People's Hospital, Meizhou, Guangdong, 514031, China
| | - Xianfang Wang
- Center for Cardiovascular Diseases, Meizhou People's Hospital, Meizhou, Guangdong, 514031, China
| | - Qunji Zhang
- Research Experimental Center, Meizhou Clinical Institute of Shantou University Medical College, Meizhou, Guangdong, 514031, China
| | - Xunwei Deng
- Research Experimental Center, Meizhou Clinical Institute of Shantou University Medical College, Meizhou, Guangdong, 514031, China
| | - Zhixiong Zhong
- Center for Cardiovascular Diseases, Meizhou People's Hospital, Meizhou, Guangdong, 514031, China.
| | - Wei Zhong
- Center for Cardiovascular Diseases, Meizhou People's Hospital, Meizhou, Guangdong, 514031, China.
| |
Collapse
|
2
|
Zhang Y, Kong D, Han H, Cao Y, Zhu H, Cui G. Caffeic acid phenethyl ester protects against doxorubicin-induced cardiotoxicity and increases chemotherapeutic efficacy by regulating the unfolded protein response. Food Chem Toxicol 2021; 159:112770. [PMID: 34915066 DOI: 10.1016/j.fct.2021.112770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 12/02/2021] [Accepted: 12/11/2021] [Indexed: 11/24/2022]
Abstract
Doxorubicin (Dox) is an efficient drug used in breast cancer chemotherapy. However, the clinical application of Dox in cancer treatment is limited due to its cardiotoxicity. Caffeic acid phenethyl ester (CAPE) is a critical bioactive ingredient of honeybee propolis that possesses various beneficial pharmacological properties, such as antioxidant and anticancer activities. Here, we aimed to investigate the protective effect of CAPE on Dox-induced cardiotoxicity and its anti-breast cancer effects. CAPE significantly ameliorated Dox-induced toxicity in H9c2 cells and in a mouse model. Mechanistically, Dox caused endoplasmic reticulum (ER) dysfunction characterized by the activation of the unfolded protein response (UPR) and upregulation of Bax proteins, and CAPE attenuated the Dox-induced UPR in H9c2 cells. In contrast, CAPE significantly enhanced Dox-induced cytotoxicity in human breast cancer cells by upregulating the Dox-induced UPR; it also markedly suppressed tumor growth in 4T1 cancer-bearing BALB/c mice. In conclusion, CAPE could be used as a promising therapy for patients with cancer receiving Dox treatment.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, China
| | - Dezhi Kong
- Department of Pharmacology of Chinese Materia Medica, College of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang, China
| | - Han Han
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, China
| | - YongJun Cao
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, China
| | - HongXuan Zhu
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, China
| | - Guozhen Cui
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, China.
| |
Collapse
|
3
|
Wu Q, Tian JH, He YX, Huang YY, Huang YQ, Zhang GP, Luo JD, Xue Q, Yu XY, Liu YH. Zonisamide alleviates cardiac hypertrophy in rats by increasing Hrd1 expression and inhibiting endoplasmic reticulum stress. Acta Pharmacol Sin 2021; 42:1587-1597. [PMID: 33495518 PMCID: PMC8463597 DOI: 10.1038/s41401-020-00585-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 11/17/2020] [Indexed: 02/02/2023] Open
Abstract
Antiepileptic drug zonisamide has been shown to be curative for Parkinson's disease (PD) through increasing HMG-CoA reductase degradation protein 1 (Hrd1) level and mitigating endoplasmic reticulum (ER) stress. Hrd1 is an ER-transmembrane E3 ubiquitin ligase, which is involved in cardiac dysfunction and cardiac hypertrophy in a mouse model of pressure overload. In this study, we investigated whether zonisamide alleviated cardiac hypertrophy in rats by increasing Hrd1 expression and inhibiting ER stress. The beneficial effects of zonisamide were assessed in two experimental models of cardiac hypertrophy: in rats subjected to abdominal aorta constriction (AAC) and treated with zonisamide (14, 28, 56 mg · kg-1 · d-1, i.g.) for 6 weeks as well as in neonatal rat cardiomyocytes (NRCMs) co-treated with Ang II (10 μM) and zonisamide (0.3 μM). Echocardiography analysis revealed that zonsiamide treatment significantly improved cardiac function in AAC rats. We found that zonsiamide treatment significantly attenuated cardiac hypertrophy and fibrosis, and suppressed apoptosis and ER stress in the hearts of AAC rats and in Ang II-treated NRCMs. Importantly, zonisamide markedly increased the expression of Hrd1 in the hearts of AAC rats and in Ang II-treated NRCMs. Furthermore, we demonstrated that zonisamide accelerated ER-associated protein degradation (ERAD) in Ang II-treated NRCMs; knockdown of Hrd1 abrogated the inhibitory effects of zonisamide on ER stress and cardiac hypertrophy. Taken together, our results demonstrate that zonisamide is effective in preserving heart structure and function in the experimental models of pathological cardiac hypertrophy. Zonisamide increases Hrd1 expression, thus preventing cardiac hypertrophy and improving the cardiac function of AAC rats.
Collapse
Affiliation(s)
- Qian Wu
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Jia-Hui Tian
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yong-Xiang He
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yong-Yin Huang
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yu-Qing Huang
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Gui-Ping Zhang
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Jian-Dong Luo
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Qin Xue
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China.
| | - Xi-Yong Yu
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China.
| | - Ying-Hua Liu
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China.
| |
Collapse
|
4
|
Ma R, Qin W, Xie Y, Han Z, Li S, Jiang Y, Lv H. Dihydroartemisinin induces ER stress-dependent apoptosis of Echinococcus protoscoleces in vitro. Acta Biochim Biophys Sin (Shanghai) 2020; 52:1140-1147. [PMID: 33085744 DOI: 10.1093/abbs/gmaa101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 07/30/2020] [Accepted: 10/15/2020] [Indexed: 12/24/2022] Open
Abstract
In this study, we investigated the effect of dihydroartemisinin on Echinococcus protoscoleces and explored the role of endoplasmic reticulum stress in this process. Echinococcus protoscoleces were collected and cultured in RPMI 1640 medium. Changes in the expressions of glucose-regulated protein 78 (GRP-78), caspase-12, and C/EBP homologous protein (CHOP) were assessed through confocal immunofluorescence and western blot analysis. Cell viability and morphological changes were observed under a light microscope. The ultrastructure of protoscoleces was observed by scanning electron microscopy and transmission electron microscopy. Caspase-3 activity was detected using an enzyme assay kit. After dihydroartemisinin treatment, the protoscoleces showed loss of viability, and morphological changes including soma contraction, blebs formation, hooks loss, microtrichia destruction, and development of lipid droplets was observed. The levels of caspase-12 and CHOP were increased within 2 days of dihydroartemisinin treatment. However, the levels of GRP-78, caspase-12, and CHOP were decreased in 4 days. Furthermore, caspase-3 activity was increased after treatment with different concentrations of dihydroartemisinin. Dihydroartemisinin can induce apoptosis in protoscoleces via the ER stress-caspase-3 apoptotic pathway in vitro. These results indicate that dihydroartemisinin is a potentially valuable therapeutic agent against echinococcosis.
Collapse
Affiliation(s)
- Rongji Ma
- Emergency Department of the First Affiliated Hospital of the Medical College of Shihezi University, Shihezi 832002, China
| | - Wenjuan Qin
- Department of Ultrasound Diagnosis, The First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi 832000, China
| | - Yuanmao Xie
- Department of Gastroenterology of the First Affiliated Hospital of Medical College of Shihezi University, Shihezi 832000, China
| | - Ziwei Han
- Emergency Department of the First Affiliated Hospital of the Medical College of Shihezi University, Shihezi 832002, China
| | - Shuojie Li
- Shihezi University School of Medicine, Clinical Pathology Department of the First Affiliated Hospital of the Medical College of Shihezi University, Shihezi 832000, China
| | - Yufeng Jiang
- Emergency Department of the First Affiliated Hospital of the Medical College of Shihezi University, Shihezi 832002, China
- School of Basic Medicine, Chengdu Medical College, Chengdu 610500, China
| | - Hailong Lv
- Hepatological Surgery Department, The Third People’s Hospital of Chengdu, Chengdu 610500, China
| |
Collapse
|
5
|
Arrieta A, Blackwood EA, Glembotski CC. ER Protein Quality Control and the Unfolded Protein Response in the Heart. Curr Top Microbiol Immunol 2017; 414:193-213. [PMID: 29026925 DOI: 10.1007/82_2017_54] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cardiac myocytes are the cells responsible for the robust ability of the heart to pump blood throughout the circulatory system. Cardiac myocytes grow in response to a variety of physiological and pathological conditions; this growth challenges endoplasmic reticulum-protein quality control (ER-PQC), a major feature of which includes the unfolded protein response (UPR). ER-PQC and the UPR in cardiac myocytes growing under physiological conditions, including normal development, exercise, and pregnancy, are sufficient to support hypertrophic growth of each cardiac myocyte. However, the ER-PQC and UPR are insufficient to respond to the challenge of cardiac myocyte growth under pathological conditions, including myocardial infarction and heart failure. In part, this insufficiency is due to a continual decline in the expression levels of important adaptive UPR components as a function of age and during myocardial pathology. This chapter will discuss the physiological and pathological conditions unique to the heart that involves ER-PQC, and whether the UPR is adaptive or maladaptive under these circumstances.
Collapse
Affiliation(s)
- A Arrieta
- San Diego State University Heart Institute and the Department of Biology, San Diego State University, San Diego, CA, 92182, USA
| | - E A Blackwood
- San Diego State University Heart Institute and the Department of Biology, San Diego State University, San Diego, CA, 92182, USA
| | - C C Glembotski
- San Diego State University Heart Institute and the Department of Biology, San Diego State University, San Diego, CA, 92182, USA.
| |
Collapse
|
6
|
Jin JK, Blackwood EA, Azizi K, Thuerauf DJ, Fahem AG, Hofmann C, Kaufman RJ, Doroudgar S, Glembotski CC. ATF6 Decreases Myocardial Ischemia/Reperfusion Damage and Links ER Stress and Oxidative Stress Signaling Pathways in the Heart. Circ Res 2016; 120:862-875. [PMID: 27932512 DOI: 10.1161/circresaha.116.310266] [Citation(s) in RCA: 222] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 12/02/2016] [Accepted: 12/08/2016] [Indexed: 12/14/2022]
Abstract
RATIONALE Endoplasmic reticulum (ER) stress causes the accumulation of misfolded proteins in the ER, activating the transcription factor, ATF6 (activating transcription factor 6 alpha), which induces ER stress response genes. Myocardial ischemia induces the ER stress response; however, neither the function of this response nor whether it is mediated by ATF6 is known. OBJECTIVE Here, we examined the effects of blocking the ATF6-mediated ER stress response on ischemia/reperfusion (I/R) in cardiac myocytes and mouse hearts. METHODS AND RESULTS Knockdown of ATF6 in cardiac myocytes subjected to I/R increased reactive oxygen species and necrotic cell death, both of which were mitigated by ATF6 overexpression. Under nonstressed conditions, wild-type and ATF6 knockout mouse hearts were similar. However, compared with wild-type, ATF6 knockout hearts showed increased damage and decreased function after I/R. Mechanistically, gene array analysis showed that ATF6, which is known to induce genes encoding ER proteins that augment ER protein folding, induced numerous oxidative stress response genes not previously known to be ATF6-inducible. Many of the proteins encoded by the ATF6-induced oxidative stress genes identified here reside outside the ER, including catalase, which is known to decrease damaging reactive oxygen species in the heart. Catalase was induced by the canonical ER stressor, tunicamycin, and by I/R in cardiac myocytes from wild-type but not in cardiac myocytes from ATF6 knockout mice. ER stress response elements were identified in the catalase gene and were shown to bind ATF6 in cardiac myocytes, which increased catalase promoter activity. Overexpression of catalase, in vivo, restored ATF6 knockout mouse heart function to wild-type levels in a mouse model of I/R, as did adeno-associated virus 9-mediated ATF6 overexpression. CONCLUSIONS ATF6 serves an important role as a previously unappreciated link between the ER stress and oxidative stress gene programs, supporting a novel mechanism by which ATF6 decreases myocardial I/R damage.
Collapse
Affiliation(s)
- Jung-Kang Jin
- From the San Diego State University Heart Institute and the Department of Biology, San Diego State University, CA (J.-K.J., E.A.B., K.A., D.J.T., A.G.F., C.H., S.D., C.C.G.); Department of Cardiology, Angiology, and Pneumology, University Hospital Heidelberg, Germany (C.H., S.D.); DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany (C.H., S.D.); and Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA (R.J.K.)
| | - Erik A Blackwood
- From the San Diego State University Heart Institute and the Department of Biology, San Diego State University, CA (J.-K.J., E.A.B., K.A., D.J.T., A.G.F., C.H., S.D., C.C.G.); Department of Cardiology, Angiology, and Pneumology, University Hospital Heidelberg, Germany (C.H., S.D.); DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany (C.H., S.D.); and Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA (R.J.K.)
| | - Khalid Azizi
- From the San Diego State University Heart Institute and the Department of Biology, San Diego State University, CA (J.-K.J., E.A.B., K.A., D.J.T., A.G.F., C.H., S.D., C.C.G.); Department of Cardiology, Angiology, and Pneumology, University Hospital Heidelberg, Germany (C.H., S.D.); DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany (C.H., S.D.); and Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA (R.J.K.)
| | - Donna J Thuerauf
- From the San Diego State University Heart Institute and the Department of Biology, San Diego State University, CA (J.-K.J., E.A.B., K.A., D.J.T., A.G.F., C.H., S.D., C.C.G.); Department of Cardiology, Angiology, and Pneumology, University Hospital Heidelberg, Germany (C.H., S.D.); DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany (C.H., S.D.); and Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA (R.J.K.)
| | - Asal G Fahem
- From the San Diego State University Heart Institute and the Department of Biology, San Diego State University, CA (J.-K.J., E.A.B., K.A., D.J.T., A.G.F., C.H., S.D., C.C.G.); Department of Cardiology, Angiology, and Pneumology, University Hospital Heidelberg, Germany (C.H., S.D.); DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany (C.H., S.D.); and Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA (R.J.K.)
| | - Christoph Hofmann
- From the San Diego State University Heart Institute and the Department of Biology, San Diego State University, CA (J.-K.J., E.A.B., K.A., D.J.T., A.G.F., C.H., S.D., C.C.G.); Department of Cardiology, Angiology, and Pneumology, University Hospital Heidelberg, Germany (C.H., S.D.); DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany (C.H., S.D.); and Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA (R.J.K.)
| | - Randal J Kaufman
- From the San Diego State University Heart Institute and the Department of Biology, San Diego State University, CA (J.-K.J., E.A.B., K.A., D.J.T., A.G.F., C.H., S.D., C.C.G.); Department of Cardiology, Angiology, and Pneumology, University Hospital Heidelberg, Germany (C.H., S.D.); DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany (C.H., S.D.); and Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA (R.J.K.)
| | - Shirin Doroudgar
- From the San Diego State University Heart Institute and the Department of Biology, San Diego State University, CA (J.-K.J., E.A.B., K.A., D.J.T., A.G.F., C.H., S.D., C.C.G.); Department of Cardiology, Angiology, and Pneumology, University Hospital Heidelberg, Germany (C.H., S.D.); DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany (C.H., S.D.); and Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA (R.J.K.)
| | - Christopher C Glembotski
- From the San Diego State University Heart Institute and the Department of Biology, San Diego State University, CA (J.-K.J., E.A.B., K.A., D.J.T., A.G.F., C.H., S.D., C.C.G.); Department of Cardiology, Angiology, and Pneumology, University Hospital Heidelberg, Germany (C.H., S.D.); DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany (C.H., S.D.); and Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA (R.J.K.).
| |
Collapse
|
7
|
Shen M, Wang L, Guo X, Xue Q, Huo C, Li X, Fan L, Wang X. A novel endoplasmic reticulum stress‑induced apoptosis model using tunicamycin in primary cultured neonatal rat cardiomyocytes. Mol Med Rep 2015; 12:5149-54. [PMID: 26151415 DOI: 10.3892/mmr.2015.4040] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 05/06/2015] [Indexed: 11/06/2022] Open
Abstract
Endoplasmic reticulum (ER) stress is key in the development of cardiovascular diseases. However, there is a lack of a systemic ER stress‑induced cardiomyocyte apoptosis model. In the present study, primary cultured neonatal rat cardiomyocytes were exposed to tunicamycin. Cell viability was determined by an MTT assay, and cell damage was detected by a lactose dehydrogenase assay. Flow cytometry was used and the activity of caspase‑3 was analyzed in order to measure apoptosis. Reverse transcription-quantitative polymerase chain reaction and western blotting were used to examine the expression of glucose‑regulated protein 78‑kDa (GRP78) and C/EBP homologous protein (CHOP). As a result, tunicamycin significantly increased cardiomyocyte injury, which occurred in a time- and concentration‑dependent manner. In addition, tunicamycin treatment resulted in apoptosis of cardiomyocytes. Molecularly, tunicamycin (100 ng/ml) increased the levels of GRP78 and CHOP 6 h after administration. In addition, GRP78 and CHOP reached maximum mRNA and protein levels 24 h after administration. In conclusion, the results implicate that the tunicamycin‑induced ER stress‑induced apoptotic model was successfully constructed in cultured neonatal rat cardiomyocytes. A 100 ng/ml concentration of tunicamycin was selected, and MTT, LDH release and flow cytometry assay was at 72 h. In addition, GRP78 and GRP94 were detected 24 h following administration. The results of the present study indicate a novel experimental basis for the investigation of ERS-induced cardiac apoptosis.
Collapse
Affiliation(s)
- Mingzhi Shen
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Lin Wang
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Xiaowang Guo
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Qiao Xue
- Department of Cardiology, Hainan Branch of PLA General Hospital, Sanya, Hainan 572013, P.R. China
| | - Cong Huo
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Xing Li
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Li Fan
- Department of Geriatric Cardiology, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Xiaoming Wang
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|
8
|
Doroudgar S, Völkers M, Thuerauf DJ, Khan M, Mohsin S, Respress JL, Wang W, Gude N, Müller OJ, Wehrens XHT, Sussman MA, Glembotski CC. Hrd1 and ER-Associated Protein Degradation, ERAD, are Critical Elements of the Adaptive ER Stress Response in Cardiac Myocytes. Circ Res 2015; 117:536-46. [PMID: 26137860 DOI: 10.1161/circresaha.115.306993] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 07/01/2015] [Indexed: 11/16/2022]
Abstract
RATIONALE Hydroxymethyl glutaryl-coenzyme A reductase degradation protein 1 (Hrd1) is an endoplasmic reticulum (ER)-transmembrane E3 ubiquitin ligase that has been studied in yeast, where it contributes to ER protein quality control by ER-associated degradation (ERAD) of misfolded proteins that accumulate during ER stress. Neither Hrd1 nor ERAD has been studied in the heart, or in cardiac myocytes, where protein quality control is critical for proper heart function. OBJECTIVE The objective of this study were to elucidate roles for Hrd1 in ER stress, ERAD, and viability in cultured cardiac myocytes and in the mouse heart, in vivo. METHODS AND RESULTS The effects of small interfering RNA-mediated Hrd1 knockdown were examined in cultured neonatal rat ventricular myocytes. The effects of adeno-associated virus-mediated Hrd1 knockdown and overexpression were examined in the hearts of mice subjected to pressure overload-induced pathological cardiac hypertrophy, which challenges protein-folding capacity. In cardiac myocytes, the ER stressors, thapsigargin and tunicamycin increased ERAD, as well as adaptive ER stress proteins, and minimally affected cell death. However, when Hrd1 was knocked down, thapsigargin and tunicamycin dramatically decreased ERAD, while increasing maladaptive ER stress proteins and cell death. In vivo, Hrd1 knockdown exacerbated cardiac dysfunction and increased apoptosis and cardiac hypertrophy, whereas Hrd1 overexpression preserved cardiac function and decreased apoptosis and attenuated cardiac hypertrophy in the hearts of mice subjected to pressure overload. CONCLUSIONS Hrd1 and ERAD are essential components of the adaptive ER stress response in cardiac myocytes. Hrd1 contributes to preserving heart structure and function in a mouse model of pathological cardiac hypertrophy.
Collapse
Affiliation(s)
- Shirin Doroudgar
- From the San Diego State University Heart Institute and the Department of Biology, San Diego State University, CA (S.D., M.V., D.J.T., M.K., S.M., N.G., M.A.S., C.C.G.); Department of Cardiology, University of Heidelberg, Heidelberg, Germany (M.V.); DZKH (German Centre for Cardiovascular Research) Partner Site Heidelberg/Mannheim, Heidelberg, Germany (M.V.); Department of Internal Medicine III (O.J.M.), University of Heidelberg, Heidelberg, Germany; Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (M.K., S.M.); and Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX (J.L.R., W.W., X.H.T.W.)
| | - Mirko Völkers
- From the San Diego State University Heart Institute and the Department of Biology, San Diego State University, CA (S.D., M.V., D.J.T., M.K., S.M., N.G., M.A.S., C.C.G.); Department of Cardiology, University of Heidelberg, Heidelberg, Germany (M.V.); DZKH (German Centre for Cardiovascular Research) Partner Site Heidelberg/Mannheim, Heidelberg, Germany (M.V.); Department of Internal Medicine III (O.J.M.), University of Heidelberg, Heidelberg, Germany; Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (M.K., S.M.); and Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX (J.L.R., W.W., X.H.T.W.)
| | - Donna J Thuerauf
- From the San Diego State University Heart Institute and the Department of Biology, San Diego State University, CA (S.D., M.V., D.J.T., M.K., S.M., N.G., M.A.S., C.C.G.); Department of Cardiology, University of Heidelberg, Heidelberg, Germany (M.V.); DZKH (German Centre for Cardiovascular Research) Partner Site Heidelberg/Mannheim, Heidelberg, Germany (M.V.); Department of Internal Medicine III (O.J.M.), University of Heidelberg, Heidelberg, Germany; Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (M.K., S.M.); and Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX (J.L.R., W.W., X.H.T.W.)
| | - Mohsin Khan
- From the San Diego State University Heart Institute and the Department of Biology, San Diego State University, CA (S.D., M.V., D.J.T., M.K., S.M., N.G., M.A.S., C.C.G.); Department of Cardiology, University of Heidelberg, Heidelberg, Germany (M.V.); DZKH (German Centre for Cardiovascular Research) Partner Site Heidelberg/Mannheim, Heidelberg, Germany (M.V.); Department of Internal Medicine III (O.J.M.), University of Heidelberg, Heidelberg, Germany; Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (M.K., S.M.); and Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX (J.L.R., W.W., X.H.T.W.)
| | - Sadia Mohsin
- From the San Diego State University Heart Institute and the Department of Biology, San Diego State University, CA (S.D., M.V., D.J.T., M.K., S.M., N.G., M.A.S., C.C.G.); Department of Cardiology, University of Heidelberg, Heidelberg, Germany (M.V.); DZKH (German Centre for Cardiovascular Research) Partner Site Heidelberg/Mannheim, Heidelberg, Germany (M.V.); Department of Internal Medicine III (O.J.M.), University of Heidelberg, Heidelberg, Germany; Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (M.K., S.M.); and Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX (J.L.R., W.W., X.H.T.W.)
| | - Jonathan L Respress
- From the San Diego State University Heart Institute and the Department of Biology, San Diego State University, CA (S.D., M.V., D.J.T., M.K., S.M., N.G., M.A.S., C.C.G.); Department of Cardiology, University of Heidelberg, Heidelberg, Germany (M.V.); DZKH (German Centre for Cardiovascular Research) Partner Site Heidelberg/Mannheim, Heidelberg, Germany (M.V.); Department of Internal Medicine III (O.J.M.), University of Heidelberg, Heidelberg, Germany; Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (M.K., S.M.); and Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX (J.L.R., W.W., X.H.T.W.)
| | - Wei Wang
- From the San Diego State University Heart Institute and the Department of Biology, San Diego State University, CA (S.D., M.V., D.J.T., M.K., S.M., N.G., M.A.S., C.C.G.); Department of Cardiology, University of Heidelberg, Heidelberg, Germany (M.V.); DZKH (German Centre for Cardiovascular Research) Partner Site Heidelberg/Mannheim, Heidelberg, Germany (M.V.); Department of Internal Medicine III (O.J.M.), University of Heidelberg, Heidelberg, Germany; Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (M.K., S.M.); and Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX (J.L.R., W.W., X.H.T.W.)
| | - Natalie Gude
- From the San Diego State University Heart Institute and the Department of Biology, San Diego State University, CA (S.D., M.V., D.J.T., M.K., S.M., N.G., M.A.S., C.C.G.); Department of Cardiology, University of Heidelberg, Heidelberg, Germany (M.V.); DZKH (German Centre for Cardiovascular Research) Partner Site Heidelberg/Mannheim, Heidelberg, Germany (M.V.); Department of Internal Medicine III (O.J.M.), University of Heidelberg, Heidelberg, Germany; Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (M.K., S.M.); and Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX (J.L.R., W.W., X.H.T.W.)
| | - Oliver J Müller
- From the San Diego State University Heart Institute and the Department of Biology, San Diego State University, CA (S.D., M.V., D.J.T., M.K., S.M., N.G., M.A.S., C.C.G.); Department of Cardiology, University of Heidelberg, Heidelberg, Germany (M.V.); DZKH (German Centre for Cardiovascular Research) Partner Site Heidelberg/Mannheim, Heidelberg, Germany (M.V.); Department of Internal Medicine III (O.J.M.), University of Heidelberg, Heidelberg, Germany; Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (M.K., S.M.); and Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX (J.L.R., W.W., X.H.T.W.)
| | - Xander H T Wehrens
- From the San Diego State University Heart Institute and the Department of Biology, San Diego State University, CA (S.D., M.V., D.J.T., M.K., S.M., N.G., M.A.S., C.C.G.); Department of Cardiology, University of Heidelberg, Heidelberg, Germany (M.V.); DZKH (German Centre for Cardiovascular Research) Partner Site Heidelberg/Mannheim, Heidelberg, Germany (M.V.); Department of Internal Medicine III (O.J.M.), University of Heidelberg, Heidelberg, Germany; Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (M.K., S.M.); and Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX (J.L.R., W.W., X.H.T.W.)
| | - Mark A Sussman
- From the San Diego State University Heart Institute and the Department of Biology, San Diego State University, CA (S.D., M.V., D.J.T., M.K., S.M., N.G., M.A.S., C.C.G.); Department of Cardiology, University of Heidelberg, Heidelberg, Germany (M.V.); DZKH (German Centre for Cardiovascular Research) Partner Site Heidelberg/Mannheim, Heidelberg, Germany (M.V.); Department of Internal Medicine III (O.J.M.), University of Heidelberg, Heidelberg, Germany; Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (M.K., S.M.); and Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX (J.L.R., W.W., X.H.T.W.)
| | - Christopher C Glembotski
- From the San Diego State University Heart Institute and the Department of Biology, San Diego State University, CA (S.D., M.V., D.J.T., M.K., S.M., N.G., M.A.S., C.C.G.); Department of Cardiology, University of Heidelberg, Heidelberg, Germany (M.V.); DZKH (German Centre for Cardiovascular Research) Partner Site Heidelberg/Mannheim, Heidelberg, Germany (M.V.); Department of Internal Medicine III (O.J.M.), University of Heidelberg, Heidelberg, Germany; Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (M.K., S.M.); and Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX (J.L.R., W.W., X.H.T.W.).
| |
Collapse
|
9
|
Bi X, He X, Xu M, Zhao M, Yu X, Lu X, Zang W. Acetylcholine ameliorates endoplasmic reticulum stress in endothelial cells after hypoxia/reoxygenation via M3 AChR-AMPK signaling. Cell Cycle 2015; 14:2461-72. [PMID: 26066647 DOI: 10.1080/15384101.2015.1060383] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Endoplasmic reticulum (ER) stress is associated with various cardiovascular diseases. However, its pathophysiological relevance and the underlying mechanisms in the context of hypoxia/reoxygenation (H/R) in endothelial cells are not fully understood. Previous findings have suggested that acetylcholine (ACh), the major vagal nerve neurotransmitter, protected against cardiomyocyte injury by activating AMP-activated protein kinase (AMPK). This study investigated the role of ER stress in endothelial cells during H/R and explored the beneficial effects of ACh. Our results showed that H/R triggered ER stress and apoptosis in endothelial cells, evidenced by the elevation of glucose-regulated protein 78, cleaved caspase-12 and C/EBP homologous protein expression. ACh significantly decreased ER stress and terminal deoxynucleotidyl transferase mediated dUTP-biotin nick end labeling positive cells and restored ER ultrastructural changes induced by H/R, possibly via protein kinase-like ER kinase and inositol-requiring kinase 1 pathways. Additionally, 4-diphenylacetoxy-N-methylpiperidine methiodide, a type-3 muscarinic ACh receptor (M3 AChR) inhibitor, abolished ACh-mediated increase in AMPK phosphorylation during H/R. Furthermore, M3 AChR or AMPK siRNA abrogated the ACh-elicited the attenuation of ER stress in endothelial cells, indicating that the salutary effects of ACh were likely mediated by M3 AChR-AMPK signaling. Overall, ACh activated AMPK through M3 AChR, thereby inhibited H/R-induced ER stress and apoptosis in endothelial cells. We have suggested for the first time that AMPK may function as an essential intermediate step between M3 AChR stimulation and inhibition of ER stress-associated apoptotic pathway during H/R, which may help to develop novel therapeutic approaches targeting ER stress to prevent or alleviate ischemia/reperfusion injury.
Collapse
Key Words
- 4-DAMP, 4-diphenylacetoxy-N-methylpiperidine methiodide
- 4-PBA, 4-phenyl butyric acid
- ACh, acetylcholine
- AMPK
- AMPK, AMP-activated protein kinase
- ATF6, activating transcription factor 6
- CHOP, C/EBP homologous protein
- DAPI, 4′,6-diamidino-2-phenylindole
- ER, endoplasmic reticulum
- GAPDH, glyceraldehyde 3-phospharte dehydrogenase
- GRP78, glucose-regulated protein 78
- H/R, hypoxia/reoxygenation
- I/R, ischemia/reperfusion
- IRE1, inositol-requiring kinase 1
- M3 AChR
- MAChR, muscarinic acetylcholine receptor
- PBS, phosphate-buffered saline
- PERK, protein kinase-like ER kinase
- TUNEL, terminal deoxynucleotidyl transferase mediated dUTP-biotin nick end labeling
- acetylcholine
- apoptosis
- endoplasmic reticulum stress
- endothelial cells
- ischemia/reperfusion injury
Collapse
Affiliation(s)
- Xueyuan Bi
- a Department of Pharmacology ; Xi'an Jiaotong University Health Science Center , Xi'an , P.R. China
| | | | | | | | | | | | | |
Collapse
|
10
|
Miao Y, Bi XY, Zhao M, Jiang HK, Liu JJ, Li DL, Yu XJ, Yang YH, Huang N, Zang WJ. Acetylcholine inhibits tumor necrosis factor α activated endoplasmic reticulum apoptotic pathway via EGFR-PI3K signaling in cardiomyocytes. J Cell Physiol 2015; 230:767-74. [PMID: 25201632 DOI: 10.1002/jcp.24800] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 09/05/2014] [Indexed: 12/11/2022]
Abstract
Previous findings have shown that acetylcholine (ACh) decreased hypoxia-induced tumor necrosis factor alpha (TNF α) production, thus protected against cardiomyocyte injury. However, whether and how ACh affects TNF α-induced endoplasmic reticulum (ER) stress and cell apoptosis remain poorly defined. This study was aimed at determining the effect of ACh in H9c2 cells after TNF α stimulation. Presence of ER stress was verified using the ER stress protein markers glucose regulatory protein 78 (GRP78) and C/EBP homologous protein (CHOP). Cell apoptosis was shown by caspase-3 activation and terminal deoxynucleotidyl transferase mediated dUTP-biotin nick end labeling. Exogenously administered ACh significantly decreased these TNF α-induced changes. Moreover, when the cells were exposed to nonspecific muscarinic receptor (M AChR) inhibitor atropine, methoctramine (M2 AChR inhibitor) or the epidermal growth factor receptor (EGFR) inhibitor AG1478, the cardioprotection elicited by ACh was diminished. Furthermore, the above effects were also blocked by M2 AChR or EGFR siRNA, indicating that EGFR transactivation by M2 AChR may be the major pathway responsible for the benefits of ACh. In addition, LY294002, a phosphatidylinositol-3-kinase (PI3K) inhibitor, displayed the similar trends as AG1478, suggesting that PI3K/Akt signaling may be the downstream of EGFR in ACh-elicited anti-apoptotic property. Together, these data indicate that EGFR-PI3K/Akt signaling is involved in M2 AChR-mediated ER apoptotic pathway suppression and the subsequent survival of H9c2 cardiomyocytes. We have identified a novel pathway underlying the cardioprotection afforded by ACh.
Collapse
Affiliation(s)
- Yi Miao
- Department of Pharmacology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, P. R. China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Metallothionein prevents intermittent hypoxia-induced cardiac endoplasmic reticulum stress and cell death likely via activation of Akt signaling pathway in mice. Toxicol Lett 2014; 227:113-23. [PMID: 24680926 DOI: 10.1016/j.toxlet.2014.03.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Revised: 03/17/2014] [Accepted: 03/17/2014] [Indexed: 12/22/2022]
Abstract
Endoplasmic reticulum (ER) stress, an adaptive response normally, causes apoptotic cell death under pathological conditions. Cardiac ER stress and associated cell death involve in the inflammatory responses that often cause cardiac remodeling and dysfunction. Here we examined whether chronic intermittent hypoxia (IH) induces cardiac ER stress and associated cell death along with inflammatory response and if so, whether these effects can be affected by transgenic overexpression or deletion of metallothionein gene (MT-TG or MT-KO). IH exposures for 3 days to 4 weeks significantly increased cardiac ER stress and apoptosis, shown by the increased expression of GRP78, ATF6 and CHOP, the activation of caspase-12 and capase-3, and the decreased Bcl2/Bax expression ratio, predominantly in the 3rd week of IH exposures. These effects were significantly exacerbated in MT-KO mice, but completely prevented in MT-TG mice. In vitro mechanistic study with H9c2 cardiac and primary neonatal cardiomyocytes showed that MT protection from ER stress-induced apoptosis was mediated by up-regulating Akt phosphorylation since inhibition of Akt phosphorylation abolished MT's protection MT from ER stress and apoptosis. These findings suggest that chronic IH is able to induce cardiac ER stress, cell death and inflammation can be prevented by MT, probably via up-regulation of Akt function.
Collapse
|
12
|
Bexiga MG, Simpson JC. Human diseases associated with form and function of the Golgi complex. Int J Mol Sci 2013; 14:18670-81. [PMID: 24025425 PMCID: PMC3794802 DOI: 10.3390/ijms140918670] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 08/09/2013] [Accepted: 09/03/2013] [Indexed: 11/16/2022] Open
Abstract
The Golgi complex lies at the heart of the secretory pathway and is responsible for modifying proteins and lipids, as well as sorting newly synthesized molecules to their correct destination. As a consequence of these important roles, any changes in its proteome can negatively affect its function and in turn lead to disease. Recently, a number of proteins have been identified, which when either depleted or mutated, result in diseases that affect various organ systems. Here we describe how these proteins have been linked to the Golgi complex, and specifically how they affect either the morphology, membrane traffic or glycosylation ability of this organelle.
Collapse
Affiliation(s)
| | - Jeremy C. Simpson
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +353-1-716-2345; Fax: +353-1-716-1153
| |
Collapse
|
13
|
Chang JR, Duan XH, Zhang BH, Teng X, Zhou YB, Liu Y, Yu YR, Zhu Y, Tang CS, Qi YF. Intermedin1-53 attenuates vascular smooth muscle cell calcification by inhibiting endoplasmic reticulum stress via cyclic adenosine monophosphate/protein kinase A pathway. Exp Biol Med (Maywood) 2013; 238:1136-46. [PMID: 24006303 DOI: 10.1177/1535370213502619] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
We previously reported that endoplasmic reticulum (ER) stress-mediated apoptosis participated in vascular calcification. Importantly, a novel paracrine/autocrine peptide intermedin1-53 (IMD1-53) in the vasculature inhibited vascular calcification in rats. But the mechanisms needed to be fully elucidated. Vascular smooth muscle cells (VSMCs) calcification was induced by CaCl2 and β-glycerophosphate. Tunicamycin (Tm) or dithiothreitol (DTT) was used to induce ER stress. We found that IMD1-53 (10(-7)mol/L) treatment significantly alleviated the protein expression of ER stress hallmarks activating transcription factor 4 (ATF4), ATF6, glucose-regulated protein 78 (GRP78) and GRP94 induced by Tm or DTT. ER stress occurred in early and late calcification of VSMCs but was inhibited by IMD1-53. These inhibitory effects of IMD1-53 were abolished by treatment with the protein kinase A (PKA) inhibitor H89. Pretreatment with IMD1-53 decreased the number of apoptotic VSMCs and downregulated protein expression of cleaved caspase 12 and C/EBP homologous protein (CHOP) in calcified VSMCs. Concurrently, IMD1-53 restored the loss of VSMC lineage markers and ameliorated calcium deposition and alkaline phosphatase activity in calcified VSMCs as well. The observation was further verified by Alizarin Red S staining, which showed that IMD1-53 reduced positive red nodules among calcified VSMCs. In conclusion, IMD1-53 attenuated VSMC calcification by inhibiting ER stress through cAMP/PKA signalling.
Collapse
Affiliation(s)
- Jin-Rui Chang
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Peking University Health Science Center, Beijing 100191, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|