1
|
Noh S, Lee SR, Jeong YJ, Ko KS, Rhee BD, Kim N, Han J. The direct modulatory activity of zinc toward ion channels. Integr Med Res 2015; 4:142-146. [PMID: 28664120 PMCID: PMC5481804 DOI: 10.1016/j.imr.2015.07.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 07/08/2015] [Indexed: 12/19/2022] Open
Abstract
The divalent zinc ion is a cation that plays an indispensable role as a structural constituent of numerous proteins, including enzymes and transcription factors. Recently, it has been suggested that zinc also plays a dynamic role in extracellular and intracellular signaling as well. Ion channels are pore-forming proteins that control the flow of specific ions across the membrane, which is important to maintain ion gradients. In this review, we outline the modulatory effect of zinc on the activities of several ion channels through direct binding of zinc into histidine, cysteine, aspartate, and glutamate moieties of channel proteins. The binding of zinc to ion channels results in the activation or inhibition of the channel due to conformational changes. These novel aspects of ion-channel activity modulation by zinc provide new insights into the physiological regulation of ion channels.
Collapse
Affiliation(s)
- Sujin Noh
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Korea
| | - Sung Ryul Lee
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Korea
| | - Yu Jeong Jeong
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Korea
| | - Kyung Soo Ko
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Korea
| | - Byoung Doo Rhee
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Korea
| | - Nari Kim
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Korea
| | - Jin Han
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Korea
| |
Collapse
|
2
|
Nigro MJ, Perin P, Magistretti J. Differential effects of Zn2+ on activation, deactivation, and inactivation kinetics in neuronal voltage-gated Na+ channels. Pflugers Arch 2011; 462:331-47. [PMID: 21590363 DOI: 10.1007/s00424-011-0972-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Revised: 04/22/2011] [Accepted: 04/25/2011] [Indexed: 11/27/2022]
Abstract
Whole-cell, patch-clamp recordings were carried out in acutely dissociated neurons from entorhinal cortex (EC) layer II to study the effects of Zn(2+) on Na(+) current kinetics and voltage dependence. In the presence of 200 μM extracellular Cd(2+) to abolish voltage-dependent Ca(2+) currents, and 100 mM extracellular Na(+), 1 mM Zn(2+) inhibited the transient Na(+) current, I (NaT), only to a modest degree (~17% on average). A more pronounced inhibition (~36%) was induced by Zn(2+) when extracellular Na(+) was lowered to 40 mM. Zn(2+) also proved to modify I (NaT) voltage-dependent and kinetic properties in multiple ways. Zn(2+) (1 mM) shifted the voltage dependence of I (NaT) activation and that of I (NaT) onset speed in the positive direction by ~5 mV. The voltage dependence of I (NaT) steady-state inactivation and that of I (NaT) inactivation kinetics were markedly less affected by Zn(2+). By contrast, I (NaT) deactivation speed was prominently accelerated, and its voltage dependence was shifted by a significantly greater amount (~8 mV on average) than that of I (NaT) activation. In addition, the kinetics of I (NaT) recovery from inactivation were significantly slowed by Zn(2+). Zn(2+) inhibition of I (NaT) showed no signs of voltage dependence over the explored membrane-voltage window, indicating that the above effects cannot be explained by voltage dependence of Zn(2+)-induced channel-pore block. These findings suggest that the multiple, voltage-dependent state transitions that the Na(+) channel undergoes through its activation path are differentially sensitive to the gating-modifying effects of Zn(2+), thus resulting in differential modifications of the macroscopic current's activation, inactivation, and deactivation. Computer modeling provided support to this hypothesis.
Collapse
Affiliation(s)
- Maximiliano Josè Nigro
- Dipartimento di Fisiologia, Sezione di Fisiologia Generale, Università degli Studi di Pavia, Via Forlanini 6, Pavia, Italy
| | | | | |
Collapse
|
3
|
Guan D, Horton LR, Armstrong WE, Foehring RC. Postnatal development of A-type and Kv1- and Kv2-mediated potassium channel currents in neocortical pyramidal neurons. J Neurophysiol 2011; 105:2976-88. [PMID: 21451062 DOI: 10.1152/jn.00758.2010] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Potassium channels regulate numerous aspects of neuronal excitability, and several voltage-gated K(+) channel subunits have been identified in pyramidal neurons of rat neocortex. Previous studies have either considered the development of outward current as a whole or divided currents into transient, A-type and persistent, delayed rectifier components but did not differentiate between current components defined by α-subunit type. To facilitate comparisons of studies reporting K(+) currents from animals of different ages and to understand the functional roles of specific current components, we characterized the postnatal development of identified Kv channel-mediated currents in pyramidal neurons from layers II/III from rat somatosensory cortex. Both the persistent/slowly inactivating and transient components of the total K(+) current increased in density with postnatal age. We used specific pharmacological agents to test the relative contributions of putative Kv1- and Kv2-mediated currents (100 nM α-dendrotoxin and 600 nM stromatoxin, respectively). A combination of voltage protocol, pharmacology, and curve fitting was used to isolate the rapidly inactivating A-type current. We found that the density of all identified current components increased with postnatal age, approaching a plateau at 3-5 wk. We found no significant changes in the relative proportions or kinetics of any component between postnatal weeks 1 and 5, except that the activation time constant for A-type current was longer at 1 wk. The putative Kv2-mediated component was the largest at all ages. Immunocytochemistry indicated that protein expression for Kv4.2, Kv4.3, Kv1.4, and Kv2.1 increased between 1 wk and 4-5 wk of age.
Collapse
Affiliation(s)
- Dongxu Guan
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | | | | | | |
Collapse
|
4
|
Noh J, Chang S, Wang S, Chung J. Dual function of Zn2+ on the intrinsic excitability of dopaminergic neurons in rat substantia nigra. Neuroscience 2011; 175:85-92. [DOI: 10.1016/j.neuroscience.2010.11.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2010] [Revised: 11/10/2010] [Accepted: 11/10/2010] [Indexed: 10/18/2022]
|
5
|
Abstract
Despite the fact that paraventricular nucleus (PVN) neurones innervating the rostral ventrolateral medulla (RVLM) play important roles in the control of sympathetic function both in physiological and pathological conditions, the precise mechanisms controlling their activity are still incompletely understood. In the present study, we evaluated whether the transient outward potassium current I(A) is expressed in PVN-RVLM neurones, characterized its biophysical and pharmacological properties, and determined its role in shaping action potentials and firing discharge in these neurones. Patch-clamp recordings obtained from retrogradely labelled, PVN-RVLM neurones indicate that a 4-AP sensitive, TEA insensitive current, with biophysical properties consistent with I(A), is present in these neurones. Pharmacological blockade of I(A) depolarized resting V(m) and prolonged Na(+) action potential duration, by increasing its width and by slowing down its decay time course. Interestingly, blockade of I(A) either increased or decreased the firing activity of PVN-RVLM neurones, supporting the presence of subsets of PVN-RVLM neurones differentially modulated by I(A). In all cases, the effects of I(A) on firing activity were prevented by a broad spectrum Ca(2+) channel blocker. Immunohistochemical studies suggest that I(A) in PVN-RVLM neurons is mediated by Kv1.4 and/or Kv4.3 channel subunits. Overall, our results demonstrate the presence of I(A) in PVN-RVLM neurones, which actively modulates their action potential waveform and firing activity. These studies support I(A) as an important intrinsic mechanism controlling neuronal excitability in this central presympathetic neuronal population.
Collapse
Affiliation(s)
- Patrick M Sonner
- Department of Psychiatry, University of Cincinnati, Genome Research Institute, 2170 E. Galbraith Rd, Cincinnati, OH 45237, USA
| | | |
Collapse
|
6
|
Guan D, Tkatch T, Surmeier DJ, Armstrong WE, Foehring RC. Kv2 subunits underlie slowly inactivating potassium current in rat neocortical pyramidal neurons. J Physiol 2007; 581:941-60. [PMID: 17379638 PMCID: PMC2170822 DOI: 10.1113/jphysiol.2007.128454] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
We determined the expression of Kv2 channel subunits in rat somatosensory and motor cortex and tested for the contributions of Kv2 subunits to slowly inactivating K+ currents in supragranular pyramidal neurons. Single cell RT-PCR showed that virtually all pyramidal cells expressed Kv2.1 mRNA and approximately 80% expressed Kv2.2 mRNA. Immunocytochemistry revealed striking differences in the distribution of Kv2.1 and Kv2.2 subunits. Kv2.1 subunits were clustered and located on somata and proximal dendrites of all pyramidal cells. Kv2.2 subunits were primarily distributed on large apical dendrites of a subset of pyramidal cells from deep layers. We used two methods for isolating currents through Kv2 channels after excluding contributions from Kv1 subunits: intracellular diffusion of Kv2.1 antibodies through the recording pipette and extracellular application of rStromatoxin-1 (ScTx). The Kv2.1 antibody specifically blocked the slowly inactivating K+ current by 25-50% (at 8 min), demonstrating that Kv2.1 subunits underlie much of this current in neocortical pyramidal neurons. ScTx (300 nM) also inhibited approximately 40% of the slowly inactivating K+ current. We observed occlusion between the actions of Kv2.1 antibody and ScTx. In addition, Kv2.1 antibody- and ScTx-sensitive currents demonstrated similar recovery from inactivation and voltage dependence and kinetics of activation and inactivation. These data indicate that both agents targeted the same channels. Considering the localization of Kv2.1 and 2.2 subunits, currents from truncated dissociated cells are probably dominated by Kv2.1 subunits. Compared with Kv2.1 currents in expression systems, the Kv2.1 current in neocortical pyramidal cells activated and inactivated at relatively negative potentials and was very sensitive to holding potential.
Collapse
Affiliation(s)
- D Guan
- Department of Anatomy and Neurobiology, University of Tennessee, 855 Monroe Avenue, Memphis, TN 38163, USA
| | | | | | | | | |
Collapse
|
7
|
Mathie A, Sutton GL, Clarke CE, Veale EL. Zinc and copper: pharmacological probes and endogenous modulators of neuronal excitability. Pharmacol Ther 2006; 111:567-83. [PMID: 16410023 DOI: 10.1016/j.pharmthera.2005.11.004] [Citation(s) in RCA: 184] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2005] [Accepted: 11/23/2005] [Indexed: 12/19/2022]
Abstract
As well as being key structural components of many proteins, increasing evidence suggests that zinc and copper ions function as signaling molecules in the nervous system and are released from the synaptic terminals of certain neurons. In this review, we consider the actions of these two ions on proteins that regulate neuronal excitability. In addition to the established actions of zinc, and to a lesser degree copper, on excitatory and inhibitory ligand-gated ion channels, we show that both ions have a number of actions on selected members of the voltage-gated-like ion channel superfamily. For example, zinc is a much more effective blocker of one subtype of tetrodotoxin (TTX)-insensitive sodium (Na+) channel (NaV1.5) than other Na+ channels, whereas a certain T-type calcium (Ca2+) channel subunit (CaV3.2) is particularly sensitive to zinc. For potassium (K+) channels, zinc can have profound effects on the gating of certain KV channels whereas zinc and copper have distinct actions on closely related members of the 2 pore domain potassium channel (K2P) channel family. In addition to direct actions on these proteins, zinc is able to permeate a number of membrane proteins such as (S)-alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA)/kainate receptors, Ca2+ channels and some transient receptor potential (trp) channels. There are a number of important physiological and pathophysiological consequences of these many actions of zinc and copper on membrane proteins, in terms of regulation of neuronal excitability and neurotoxicity. Furthermore, the concentration of free zinc and copper either in the synaptic cleft or neuronal cytoplasm may contribute to the etiology of certain disease states such as Alzheimer's disease (AD) and epilepsy.
Collapse
Affiliation(s)
- Alistair Mathie
- Biophysics Section, Blackett Laboratory, Division of Cell and Molecular Biology, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| | | | | | | |
Collapse
|
8
|
Xu TX, Gong N, Xu TL. Divalent cation modulation of a-type potassium channels in acutely dissociated central neurons from wide-type and mutant Drosophila. J Neurogenet 2005; 19:87-107. [PMID: 16024441 DOI: 10.1080/01677060591007182] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Drosophila mutants provide an ideal model to study channel-type specificity of ion channel regulation in situ. In this study, the effects of divalent cations on voltage-gated K+ currents were investigated in acutely dissociated central neurons of Drosophila third instar larvae using the whole-cell patch-clamp recording. Our data showed that micromolar Cd2+ enhanced the peak inactivating current (I(A)) without affecting the delayed component (I(K)). The same results were obtained in Ca(2+)-free external solution, and from slo1 mutation, which eliminates transient Ca(2+)-activated K+ current. Micromolar Cd2+ and Zn2+, and millimolar Ca2+ and Mg2+ all shifted the steady-state inactivation curve of I(A) without affecting the voltage-dependence of I(A) activation, whereas millimolar Cd2+ markedly affected both the activation and steady-state inactivation curves for I(A). Divalent cations affected I(A) with different potency; the sequence was: Zn2+ > Cd2+ > Ca2+ > Mg2+. The modulation of I(A) by Cd2+ was partially inhibited in Sh(M), a null Shaker (one of I(A)-encoding genes) mutation. Taken together, the channel-type specificity, the asymmetric effects on I(A) activation and inactivation kinetics, and the diverse potency of divalent cations all strongly support the idea that physiological divalent cations modulate A-type K+ channels through specific binding to extracellular sites of the channels.
Collapse
Affiliation(s)
- Tai-Xiang Xu
- School of Life Sciences, University of Science and Technology of China, Hefei, China.
| | | | | |
Collapse
|
9
|
Yu K, Ge SY, Dai XQ, Ruan DY. Effects of Pb2+ on the transient outward potassium current in acutely dissociated rat hippocampal neurons. Can J Physiol Pharmacol 2003; 81:825-33. [PMID: 12897812 DOI: 10.1139/y03-074] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Modulation of the voltage-dependent transient outward potassium current (IA) by Pb2+ was studied in acutely dissociated rat hippocampal pyramidal cells from the CA1 region at postnatal ages 7-14 days using the conventional whole-cell patch-clamp technique. In the presence of different concentrations of external Pb2+, the initial delay and activation time of IA were concentration-dependently lengthened. In particular, the initial delay was even longer in 1 mM Pb2+, showing no signs of saturation. Pb2+ also slowed the inactivation of IA, for decay time constants in the presence of Pb2+ were increased under the same experimental protocols. The activation curves, which were reasonably fitted by a single Boltzmann function, illustrated that Pb2+ increased the voltage threshold of IA and shifted the normalized activation current-voltage curves to more depolarizing voltage commands. Moreover, Pb2+ significantly affected the steady-state inactivation of IA. The application of Pb 2+ made the curves of the steady-state inactivation of IA shift to more depolarizing voltages with little change in the slopes factors. In brief, the results demonstrated that Pb2+ is a dose- and voltage-dependent, reversible blocker of IA currents of hippocampal CA1 neurons. The observations were fitted by the revised "Kuo and Chen type model", which postulates a Pb2+-selective site near the pore of the IA channel and that modulation of the IA channel by Pb2+ is the result of the competitive influences of Pb2+ on opening and inactivating different pathways.
Collapse
Affiliation(s)
- Kuai Yu
- School of Life Science, University of Science and Technology of China, Hefei, Anhui 230027, P.R., China
| | | | | | | |
Collapse
|
10
|
Abstract
Zinc ions are known to induce a variable depolarizing shift of the ionic current half-activation potential and substantially slow the activation kinetics of most K(+) channels. In Kv1.5, Zn(2+) also reduces ionic current, and this is relieved by increasing the external K(+) or Cs(+) concentration. Here we have investigated the actions of Zn(2+) on the gating currents of Kv1.5 channels expressed in HEK cells. Zn(2+) shifted the midpoint of the charge-voltage (Q-V) curve substantially more (approximately 2 times) than it shifted the V(1/2) of the g-V curve, and this amounted to +60 mV at 1 mM Zn(2+). Both Q1 and Q2 activation charge components were similarly affected by Zn(2+), which indicated free access of Zn(2+) to channel closed states. The maximal charge movement was also reduced by 1 mM Zn(2+) by approximately 15%, from 1.6 +/- 0.5 to 1.4 +/- 0.47 pC (n = 4). Addition of external K(+) or Cs(+), which relieved the Zn(2+)-induced ionic current reduction, decreased the extent of the Zn(2+)-induced Q-V shift. In 135 mM extracellular Cs(+), 200 microM Zn(2+) reduced ionic current by only 8 +/- 1%, compared with 71% reduction in 0 mM extracellular Cs(+), and caused a comparable shift in both the g-V and Q-V relations (17.9 +/- 0.6 mV vs. 20.8 +/- 2.1 mV, n = 6). Our results confirm the presence of two independent binding sites involved in the Zn(2+) actions. Whereas binding to one site accounts for reduction of current and binding to the other site accounts for the gating shift in ionic current recordings, both sites contribute to the Zn(2+)-induced Q-V shift.
Collapse
Affiliation(s)
- S Zhang
- Department of Physiology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | | | | |
Collapse
|
11
|
Kuo CC, Chen FP. Zn2+ modulation of neuronal transient K+ current: fast and selective binding to the deactivated channels. Biophys J 1999; 77:2552-62. [PMID: 10545356 PMCID: PMC1300530 DOI: 10.1016/s0006-3495(99)77090-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Modulation of voltage-dependent transient K(+) currents (A type K(+) or K(A) current) by Zn(2+) was studied in rat hippocampal neurons by the whole-cell patch-clamp technique. It is found that Zn(2+) selectively binds to the resting (deactivated or closed) K(A) channels with a dissociation constant (K(d)) of approximately 3 microM, whereas the affinity between Zn(2+) and the inactivated K(A) channels is 1000-fold lower. Zn(2+) therefore produces a concentration-dependent shift of the K(A) channel inactivation curve and enhances the K(A) current elicited from relatively positive holding potentials. It is also found that the kinetics of Zn(2+) action are fast enough to compete with the transition rates between different gating states of the channel. The rapid and selective binding of Zn(2+) to the closed K(A) channels keeps the channel in the closed state and explains the ion's concentration-dependent slowing effect on the activation of K(A) current. This in turn accounts for the inhibitory effect of Zn(2+) on the K(A) current elicited from hyperpolarized holding potentials. Because the molecular mechanisms underlying these gating changes are kinetic interactions between the binding-unbinding of Zn(2+) and the intrinsic gating processes of the channel, the shift of the inactivation curve and slowing of K(A) channel activation are quantitatively correlated with ambient Zn(2+) over a wide concentration range without "saturation"; i.e., The effects are already manifest in micromolar Zn(2+), yet are not saturated even in millimolar Zn(2+). Because the physiological concentration of Zn(2+) could vary over a similarly wide range according to neural activities, Zn(2+) may be a faithful physiological "fine tuner," controlling and controlled by neural activities through its effect on the K(A) current.
Collapse
Affiliation(s)
- C C Kuo
- Department of Physiology, National Taiwan University College of Medicine, National Taiwan University Hospital, Taipei 100, Taiwan, Republic of China.
| | | |
Collapse
|
12
|
Stengl M, Carmeliet E, Mubagwa K, Flameng W. Modulation of transient outward current by extracellular protons and Cd2+ in rat and human ventricular myocytes. J Physiol 1998; 511 ( Pt 3):827-36. [PMID: 9714863 PMCID: PMC2231156 DOI: 10.1111/j.1469-7793.1998.827bg.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
1. The effects of extracellular acidosis and Cd2+ on the transient outward current (Ito) have been investigated in rat and human ventricular myocytes, using the whole-cell patch-clamp technique. 2. In rat myocytes, exposure to acidic extracellular solution (pH 6.0) shifted both steady-state activation and inactivation curves to more positive potentials, by 20.5 +/- 2.7 mV (mean +/- S.E.M.; n = 4) and 19.8 +/- 1.2 mV, respectively. Cd2+ also shifted the activation and inactivation curves in a positive direction in a concentration-dependent manner. 3. In human myocytes, the steady-state activation and inactivation curves were located at more positive potentials. The effect of Cd2+ was similar, but acidosis had less effect than in rat myocytes (e.g. pH 6.0 shifted activation by only 7.2 +/- 2.2 mV and inactivation by 13.7 +/- 0.5 mV; n = 4). 4. In both species, the effect of acidosis decreased with increasing concentrations of Cd2+ and vice versa, suggesting competition between H+ and Cd2+ for a common binding site. 5. The data indicate that acidosis and divalent cations influence Ito via a similar mechanism and act competitively in both rat and human myocytes, but that human cells are less sensitive to the effects of acidosis.
Collapse
Affiliation(s)
- M Stengl
- Centre for Experimental Surgery and Anaesthesiology, University of Leuven, B-3000 Leuven, Belgium
| | | | | | | |
Collapse
|
13
|
Qi A, Tang C, Yeung-Lai-Wah JA, Kerr CR. Characteristics of restitution kinetics in repolarization of rabbit atrium. Can J Physiol Pharmacol 1997. [DOI: 10.1139/y97-038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
14
|
Del Negro CA, Chandler SH. Physiological and theoretical analysis of K+ currents controlling discharge in neonatal rat mesencephalic trigeminal neurons. J Neurophysiol 1997; 77:537-53. [PMID: 9065827 DOI: 10.1152/jn.1997.77.2.537] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Whole cell voltage- and current-clamp recordings were obtained from mesencephalic trigeminal sensory (Mes 5) neurons identified visually in thin brain stem slices of neonatal rats with the use of infrared video microscopy. These cells exhibited accommodation in spike discharge responses to depolarizing current injection protocols whose duration differed as a function of holding potential (-50 vs. -65 mV). Several spikes were elicited before the membrane response accommodated from -50 mV, whereas from -65 mV only single action potentials were evoked. In response to similar protocols, application of the K+ channel blocker 4-aminopyridine (4-AP) (50 microM to 2 mM) caused sustained repetitive spiking whereas tetraethylammonium (TEA) (10-30 mM) did not cause repetitive spiking. In voltage clamp, 4-AP application (100 microM) revealed a sustained outward current (I4-AP) that was active between -60 and -30 mV. I4-AP was responsible for suppressing sustained repetitive spiking behavior, producing accommodation under normal circumstances. TEA application in voltage clamp revealed a sustained outward current evoked positive to -40 mV. Two transient outward currents (TOCs) were identified by prepulse protocols typically used to characterize A-type currents: a 4-AP-insensitive fast TOC, and a slow TOC (ITOC-S) sensitive to 4-AP (> 500 microM). A Ca(2+)-dependent outward current that activated positive to -30 mV was also characterized. A mathematical model of a Mes 5 neuron was assembled from our voltage-clamp records to simulate the dynamic interaction of outward currents during membrane excitation. We conclude that in Mes 5 neurons, the 4-AP-sensitive currents ITOC-S and I4-AP determine the duration of spike trains. In particular, the noninactivating I4-AP determines whether cells exhibit sustained repetitive discharge or accommodate in response to depolarizing current. Neurotransmitter modulation of this current or modulation of the resting membrane potential could modify the output properties of Mes 5 neurons, and therefore the properties of these currents must be incorporated into our current understanding of how these cells contribute to shaping oral-motor pattern generation.
Collapse
Affiliation(s)
- C A Del Negro
- Department of Physiological Science, University of California, Los Angeles 90095-1568, USA
| | | |
Collapse
|
15
|
Hurst RS, Roux MJ, Toro L, Stefani E. External barium influences the gating charge movement of Shaker potassium channels. Biophys J 1997; 72:77-84. [PMID: 8994594 PMCID: PMC1184298 DOI: 10.1016/s0006-3495(97)78648-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
External Ba2+ speeds the OFF gating currents (IgOFF) of Shaker K+ channels but only upon repolarization from potentials that are expected to open the channel pore. To study this effect we used a nonconducting and noninactivating mutant of the Shaker K+ channel, ShH4-IR (W434F). External Ba2+ slightly decreases the quantity of ON gating charge (QON) upon depolarization to potentials near -30 mV but has little effect on the quantity of charge upon stepping to more hyperpolarized or depolarized potentials. More strikingly, Ba2+ significantly increases the decay rate of IgOFF upon repolarization to -90 mV from potentials positive to approximately -55 mV. For Ba2+ to have this effect, the depolarizing command must be maintained for a duration that is dependent on the depolarizing potential (> 4 ms at -30 mV and > 1 ms at 0 mV). The actions of Ba2+ on the gating current are dose-dependent (EC50 approximately 0.2 mM) and are not produced by either Ca2+ or Mg2+ (2 mM). The results suggest that Ba2+ binds to a specific site on the Shaker K+ channel that destabilizes the open conformation and thus facilitates the return of gating charge upon repolarization.
Collapse
Affiliation(s)
- R S Hurst
- Department of Anesthesiology, University of California at Los Angeles 90095, USA.
| | | | | | | |
Collapse
|
16
|
Hurst RS, Toro L, Stefani E. Molecular determinants of external barium block in Shaker potassium channels. FEBS Lett 1996; 388:59-65. [PMID: 8654591 DOI: 10.1016/0014-5793(96)00516-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Mutations in the outer pore region of Shaker K+ channels (T449 and D447) can influence external Ba2+ block. Substitution of T449 by A, V or Y differentially reduced Ba2+ block primarily by decreasing the blocking rate. Substitution of D447 by N resulted in a non-conducting channel with apparently normal gating currents. External Ba2+ can speed the OFF gating current of a different non-conducting mutant, W434F; this effect was markedly attenuated by the D447N substitution. These results suggest that D447 contributes to an external Ba2+ binding site while T449 imposes a barrier to the access of that site.
Collapse
Affiliation(s)
- R S Hurst
- Department of Anesthesiology, University of California at Los Angeles, CA 90095, USA
| | | | | |
Collapse
|