1
|
Al-Jarallah A, Babiker FA. High-Density Lipoprotein Signaling via Sphingosine-1-Phosphate Receptors Safeguards Spontaneously Hypertensive Rats against Myocardial Ischemia/Reperfusion Injury. Pharmaceutics 2024; 16:497. [PMID: 38675158 PMCID: PMC11054943 DOI: 10.3390/pharmaceutics16040497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/28/2024] [Accepted: 04/01/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND High-density lipoprotein (HDL) protects against ischemia/reperfusion (I/R) injury via signaling through scavenger-receptor class B type-I (SR-BI) and sphingosine-1-phosphate receptors (S1PRs). We recently reported that HDL protects the hearts of spontaneously hypertensive rats (SHRs) against I/R injury in an SR-BI-dependent manner. OBJECTIVE In this study, we examined the role of S1PRs in HDL-induced protection against myocardial I/R injury in hypertensive rats. METHODS Hearts from Wistar Kyoto rats (WKYs) and SHRs were subjected to I/R injury using a modified Langendorff system. The hearts were treated with or without HDL in the presence or absence of a receptor- or kinase-specific antagonist. Cardiac hemodynamics and infarct size were measured. Target proteins were analyzed by immunoblotting and ELISA, and nitrite levels were measured using Greis reagent. RESULTS HDL protected the hearts of WKYs and SHRs against I/R injury. HDL, however, was more protective in WKYs. HDL protection in SHRs required lipid uptake via SR-BI and S1PR1 and S1PR3 but not S1PR2. The hearts from SHRs expressed significantly lower levels of S1PR3 than the hearts from WKYs. HDL differentially activated mediators of the SAFE and RISK pathways in WKYs and SHRs and resulted in nitric oxide generation. Blockage of these pathways abrogated HDL effects. CONCLUSIONS HDL protects against myocardial I/R injury in normotensive and hypertensive rats, albeit to varying degrees. HDL protection in hearts from hypertensive rodents involved SR-BI-mediated lipid uptake coupled with signaling through S1PR1 and S1PR3. The extent of HDL-induced cardiac protection is directly proportional to S1PR3 expression levels. Mechanistically, the safeguarding effects of HDL involved activation of the SAFE and RISK pathways and the generation of nitric oxide.
Collapse
Affiliation(s)
- Aishah Al-Jarallah
- Department of Biochemistry, College of Medicine, Kuwait University, Safat 13060, Kuwait
| | - Fawzi A. Babiker
- Department of Physiology, College of Medicine, Kuwait University, Safat 13060, Kuwait;
| |
Collapse
|
2
|
Radosinska J, Kollarova M, Jasenovec T, Radosinska D, Vrbjar N, Balis P, Puzserova A. Aging in Normotensive and Spontaneously Hypertensive Rats: Focus on Erythrocyte Properties. BIOLOGY 2023; 12:1030. [PMID: 37508459 PMCID: PMC10376635 DOI: 10.3390/biology12071030] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023]
Abstract
Erythrocyte deformability, crucial for oxygen delivery to tissues, plays an important role in the etiology of various diseases. As the factor maintaining the erythrocyte deformability, nitric oxide (NO) has been identified. Reduced NO bioavailability also plays a role in the pathogenesis of hypertension. Our aim was to determine whether aging and hypertension affect erythrocyte deformability and NO production by erythrocytes in experimental animals divided into six groups according to age (7, 20 and 52 weeks), labeled WKY-7, WKY-20 and WKY-52 for normotensive Wistar-Kyoto (WKY) rats, and SHR-7, SHR-20 and SHR-52 for spontaneously hypertensive rats (SHR). The filtration method for the determination of erythrocyte deformability and the fluorescent probe DAF-2 DA for NO production were applied. Deformability and NO production by erythrocytes increased at a younger age, while a decrease in both parameters was observed at an older age. Strain-related differences in deformability were observed at 7 and 52 weeks of age. SHR-7 had reduced deformability and SHR-52 had increased deformability compared with age-matched WKY. Changes in NO production under hypertensive conditions are an unlikely primary factor affecting erythrocyte deformability, whereas age-related changes in deformability are at least partially associated with changes in NO production. However, an interpretation of data obtained in erythrocyte parameters observed in SHRs of human hypertension requires precaution.
Collapse
Affiliation(s)
- Jana Radosinska
- Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 2, 811 08 Bratislava, Slovakia
- Centre of Experimental Medicine, Slovak Academy of Sciences, Dúbravská Cesta 9, 841 04 Bratislava, Slovakia
| | - Marta Kollarova
- Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 2, 811 08 Bratislava, Slovakia
- Premedix Academy, Medená 18, 811 02 Bratislava, Slovakia
| | - Tomas Jasenovec
- Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 2, 811 08 Bratislava, Slovakia
| | - Dominika Radosinska
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 811 08 Bratislava, Slovakia
| | - Norbert Vrbjar
- Centre of Experimental Medicine, Slovak Academy of Sciences, Dúbravská Cesta 9, 841 04 Bratislava, Slovakia
| | - Peter Balis
- Centre of Experimental Medicine, Slovak Academy of Sciences, Dúbravská Cesta 9, 841 04 Bratislava, Slovakia
| | - Angelika Puzserova
- Centre of Experimental Medicine, Slovak Academy of Sciences, Dúbravská Cesta 9, 841 04 Bratislava, Slovakia
| |
Collapse
|
3
|
Bruic M, Grujic-Milanovic J, Miloradovic Z, Jovovic D, Zivkovic L, Mihailovic-Stanojevic N, Karanovic D, Spremo-Potparevic B. DNA, protein and lipid oxidative damage in tissues of spontaneously hypertensive versus normotensive rats. Int J Biochem Cell Biol 2021; 141:106088. [PMID: 34601089 DOI: 10.1016/j.biocel.2021.106088] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 09/06/2021] [Accepted: 09/25/2021] [Indexed: 10/20/2022]
Abstract
Oxidative damage to protein and lipid macromolecules in target organs in hypertension has been recognized as a major factor contributing to cardiovascular, cerebrovascular, and renal diseases. Data on protein and lipid oxidative damage in spontaneously hypertensive rats are numerous, but there is no information on DNA damage in tissues measured by comet assay. The aim of this study was to determine the baseline damage to DNA, protein, and lipid macromolecules in different organs of spontaneously hypertensive rats. Markers of lipid peroxidation, protein oxidation, and DNA damage were measured in blood, heart, kidney, and liver of 24-week-old spontaneously hypertensive rats. Plasma prooxidant and antioxidant status were determined as well. Age-matched normotensive Wistar rats were used as control. A rise in markers of lipid peroxidation and protein oxidation, malondialdehyde, and advanced oxidation protein products, was detected in all tissues of spontaneously hypertensive rats, with particularly high values in the liver. DNA damage, measured by the comet assay, was significantly higher in all the studied tissues of spontaneously hypertensive rats compared to normotensive control, with more severe damage in the cardiac and renal cells. Significant depletion of the plasma antioxidant barrier in spontaneously hypertensive rats was also observed. This study showed increased damage to all macromolecules in all studied samples of spontaneously hypertensive rats in comparison with control Wistar rats.
Collapse
Affiliation(s)
- Marija Bruic
- Department of Pathobiology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia.
| | - Jelica Grujic-Milanovic
- Department of Cardiovascular Physiology, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Zoran Miloradovic
- Department of Cardiovascular Physiology, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Djurdjica Jovovic
- Department of Cardiovascular Physiology, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Lada Zivkovic
- Department of Pathobiology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Nevena Mihailovic-Stanojevic
- Department of Cardiovascular Physiology, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Danijela Karanovic
- Department of Cardiovascular Physiology, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | | |
Collapse
|
4
|
Ultra-Small Superparamagnetic Iron-Oxide Nanoparticles Exert Different Effects on Erythrocytes in Normotensive and Hypertensive Rats. Biomedicines 2021; 9:biomedicines9040377. [PMID: 33918438 PMCID: PMC8065606 DOI: 10.3390/biomedicines9040377] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/25/2021] [Accepted: 03/31/2021] [Indexed: 02/06/2023] Open
Abstract
We determined erythrocyte physiological and biochemical properties after the single and repeated administration of ultra-small superparamagnetic iron-oxide nanoparticles (USPIONs) in normotensive Wistar–Kyoto (WKY) and spontaneously hypertensive (SHR) rats. Polyethylene glycol-coated USPIONs (transmission electron microscope detected a mean size of ~30 nm and hydrodynamic size ~51 nm) were intravenously administered to rats either in one infusion at nominal dose 1 mg Fe/kg or in two infusions (administered with a difference of 24 h) at nominal dose 2 mg Fe/kg. Results showed that USPIONs did not deteriorate erythrocyte deformability, nitric oxide production, and osmotic resistance in both experimental settings. Both the single and repeated USPION administration elevated erythrocyte deformability in WKY. However, this effect was not present in SHR; deformability in USPION-treated SHR was significantly lower than in USPION-treated WKY. Nitric oxide production by erythrocytes was increased after a single USPION treatment in WKY, so it can be associated with improvement in erythrocyte deformability. Using biomagnetometry, we revealed significantly lower amounts of USPION-originated iron in erythrocytes in SHR compared with WKY. We found a much faster elimination of USPIONs from erythrocytes in hypertensive rats compared with the normotensive ones, which might be relevant for clinical practice in hypertensive patients undergoing clinical examination with the use of iron-oxide nanoparticles.
Collapse
|
5
|
Aloud BM, Raj P, McCallum J, Kirby C, Louis XL, Jahan F, Yu L, Hiebert B, Duhamel TA, Wigle JT, Blewett H, Netticadan T. Cyanidin 3-O-glucoside prevents the development of maladaptive cardiac hypertrophy and diastolic heart dysfunction in 20-week-old spontaneously hypertensive rats. Food Funct 2018; 9:3466-3480. [PMID: 29878020 DOI: 10.1039/c8fo00730f] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The present study investigated the effects of cyanidin 3-O-glucoside (C3G) in cardiomyocytes (CM) and fibroblasts exposed to endothelin 1 (ET1), as well as in the spontaneously hypertensive rat (SHR) model, alone or in combination with hydrochlorothiazide (HCT). Adult rat CM and cardiac fibroblasts (CF) were pretreated with C3G and co-incubated with ET1 (10-7 M) for 24 hours. Five-week-old male SHR and their normotensive controls, Wistar-Kyoto rats (WKY), received one of 4 treatments via oral gavage daily for 15 weeks: (1) water (control); (2) C3G (10 mg per kg per day); (3) HCT (10 mg per kg per day); (4) C3G + HCT (10 mg per kg per day each). Blood pressure (BP) was measured at 1, 8 and 15 weeks. Echocardiography measurements were performed at 15 weeks. C3G prevented ET1-induced CM death and hypertrophy. Stimulating CF with ET1 did not induce their phenoconversion; nevertheless, C3G inhibited un-stimulated CF differentiation. HCT slowed the rise of systolic BP (SBP) in the SHR over time (week 1: SHRs control = 161 ± 6.3 mmHg, SHRs HCT = 129 ± 6.3 mmHg; week 15: SHRs control = 201 ± 7.3 mmHg, SHRs HCT = 168 ± 7.3 mmHg), but C3G had no effect on SBP (week 1: SHRs control = 161 ± 6.3 mmHg, SHRs C3G = 126 ± 6.3 mmHg; week 15: SHRs control = 201 ± 7.3 mmHg, SHRs C3G = 186 ± 7.3 mmHg). SHRs treated with C3G, HCT, and C3G + HCT had lower left ventricular mass and shorter isovolumetric relaxation time compared to control SHRs. C3G ameliorated cardiac hypertrophy and diastolic dysfunction in SHRs.
Collapse
Affiliation(s)
- Basma Milad Aloud
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Li C, Jiang F, Li YL, Jiang YH, Yang WQ, Sheng J, Xu WJ, Zhu QJ. Rhynchophylla total alkaloid rescues autophagy, decreases oxidative stress and improves endothelial vasodilation in spontaneous hypertensive rats. Acta Pharmacol Sin 2018; 39:345-356. [PMID: 29119967 DOI: 10.1038/aps.2017.120] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 07/26/2017] [Indexed: 02/07/2023] Open
Abstract
Autophagy plays an important role in alleviating oxidative stress and stabilizing atherosclerotic plaques. However, the potential role of autophagy in endothelial vasodilation function has rarely been studied. This study aimed to investigate whether rhynchophylla total alkaloid (RTA) has a positive role in enhancing autophagy through decreasing oxidative stress, and improving endothelial vasodilation. In oxidized low-density lipoprotein (ox-LDL)-treated human umbilical vein endothelial cells (HUVECs), RTA (200 mg/L) significantly suppressed ox-LDL-induced oxidative stress through rescuing autophagy, and decreased cell apoptosis. In spontaneous hypertensive rats (SHR), administration of RTA (50 mg·kg-1·d-1, ip, for 6 weeks) improved endothelin-dependent vasodilation of thoracic aorta rings. Furthermore, RTA administration significantly increased the antioxidant capacity and alleviated oxidative stress through enhancing autophagy in SHR. In ox-LDL-treated HUVECs, we found that the promotion of autophagy by RTA resulted in activation of the AMP-activated protein kinase (AMPK) signaling pathway. Our results show that RTA treatment rescues the ox-LDL-induced autophagy impairment in HUVECs and improves endothelium-dependent vasodilation function in SHR.
Collapse
|
7
|
Huang J, Liu Q, Xue B, Chen L, Wang Y, Ou S, Peng X. Angiotensin-I-Converting Enzyme Inhibitory Activities andIn VivoAntihypertensive Effects of Sardine Protein Hydrolysate. J Food Sci 2016; 81:H2831-H2840. [DOI: 10.1111/1750-3841.13508] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 07/24/2016] [Accepted: 08/27/2016] [Indexed: 12/26/2022]
Affiliation(s)
- Jiacheng Huang
- Dept. of Food Science and Engineering; Jinan Univ; Guangzhou 510632 China
| | - Qianyue Liu
- Dept. of Food Science and Engineering; Jinan Univ; Guangzhou 510632 China
| | - Bin Xue
- Dept. of Food Science and Engineering; Jinan Univ; Guangzhou 510632 China
| | - Long Chen
- Dept. of Food Science and Engineering; Jinan Univ; Guangzhou 510632 China
| | - Yong Wang
- Dept. of Food Science and Engineering; Jinan Univ; Guangzhou 510632 China
| | - Shiyi Ou
- Dept. of Food Science and Engineering; Jinan Univ; Guangzhou 510632 China
| | - Xichun Peng
- Dept. of Food Science and Engineering; Jinan Univ; Guangzhou 510632 China
| |
Collapse
|
8
|
Lírio LM, Forechi L, Zanardo TC, Batista HM, Meira EF, Nogueira BV, Mill JG, Baldo MP. Chronic fructose intake accelerates non-alcoholic fatty liver disease in the presence of essential hypertension. J Diabetes Complications 2016; 30:85-92. [PMID: 26597602 DOI: 10.1016/j.jdiacomp.2015.10.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 10/03/2015] [Accepted: 10/14/2015] [Indexed: 12/22/2022]
Abstract
BACKGROUND The growing epidemic of metabolic syndrome has been related to the increased use of fructose by the food industry. In fact, the use of fructose as an ingredient has increased in sweetened beverages, such as sodas and juices. We thus hypothesized that fructose intake by hypertensive rats would have a worse prognosis in developing metabolic disorder and non-alcoholic fatty liver disease. METHODS Male Wistar and SHR rats aged 6weeks were given water or fructose (10%) for 6weeks. Blood glucose was measured every two weeks, and insulin and glucose sensitivity tests were assessed at the end of the follow-up. Systolic blood pressure was measure by plethysmography. Lean mass and abdominal fat mass were collected and weighed. Liver tissue was analyzed to determine interstitial fat deposition and fibrosis. RESULTS Fasting glucose increased in animals that underwent a high fructose intake, independent of blood pressure levels. Also, insulin resistance was observed in normotensive and mostly in hypertensive rats after fructose intake. Fructose intake caused a 2.5-fold increase in triglycerides levels in both groups. Fructose intake did not change lean mass. However, we found that fructose intake significantly increased abdominal fat mass deposition in normotensive but not in hypertensive rats. Nevertheless, chronic fructose intake only increased fat deposition and fibrosis in the liver in hypertensive rats. CONCLUSIONS We demonstrated that, in normotensive and hypertensive rats, fructose intake increased triglycerides and abdominal fat deposition, and caused insulin resistance. However, hypertensive rats that underwent fructose intake also developed interstitial fat deposition and fibrosis in liver.
Collapse
Affiliation(s)
- Layla Mendonça Lírio
- Department of Physiological Sciences, Federal University of Espírito Santo, Av Marechal Campos 1468, Maruipe, 29042-755, Vitória, ES, Brazil
| | - Ludimila Forechi
- Department of Physiological Sciences, Federal University of Espírito Santo, Av Marechal Campos 1468, Maruipe, 29042-755, Vitória, ES, Brazil
| | - Tadeu Caliman Zanardo
- Department of Morphology, Federal University of Espírito Santo, Av Marechal Campos 1468, Maruipe, 29042-755, Vitória, ES, Brazil
| | - Hiago Martins Batista
- Department of Pharmacy and Nutrition, Federal University of Espírito Santo, Rod Alto Universitário, Guararema, 29500-000, Alegre, ES, Brazil
| | - Eduardo Frizera Meira
- Department of Physiological Sciences, Federal University of Espírito Santo, Av Marechal Campos 1468, Maruipe, 29042-755, Vitória, ES, Brazil; Department of Pharmacy and Nutrition, Federal University of Espírito Santo, Rod Alto Universitário, Guararema, 29500-000, Alegre, ES, Brazil
| | - Breno Valentim Nogueira
- Department of Morphology, Federal University of Espírito Santo, Av Marechal Campos 1468, Maruipe, 29042-755, Vitória, ES, Brazil
| | - José Geraldo Mill
- Department of Physiological Sciences, Federal University of Espírito Santo, Av Marechal Campos 1468, Maruipe, 29042-755, Vitória, ES, Brazil
| | - Marcelo Perim Baldo
- Department of Physiological Sciences, Federal University of Espírito Santo, Av Marechal Campos 1468, Maruipe, 29042-755, Vitória, ES, Brazil.
| |
Collapse
|
9
|
Yusufoglu HS. Analgesic, antipyretic, nephritic and antioxidant effects of the aerial parts of Bassia eriophora (Family: Chenopodiaceae) plant on rats. ASIAN PACIFIC JOURNAL OF TROPICAL DISEASE 2015. [DOI: 10.1016/s2222-1808(15)60836-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
10
|
Rajeshwari T, Raja B, Manivannan J, Silambarasan T, Dhanalakshmi T. Valproic acid prevents the deregulation of lipid metabolism and renal renin-angiotensin system in L-NAME induced nitric oxide deficient hypertensive rats. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2014; 37:936-945. [PMID: 24705342 DOI: 10.1016/j.etap.2014.02.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 02/08/2014] [Accepted: 02/10/2014] [Indexed: 06/03/2023]
Abstract
The present study was aimed to investigate the antihyperlipidemic and renoprotective potential of valproic acid against N(ω)-nitro-L arginine methyl ester hydrochloride (L-NAME) induced hypertension in male albino Wistar rats. In hypertensive rats, mean arterial pressure (MAP), kidney weight, levels of oxidative stress markers in tissues were increased. Dyslipidemia was also observed in hypertensive rats. Moreover, enzymatic and nonenzymatic antioxidant network also deregulated in tissues. Valproic acid (VPA) supplementation daily for four weeks brought back all the above parameters to near normal level and showed no toxicity which was established using serum hepatic marker enzyme activities and renal function markers. Moreover the up regulated expression of renin-angiotensin system (RAS) components were also attenuated by VPA treatment. All the above outcomes were confirmed by the histopathological examination. These results suggest that VPA has enough potential to attenuate hypertension, dyslipidemia and renal damage in nitric oxide deficiency induced hypertension.
Collapse
Affiliation(s)
- Thiyagarajan Rajeshwari
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar 608 002, Tamil Nadu, India
| | - Boobalan Raja
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar 608 002, Tamil Nadu, India.
| | - Jeganathan Manivannan
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar 608 002, Tamil Nadu, India
| | - Thangarasu Silambarasan
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar 608 002, Tamil Nadu, India
| | - Thanikkodi Dhanalakshmi
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar 608 002, Tamil Nadu, India
| |
Collapse
|
11
|
Dushkin MI, Khrapova MV, Kovshik GG, Chasovskikh MI, Selyatitskaya VG, Palchikova NA. Rats of hypertensive ISIAH strain are resistant to the development of metabolic syndrome induced by high-fat diet. Bull Exp Biol Med 2014; 156:649-53. [PMID: 24770750 DOI: 10.1007/s10517-014-2417-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Indexed: 12/01/2022]
Abstract
We studied the influence of high-fat diet on the development of metabolic syndrome in rats of hypertensive ISIAH strain and normotensive WAG strain. In contrast to ISIAH rats, high-fat diet in WAG rats led visceral obesity, glucose tolerance, and dyslipidemia. DNA-binding activity of the peroxisome proliferator-activated receptor α (PPARα) decreased in the liver of WAG rats and increased in ISIAH rats. Blood levels of TNF-α, IL-6, and corticosterone increased more significantly in WAG rats. Corticosterone content in the adrenal glands was more markedly reduced in WAG rats. High-fat diet had no effect on BP in ISIAH and WAG rats. It was concluded that ISIAH rats can be used as a genetic model in studies of the mechanism of resistance to the metabolic syndrome.
Collapse
Affiliation(s)
- M I Dushkin
- Research Institute of Physiology, Siberian Division of the Russian Academy of Medical Sciences, Novosibirsk, Russia,
| | | | | | | | | | | |
Collapse
|
12
|
Arutyunyan TV, Korystova AF, Kublik LN, Levitman MK, Shaposhnikova VV, Korystov YN. Effects of taxifolin on the activity of angiotensin-converting enzyme and reactive oxygen and nitrogen species in the aorta of aging rats and rats treated with the nitric oxide synthase inhibitor and dexamethasone. AGE (DORDRECHT, NETHERLANDS) 2013; 35:2089-97. [PMID: 23271616 PMCID: PMC3825014 DOI: 10.1007/s11357-012-9497-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 12/05/2012] [Indexed: 05/14/2023]
Abstract
The action of taxifolin on the angiotensin-converting enzyme (ACE) and the formation of reactive oxygen and nitrogen species (ROS/RNS) in the aorta of aging rats and rats treated with nitric oxide synthase inhibitor (N ω-nitro-L-arginine methyl ester (L-NAME)) or dexamethasone have been studied. The ACE activity in aorta sections was determined by measuring the hydrolysis of hippuryl-L-histidyl-L-leucine, and the ROS/RNS production was measured by oxidation of dichlorodihydrofluorescein. It was shown that taxifolin at a dose of 30-100 μg/kg/day decreases the ACE activity in the aorta of aging rats and of rats treated with L-NAME or dexamethasone to the level of the ACE activity in young control rats. Taxifolin (100 μg/kg/day) was found to also reduce the amount of ROS/RNS in the aorta that increased as a result of L-NAME intake. L-NAME treatment increases the contribution of 5-lipoxygenase and NADPH oxidase to ROS/RNS production in the aorta, while taxifolin (100 μg/kg/day) decreases the contribution of these enzymes to the normal level.
Collapse
Affiliation(s)
- Tamara V. Arutyunyan
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region 142290 Russia
| | - Antonina F. Korystova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region 142290 Russia
| | - Ludmila N. Kublik
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region 142290 Russia
| | - Maria Kh. Levitman
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region 142290 Russia
| | - Vera V. Shaposhnikova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region 142290 Russia
| | - Yuri N. Korystov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region 142290 Russia
| |
Collapse
|
13
|
Kitts DD, Kopec A, Zawistowski J, Popovich DG. Effects of high molecular weight alcohols from sugar cane fed alone or in combination with plant sterols on lipid profile and antioxidant status of Wistar rats. Appl Physiol Nutr Metab 2012; 37:938-46. [PMID: 22803783 DOI: 10.1139/h2012-072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effect of feeding a mixture of high molecular weight alcohols derived from sugarcane (SCA), both alone and in combination with phytosterols (PS), on changes in plasma lipids, organ cholesterol accumulation, and antioxidant status of Wistar rats was undertaken. Three separate experiments were conducted and each experiment had 3 subsets. In experiment 1, rats were fed on an AIN-76, semi-synthetic diet supplemented with 0%, 0.5%, and 5% SCA w/w. The second experiment consisted of feeding rats an atherogenic diet (AIN-76+0.5% cholesterol) containing 0%, 0.5%, and 5% SCA w/w. The third experiment consisted of feeding rats an atherogenic diet that contained 2% PS in combination with 0%, 0.5%, and 5% SCA. Rats fed the atherogenic diet exhibited significant elevations in total and low-density lipoprotein cholesterol, and significant reductions in the high-density lipoprotein/total cholesterol ratio, regardless of the presence of 0.5% or 5% SCA mixture. Serum cholesterol increased 29% to 35% in these animals compared with animals fed the nonatherogenic diets. In contrast, animals fed atherogenic diets that contained 2% PS exhibited no difference in serum lipids compared with counterparts fed nonatherogenic diets. The combined presence of SCA with PS had no effect on further lowering plasma cholesterol. No changes in C-reactive protein were observed, but plasma oxygen radical scavenging capacity values significantly (p < 0.05) decreased when rats were fed the atherogenic diets that contained the combination of PS and SCA. This result corresponded to an apparent greater (p < 0.05) susceptibility of red blood cells to oxidative stress.
Collapse
Affiliation(s)
- David D Kitts
- Food, Nutrition and Health, University of British Columbia, Vancouver, BC, Canada.
| | | | | | | |
Collapse
|
14
|
Changes in hepatic protein expression in spontaneously hypertensive rats suggest early stages of non-alcoholic fatty liver disease. J Proteomics 2012; 75:1752-63. [DOI: 10.1016/j.jprot.2011.12.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Revised: 11/03/2011] [Accepted: 12/10/2011] [Indexed: 02/07/2023]
|
15
|
Diosmin, a bioflavonoid reverses alterations in blood pressure, nitric oxide, lipid peroxides and antioxidant status in DOCA-salt induced hypertensive rats. Eur J Pharmacol 2012; 679:81-9. [PMID: 22266490 DOI: 10.1016/j.ejphar.2011.12.040] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 12/21/2011] [Accepted: 12/28/2011] [Indexed: 11/23/2022]
Abstract
The present study was aimed to evaluate the antihypertensive effect of diosmin in deoxycorticosterone acetate (DOCA)-salt induced hypertension in male Wistar rats. Hypertension was induced in uninephrectomized rats by weekly twice subcutaneous injection of DOCA (25 mg/kg body weight) and 1% NaCl in the drinking water for six consecutive weeks. The important pathological events that occurred in DOCA-salt treated rats were significant increase in systolic, diastolic blood pressure, sodium and chloride in serum and lipid peroxidation products (thiobarbituric acid reactive substances, lipid hydroperoxides and conjugated dienes) in plasma and tissues (liver, kidney, heart and aorta) and significant decrease in serum potassium, total nitrite and nitrate levels in plasma. The activities of hepatic aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, and gamma-glutamyl transpeptidase and the levels of renal urea, uric acid, creatinine in serum, water intake, and organ weight (kidney and heart) were significantly increased in DOCA-salt hypertensive rats. DOCA-salt treated rats also showed a significant decrease in body weight, activities of superoxide dismutase, catalase and glutathione peroxidase in erythrocyte and tissues and the levels of reduced glutathione, vitamin C and vitamin E in plasma and tissues. Treatment with diosmin (25, 50 and 100 mg/kg body weight) brings back all the above parameters to near normal level, in which 50 mg/kg body weight showed the highest effect than that of other two doses. Histopathology of heart and kidney also confirmed the protective effect of diosmin. Thus the experiment clearly showed that diosmin acts as an antihypertensive agent against DOCA-salt induced hypertension.
Collapse
|
16
|
Morrissey C, Grieve IC, Heinig M, Atanur S, Petretto E, Pravenec M, Hubner N, Aitman TJ. Integrated genomic approaches to identification of candidate genes underlying metabolic and cardiovascular phenotypes in the spontaneously hypertensive rat. Physiol Genomics 2011; 43:1207-18. [PMID: 21846806 PMCID: PMC3217321 DOI: 10.1152/physiolgenomics.00210.2010] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The spontaneously hypertensive rat (SHR) is a widely used rodent model of hypertension and metabolic syndrome. Previously we identified thousands of cis-regulated expression quantitative trait loci (eQTLs) across multiple tissues using a panel of rat recombinant inbred (RI) strains derived from Brown Norway and SHR progenitors. These cis-eQTLs represent potential susceptibility loci underlying physiological and pathophysiological traits manifested in SHR. We have prioritized 60 cis-eQTLs and confirmed differential expression between the parental strains by quantitative PCR in 43 (72%) of the eQTL transcripts. Quantitative trait transcript (QTT) analysis in the RI strains showed highly significant correlation between cis-eQTL transcript abundance and clinically relevant traits such as systolic blood pressure and blood glucose, with the physical location of a subset of the cis-eQTLs colocalizing with “physiological” QTLs (pQTLs) for these same traits. These colocalizing correlated cis-eQTLs (c3-eQTLs) are highly attractive as primary susceptibility loci for the colocalizing pQTLs. Furthermore, sequence analysis of the c3-eQTL genes identified single nucleotide polymorphisms (SNPs) that are predicted to affect transcription factor binding affinity, splicing and protein function. These SNPs, which potentially alter transcript abundance and stability, represent strong candidate factors underlying not just eQTL expression phenotypes, but also the correlated metabolic and physiological traits. In conclusion, by integration of genomic sequence, eQTL and QTT datasets we have identified several genes that are strong positional candidates for pathophysiological traits observed in the SHR strain. These findings provide a basis for the functional testing and ultimate elucidation of the molecular basis of these metabolic and cardiovascular phenotypes.
Collapse
Affiliation(s)
- Catherine Morrissey
- Physiological Genomics and Medicine Group, MRC Clinical Sciences Centre, Department of Epidemiology and Public Health, Faculty of Medicine, Imperial College, London, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Miguel-Carrasco JL, Monserrat MT, Mate A, Vázquez CM. Comparative effects of captopril and l-carnitine on blood pressure and antioxidant enzyme gene expression in the heart of spontaneously hypertensive rats. Eur J Pharmacol 2010; 632:65-72. [PMID: 20123095 DOI: 10.1016/j.ejphar.2010.01.017] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Revised: 12/17/2009] [Accepted: 01/20/2010] [Indexed: 12/11/2022]
Abstract
It has been shown that oxidative stress is involved in the pathogenesis of arterial hypertension. The aim of this work was to study and compare the molecular mechanisms of the antioxidant properties of l-carnitine and captopril in spontaneously hypertensive rats (SHR). Antioxidant enzyme activity/regulation (glutathione peroxidase, glutathione reductase and superoxide dismutase) was measured in the erythrocytes and hearts of SHR. The molecular expression of endothelial nitric oxide synthase (eNOS), NADPH oxidase, angiotensin converting enzyme (ACE), angiotensin II type I receptor (AT(1) receptor) and NF-kappaB/IkappaB system was also measured in the hearts of these animals. Both l-carnitine and captopril augmented the antioxidant defense capacity in SHRs. This effect was mediated by an upregulation of antioxidant enzymes, an increase in the plasma total antioxidant capacity and a reduction of lipid peroxidation and superoxide anion production in the heart. The administration of both compounds to hypertensive animals also produced an upregulation of eNOS and a normalization of ACE, angiotensin AT(1) receptor, and the NF-kappaB/IkappaB system expression. In addition, captopril reduced the arterial blood pressure and the relative heart weights back to control values, whereas l-carnitine caused only a partial reduction of blood pressure values and did not alter the cardiac hypertrophy found in SHRs. In conclusion, we have found that l-carnitine and captopril have a similar antioxidant effect in the hearts of hypertensive rats. The molecular regulation of antioxidant enzymes through an inhibition of the renin-angiotensin system and a modulation of the NF-kappaB/IkappaB system seems to be responsible for this antioxidant effect.
Collapse
|
18
|
Romero M, Jiménez R, Hurtado B, Moreno JM, Rodríguez-Gómez I, López-Sepúlveda R, Zarzuelo A, Pérez-Vizcaino F, Tamargo J, Vargas F, Duarte J. Lack of beneficial metabolic effects of quercetin in adult spontaneously hypertensive rats. Eur J Pharmacol 2009; 627:242-50. [PMID: 19903466 DOI: 10.1016/j.ejphar.2009.11.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Revised: 10/21/2009] [Accepted: 11/03/2009] [Indexed: 01/11/2023]
Abstract
Insulin sensitivity is partly dependent on insulin-mediated nitric oxide (NO) release and antioxidants may decrease insulin resistance by amelioring NO bioavailability. The effects of chronic therapy with the antioxidant quercetin on blood pressure, vascular function and glucose tolerance in male spontaneously hypertensive rats (SHR), a model of genetically hypertension and insulin resistance, were analyzed. Rats were divided into four groups, WKY vehicle, WKY quercetin, SHR vehicle and SHR quercetin. Animals were daily administered by gavage for four weeks: vehicle, quercetin in vehicle (10mg/kg body weight). Blood pressure was followed by tail-cuff plethysmography. Chronic quercetin treatment reduced systolic blood pressure, and significantly reduced left ventricular (-10%) and renal (-6%) hypertrophy. However, oral glucose tolerance test, homeostatic model assessment of insulin resistance, total cholesterol and triglycerides were unaffected by quercetin in both strains of rats. It also improved the blunted aortic endothelium-dependent relaxation to acetylcholine, without affecting both endothelium-dependent relaxation to insulin and endothelium-independent relaxation to sodium nitroprusside in SHR. In WKY rats, quercetin in vitro and in vivo, impaired the relaxation to insulin. Quercetin reduced both plasma malondialdehyde levels and aortic superoxide production in SHR. Furthermore, quercetin inhibited insulin-stimulated protein kinase B (Akt)- and endothelial NO synthase (eNOS) phosphorylation. In conclusion, quercetin reduced blood pressure, left ventricular and renal hypertrophy and improved NO-dependent acetylcholine relaxation. However, and despite its antioxidant effects, quercetin was unable to improve insulin sensitivity possibly through its specific interference with the insulin signalling pathway.
Collapse
Affiliation(s)
- Miguel Romero
- Department of Pharmacology, School of Pharmacy, University of Granada, 18071 Granada, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Gómez-Amores L, Mate A, Miguel-Carrasco JL, Jiménez L, Jos A, Cameán AM, Revilla E, Santa-María C, Vázquez CM. l-Carnitine attenuates oxidative stress in hypertensive rats. J Nutr Biochem 2007; 18:533-40. [PMID: 17142029 DOI: 10.1016/j.jnutbio.2006.10.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2006] [Revised: 09/08/2006] [Accepted: 10/02/2006] [Indexed: 12/21/2022]
Abstract
The present study aimed to investigate whether l-carnitine (LC) protects the vascular endothelium and tissues against oxidative damage in hypertension. Antioxidant enzyme activities, glutathione and lipid peroxidation were measured in the liver and heart of spontaneously hypertensive rats (SHR) and Wistar-Kyoto (WKY) rats. Nitrite and nitrate levels and total antioxidant status (TAS) were evaluated in plasma, and the expression of endothelial nitric oxide synthase (eNOS) and p22phox subunit of NAD(P)H oxidase was determined in aorta. Glutathione peroxidase activity was lower in SHR than in WKY rats, and LC increased this activity in SHR up to values close to those observed in normotensive animals. Glutathione reductase and catalase activities, which were higher in SHR, tended to increase after LC treatment. No differences were found in the activity of superoxide dismutase among any animal group. The ratio between reduced and oxidized glutathione and the levels of lipid peroxidation were respectively decreased and increased in hypertensive rats, and both parameters were normalized after the treatment. Similarly, LC was able to reverse the reduced plasma nitrite and nitrate levels and TAS observed in SHR. We found no alterations in the expression of aortic eNOS among any group; however, p22phox mRNA levels showed an increase in SHR that was reversed by LC. In conclusion, chronic administration of LC leads to an increase in hepatic and cardiac antioxidant defense and a reduction in the systemic oxidative process in SHR. Therefore, LC might increase NO availability in SHR aorta by a reduction in superoxide anion production.
Collapse
Affiliation(s)
- Lucía Gómez-Amores
- Department of Physiology and Zoology, Faculty of Pharmacy, University of Seville, E-41012 Seville, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Gómez-Amores L, Mate A, Revilla E, Santa-María C, Vázquez CM. Antioxidant activity of propionyl-L-carnitine in liver and heart of spontaneously hypertensive rats. Life Sci 2005; 78:1945-52. [PMID: 16263137 DOI: 10.1016/j.lfs.2005.08.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2005] [Accepted: 08/30/2005] [Indexed: 12/22/2022]
Abstract
Oxidative stress plays an important role in arterial hypertension and propionyl-L-carnitine (PLC) has been found to protect cells from toxic reactive oxygen species. In this work, we have evaluated the antioxidant capacity of chronic PLC treatment in spontaneously hypertensive rats (SHR) by measuring the activity of antioxidant enzymes and the lipid peroxidation in liver and cardiac tissues. The activity of glutathione peroxidase was decreased in liver and cardiac tissues of SHR when compared with their normotensive controls, Wistar- Kyoto (WKY) rats, this alteration being prevented by PLC treatment. Glutathione reductase activity was increased in hypertensive rats and no effect was observed after the treatment. No significant changes in superoxide dismutase activity were observed among all experimental groups. Liver of hypertensive rats showed higher catalase activity than that of normotensive rats, and PLC enhanced this activity in both rat strains. Thiobarbituric acid reactive substances, determined as a measure of lipid peroxidation, were increased in SHR compared with WKY rats, and PLC treatment decreased these values not only in hypertensive rats but also in normotensive ones. The content of carnitine in serum, liver and heart was higher in PLC-treated rats, but PLC did not prevent the hypertension development in young SHR. In addition, triglyceride levels, which were lower in SHR than WKY rats, were reduced by chronic PLC treatment in both rat strains. These results demonstrate: i) the hypotriglyceridemic effect of PLC and ii) the antioxidant capacity of PLC in SHR and its beneficial use protecting tissues from hypertension-accompanying oxidative damage.
Collapse
Affiliation(s)
- Lucía Gómez-Amores
- Department of Physiology and Zoology, Faculty of Pharmacy, University of Seville, C/Profesor García González 2, E-41012 Seville, Spain
| | | | | | | | | |
Collapse
|
21
|
Gómez-Amores L, Mate Barrero A, Revilla Torres E, Santa-María Pérez C, Vázquez Cueto C. El tratamiento con propionil-L-carnitina mejora el estrés oxidativo asociado a la hipertensión arterial. HIPERTENSION Y RIESGO VASCULAR 2005. [DOI: 10.1016/s1889-1837(05)71545-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
22
|
Robin S, Courderot-Masuyer C, Nicod L, Jacqueson A, Richert L, Berthelot A. Opposite effect of methionine-supplemented diet, a model of hyperhomocysteinemia, on plasma and liver antioxidant status in normotensive and spontaneously hypertensive rats. J Nutr Biochem 2004; 15:80-9. [PMID: 14972347 DOI: 10.1016/j.jnutbio.2003.09.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2002] [Indexed: 10/26/2022]
Abstract
Hyperhomocysteinemia is often associated with an increase in blood pressure. However our previous study has shown that methionine supplementation induced an increase in blood pressure in Wistar-Kyoto (WKY) rats and a decrease in blood pressure in spontaneously hypertensive rats (SHR) with significant differences in plasma homocysteine (Hcy) metabolites levels. Previously liver antioxidant status has been shown to be decreased in SHR compared to WKY rats. It has been suggested that oxidative stress may predispose to a decrease in NO bioavailability and induce the flux of Hcy through the liver transsulfuration pathway. Thus the aim of this study was 1) to investigate the effect of methionine supplementation on NO-derived metabolites in plasma and urine 2) to investigate whether abnormalities in Hcy metabolism may be responsible for the discrepancies observed between WKY rats and SHR concerning blood pressure and 3) to investigate whether a methionine-enriched diet, differently modified plasma and liver antioxidant status in WKY rats an SHR. We conclude that the increase in blood pressure in WKY rats is related to high plasma cysteine levels and is not due to a decrease in NO bioavailability and that the decrease in blood pressure in SHR is associated with high plasma GSH levels after methionine supplementation. So GSH synthesis appears to be stimulated by liver oxidative stress and GSH is redistributed into blood in SHR. So the great GSH synthesis can be rationalized as an autocorrective response that leads to a decreased blood pressure in SHR.
Collapse
Affiliation(s)
- Sophie Robin
- Laboratoire de Physiologie, Pharmacologie et Nutrition Préventive Expérimentale, Besançon, France.
| | | | | | | | | | | |
Collapse
|
23
|
Yuan YV, Kitts DD. Dietary (n-3) fat and cholesterol alter tissue antioxidant enzymes and susceptibility to oxidation in SHR and WKY rats. J Nutr 2003; 133:679-88. [PMID: 12612137 DOI: 10.1093/jn/133.3.679] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Previously, 8% fish oil blend diets, compared to butter and soybean oil blend diets, reduced specific antioxidant enzyme activities and tissue susceptibility to in vitro oxidative stress in spontaneously hypertensive (SHR) and Wistar Kyoto (WKY) rats. Moreover, high cholesterol (5.0 g/kg diet) diets protected against in vitro tissue lipid oxidation. In this study, we hypothesized that 160 g fat/kg diet as blends of (n-6) or (n-3) oils and cholesterol would alter antioxidant enzyme activities and thus increase tissue susceptibility to oxidation. The effects of diet blends of saturated (butter, B), (n-6) (soybean oil, SBO) or (n-3) (menhaden oil, MO) oils with cholesterol (0.5 or 5.0 g/kg) on systolic blood pressure (SBP), plasma lipids, antioxidant enzymes and susceptibility to oxidation were examined in SHR and WKY rats. SBP at 13 wk of age was greater (P < 0.001) in SHR than in WKY rats, but was not affected by diets. Plasma cholesterol and triacylglycerols were decreased (P < 0.001) by MO diets. Hepatic glutathione reductase activities were reduced (P < 0.001) in SBO-fed SHR and enhanced in SBO- and MO-fed WKY rats. Glutathione levels were reduced (P < 0.001) in RBC and enhanced (P < 0.001) in livers of MO-fed rats. Lipid oxidation was enhanced (P < 0.001) in red blood cells (RBC) from SBO groups, and hearts and livers of MO groups. High cholesterol diets reduced (P < or = 0.001) susceptibility to lipid peroxidation in RBC and liver of SHR and WKY rats. Greater amounts of dietary (n-3) fat enhance tissue susceptibility to oxidation, which can be modulated by increased dietary cholesterol in SHR and WKY rats.
Collapse
Affiliation(s)
- Yvonne V Yuan
- School of Nutrition, Faculty of Community Services, Ryerson University, Toronto, Ontario, Canada M5B 2K3
| | | |
Collapse
|
24
|
Johnson P. Antioxidant enzyme expression in health and disease: effects of exercise and hypertension. Comp Biochem Physiol C Toxicol Pharmacol 2002; 133:493-505. [PMID: 12458178 DOI: 10.1016/s1532-0456(02)00120-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Antioxidant enzymes (superoxide dismutases, catalase and glutathione peroxidase) are components of an organism's mechanisms for combating oxidative stress which is generated in normal metabolism and which may also be a reaction in response to external stimuli. This review identifies the general significance of antioxidant enzymes in health and disease, and some of the diseases that are now believed to have oxidative stress as a component. A discussion is then presented of the molecular mechanisms by which antioxidant enzyme expression is controlled at the transcriptional and post-transcriptional levels. The final sections of the review highlight the effects of exercise and hypertension on antioxidant enzyme expression in a number of different tissues, and the possibilities for future studies in these areas are discussed.
Collapse
Affiliation(s)
- Peter Johnson
- Department of Biomedical Sciences, Ohio University, Athens, Ohio 45701, USA.
| |
Collapse
|
25
|
Duarte J, Pérez-Palencia R, Vargas F, Angeles Ocete M, Pérez-Vizcaino F, Zarzuelo A, Tamargo J. Antihypertensive effects of the flavonoid quercetin in spontaneously hypertensive rats. Br J Pharmacol 2001; 133:117-24. [PMID: 11325801 PMCID: PMC1572775 DOI: 10.1038/sj.bjp.0704064] [Citation(s) in RCA: 302] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
1. The effects of an oral daily dose (10 mg kg(-1)) of the flavonoid quercetin for 5 weeks in spontaneously hypertensive (SHR) and normotensive Wistar Kyoto rats (WKY) were analysed. 2. Quercetin induced a significant reduction in systolic (-18%), diastolic (-23%) and mean (-21%) arterial blood pressure and heart rate (-12%) in SHR but not in WKY rats. 3. The left ventricular weight index and the kidney weight index in vehicle-treated SHR were significantly greater than in control WKY and these parameters were significantly reduced in quercetin-treated SHR in parallel with the reduction in systolic blood pressure. 4. Quercetin had no effect on the vasodilator responses to sodium nitroprusside or to the vasoconstrictor responses to noradrenaline or KCl but enhanced the endothelium-dependent relaxation to acetylcholine (E(max)=58+/-5% vs 78+/-5%, P<0.01) in isolated aortae. 5. The 24 h urinary isoprostane F(2 alpha) excretion and the plasma malonyldialdehyde (MDA) levels in SHR rats were increased as compared to WKY rats. However, in quercetin-treated SHR rats both parameters were similar to those of vehicle-treated WKY. 6. These data demonstrate that quercetin reduces the elevated blood pressure, the cardiac and renal hypertrophy and the functional vascular changes in SHR rats without effect on WKY. These effects were associated with a reduced oxidant status due to the antioxidant properties of the drug.
Collapse
Affiliation(s)
- Juan Duarte
- Department of Pharmacology, School of Pharmacy, University of Granada, 18071 Granada, Spain
| | - Raquel Pérez-Palencia
- Department of Pharmacology, School of Pharmacy, University of Granada, 18071 Granada, Spain
| | - Felix Vargas
- Department of Biochemistry, School of Medicine, University of Granada, 18012, Granada, Spain
| | - Maria Angeles Ocete
- Department of Pharmacology, School of Pharmacy, University of Granada, 18071 Granada, Spain
| | - Francisco Pérez-Vizcaino
- Department of Pharmacology, School of Medicine, University Complutense of Madrid, 28040 Madrid, Spain
- Author for correspondence:
| | - Antonio Zarzuelo
- Department of Pharmacology, School of Pharmacy, University of Granada, 18071 Granada, Spain
| | - Juan Tamargo
- Department of Pharmacology, School of Medicine, University Complutense of Madrid, 28040 Madrid, Spain
| |
Collapse
|
26
|
Mantle D, Patel VB, Why HJ, Ahmed S, Rahman I, MacNee W, Wassif WS, Richardson PJ, Preedy VR. Effects of lisinopril and amlodipine on antioxidant status in experimental hypertension. Clin Chim Acta 2000; 299:1-10. [PMID: 10900288 DOI: 10.1016/s0009-8981(00)00270-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The objective of this investigation was to compare changes in antioxidant status (together with other metabolites relevant to hypertension) in plasma and cardiac tissue from spontaneously hypertensive rats (SHR) and normotensive Wistar Kyoto rats (WKY), following 8 weeks of treatment with lisinopril (angiotensin converting enzyme inhibitor) or amlodipine (Ca(2+) channel antagonist) respectively. There was no significant difference in the levels of total antioxidant capacity, retinol, urea, albumin or triglyceride in plasma from SHR or WKY rats, with or without lisinopril or amlodipine treatment. However in SHR rats, levels of alpha-tocopherol were substantially reduced in both plasma (-54% WKY, P<0.01) and cardiac tissue (-43% WKY, P<0.05). Treatment with lisinopril ameliorated reduced levels of plasma alpha-tocopherol in SHR rats, but not in cardiac tissue. Amlodipine treatment had no effect on alpha-tocopherol levels in plasma or cardiac tissue in SHR rats. In SHR rats total cholesterol levels were significantly lower thanWKY controls (-36%, P<0.001). This effect was reversed in lisinopril treated SHR rats (+27%, P<0.01). Plasma high density lipoprotein (HDL) and low density lipoprotein (LDL) cholesterol were reduced in untreated SHR rats (P<0.025) when compared to WKY controls; neither lisinopril nor amlodipine treatment significantly altered these parameters. These findings suggest possible alternative mechanisms of action for lisinopril, and reinforce its use in hypertensive patients or patients with left ventricular hypertrophy.
Collapse
Affiliation(s)
- D Mantle
- Department of Neurochemistry, Regional Neurosciences Centre, Newcastle General Hospital, NE4 6BE, Newcastle upon Tyne, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Yuan YV, Kitts DD, Godin DV. Variations in dietary fat and cholesterol intakes modify antioxidant status of SHR and WKY rats. J Nutr 1998; 128:1620-30. [PMID: 9772127 DOI: 10.1093/jn/128.10.1620] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The effects of varying dietary fat saturation [butter (B), beef tallow (BT)] or polyunsaturation [(n-6) soybean oil (SBO), (n-3) menhaden oil (MO)] and cholesterol content (0.05 and 0.5 g/100 g) on systolic blood pressure (SBP), plasma lipids and tissue antioxidant status were investigated in 14-wk-old spontaneously hypertensive rats (SHR) and normotensive Wistar Kyoto (WKY) rats. Varying dietary fat composition for 9 wk had no influence on SBP in either SHR or WKY rats. Rats fed MO diets exhibited smaller (P < 0.05) body weight gains, lower (P < 0.05) feed efficiency ratios and lower (P < 0.05) plasma cholesterol concentrations than those fed the B, BT and SBO diets. Significant (P < 0.05) interactions for animal strain x cholesterol intake and animal strain x fat source were noted for serum cholesterol concentrations. SHR exhibited higher (P < 0.05) RBC and liver catalase (CAT), and heart and liver superoxide dismutase (SOD) activities similar to those of WKY rats. The lower (P <0.01) RBC, heart and liver glutathione peroxidase (GSH-Px) activities observed in SHR coincided with higher (P <0.01) glutathione reductase (GSSG-Red), compared with WKY rats. Dietary cholesterol intake had no effect on RBC, heart and liver total sulfhydryl concentration or GSH-Px activities, but increased (P <0. 001) liver GSSG-Red. Feeding MO resulted in lower (P <0.001) RBC and heart GSH-Px activities. In contrast, feeding B and BT resulted in lower GSH-Px in liver. The significant (P < 0.01) animal strain x fat source interaction obtained for liver GSH-Px activity indicated that SHR responded differently to polyunsaturated fatty acid feeding than their WKY counterparts. Diet-induced changes in tissue antioxidant status were tissue specific and did not affect the development of hypertension in SHR.
Collapse
Affiliation(s)
- Y V Yuan
- Department of Food Science, Faculty of Agriculture, University of British Columbia, Vancouver, BC, Canada
| | | | | |
Collapse
|