1
|
Potticary AL, Belk MC, Creighton JC, Ito M, Kilner R, Komdeur J, Royle NJ, Rubenstein DR, Schrader M, Shen S, Sikes DS, Smiseth PT, Smith R, Steiger S, Trumbo ST, Moore AJ. Revisiting the ecology and evolution of burying beetle behavior (Staphylinidae: Silphinae). Ecol Evol 2024; 14:e70175. [PMID: 39170054 PMCID: PMC11336061 DOI: 10.1002/ece3.70175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/24/2024] [Accepted: 07/29/2024] [Indexed: 08/23/2024] Open
Abstract
Investigating fundamental processes in biology requires the ability to ground broad questions in species-specific natural history. This is particularly true in the study of behavior because an organism's experience of the environment will influence the expression of behavior and the opportunity for selection. Here, we provide a review of the natural history and behavior of burying beetles of the genus Nicrophorus to provide the groundwork for comparative work that showcases their remarkable behavioral and ecological diversity. Burying beetles have long fascinated scientists because of their well-developed parenting behavior, exhibiting extended post-hatching care of offspring that varies extensively within and across taxa. Despite the burgeoning success of burying beetles as a model system for the study of behavioral evolution, there has not been a review of their behavior, ecology, and evolution in over 25 years. To address this gap, we leverage a developing community of researchers who have contributed to a detailed knowledge of burying beetles to highlight the utility of Nicrophorus for investigating the causes and consequences of social and behavioral evolution.
Collapse
Affiliation(s)
- Ahva L. Potticary
- Department of BiologyNorthern Michigan UniversityMarquetteMichiganUSA
- Department of EntomologyUniversity of GeorgiaAthensGeorgiaUSA
| | - Mark C. Belk
- Department of BiologyBrigham Young UniversityProvoUtahUSA
| | - J. Curtis Creighton
- Department of Biological SciencesPurdue University NorthwestHammondIndianaUSA
| | - Minobu Ito
- Department of Environmental ScienceToho UniversityFunabashiChibaJapan
| | | | - Jan Komdeur
- Groningen Institute for Evolutionary Life SciencesUniversity of GroningenGroningenThe Netherlands
| | - Nick J. Royle
- Centre for Ecology and Conservation, Faculty of Environment, Science & the EconomyUniversity of ExeterCornwallUK
| | - Dustin R. Rubenstein
- Department of Ecology, Evolution and Environmental BiologyColumbia UniversityNew York CityNew YorkUSA
| | - Matthew Schrader
- Department of BiologySewanee, The University of the SouthSewaneeTennesseeUSA
| | | | - Derek S. Sikes
- University of Alaska Museum and Department of Biology and WildlifeUniversity of Alaska FairbanksFairbanksAlaskaUSA
| | - Per T. Smiseth
- Institute of Ecology and EvolutionThe University of EdinburghEdinburghUK
| | - Rosemary Smith
- Department of Biological SciencesIdaho State UniversityPocatelloIdahoUSA
- Rocky Mountain Biological LaboratoryCrested ButteColoradoUSA
| | - Sandra Steiger
- Department of Evolutionary Animal EcologyUniversity of BayreuthBayreuthGermany
| | - Stephen T. Trumbo
- Department of Ecology and Evolutionary BiologyUniversity of ConnecticutWaterburyConnecticutUSA
| | - Allen J. Moore
- Department of EntomologyUniversity of GeorgiaAthensGeorgiaUSA
| |
Collapse
|
2
|
McMurry RS, Cavallaro MC, Shufran A, Hoback WW. Establishing Age-Based Color Changes for the American Burying Beetle, Nicrophorus americanus Olivier, with Implications for Conservation Efforts. INSECTS 2023; 14:844. [PMID: 37999043 PMCID: PMC10672208 DOI: 10.3390/insects14110844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 10/23/2023] [Accepted: 10/28/2023] [Indexed: 11/25/2023]
Abstract
The American burying beetle, Nicrophorus americanus Olivier, is a federally protected insect that once occupied most of eastern North America. Adult beetles feature distinct, recognizable markings on the pronotum and elytra, and color changes with age have been observed. Among the challenges faced by research scientists and conservation practitioners is the ability to determine beetle age in the field between and including teneral (young) and senescent (old) adult stages. Using 20 (10 male and 10 female) captive-bred beetles, we characterized the change in greyscale and red, green, and blue (RGB) color channels over the lifespan of each beetle for field-aging applications. Individual beetles were photographed at set intervals from eclosion to death, and color data were extracted using open-source ImageJ Version 1.54f software. A series of linear mixed-effects models determined that red color showed the steepest decrease among all color channels in the pronotum and elytral markings, with a more significant decrease in the pronotum. The change in greyscale between the pronotum and elytral markings was visibly different, with more rapid darkening in the pronotum. The resulting pronotum color chart was tested under field conditions in Oklahoma, aging 299 adult N. americanus, and six age categories (day range) were discernable by eye: teneral (0-15), late teneral (15-31), early mature (31-45), mature (45-59), early senescent (59-76), and senescent (76-90). The ability to more precisely estimate age will improve population structure estimates, laboratory breeding programs, and potential reintroduction efforts.
Collapse
Affiliation(s)
| | | | | | - William Wyatt Hoback
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA; (R.S.M.); (M.C.C.); (A.S.)
| |
Collapse
|
3
|
Lee DS, Mandalaywala TM, Dubuc C, Widdig A, Higham JP. Higher early life mortality with lower infant body mass in a free-ranging primate. J Anim Ecol 2020; 89:2300-2310. [PMID: 32614977 DOI: 10.1111/1365-2656.13291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 06/04/2020] [Indexed: 11/28/2022]
Abstract
Traits that reflect the amount of energy allocated to offspring by mothers, such as infant body mass, are predicted to have long-lasting effects on offspring fitness. In very long-lived species, such as anthropoid primates, where long-lasting and obligate parental care is required for successful recruitment of offspring, there are few studies on the fitness implications of low body mass among infants. Using body mass data collected from 253 free-ranging rhesus macaque Macaca mulatta infants on Cayo Santiago, Puerto Rico, we examined if lower infant body mass predicts lower chance of survival through to reproductive maturation (4th year of life). We also used data on inter-birth intervals and suckling behaviours to determine whether the duration of maternal care was adjusted to infant body mass. Rhesus macaque infants experienced on average 5% reduced hazard of death for an increase in body mass of 0.1 SD (~100 g) above the mean within their age-sex class. The positive association between body mass and early life survival was most pronounced in the 1st year of life. Infant body mass tended to be lower if mothers were young or old, but the link between infant body mass and early life survival remained after controlling for maternal age. This finding suggests that maternal effects on early life survival such as maternal age may act through their influence on infant body mass. Mothers of heavier infants were less likely to be delayed in subsequent reproduction, but the estimated association slightly overlapped with zero. The timing of the last week of suckling did not differ by infant body mass. Using infant body mass data that has been rarely available from free-ranging primates, our study provides comparative evidence to strengthen the existing body of literature on the fitness implications of variation in infant body mass.
Collapse
Affiliation(s)
- D Susie Lee
- Department of Anthropology, New York University, New York, NY, USA.,New York Consortium in Evolutionary Primatology, New York, NY, USA
| | - Tara M Mandalaywala
- Department of Psychological and Brain Sciences, University of Massachusetts Amherst, Amherst, MA, USA
| | - Constance Dubuc
- Department of Anthropology, New York University, New York, NY, USA
| | - Anja Widdig
- Junior Research Group of Primate Kin Selection, Department of Primatology, Max Planck Institute for Evolutionary Primatology, New York, NY, USA.,Behavioral Ecology Research Group, Institute of Biology, University of Leipzig, Leipzig, Germany
| | - James P Higham
- Department of Anthropology, New York University, New York, NY, USA.,New York Consortium in Evolutionary Primatology, New York, NY, USA
| |
Collapse
|
4
|
Kojima W, Nakakura T, Fukuda A, Lin C, Harada M, Hashimoto Y, Kawachi A, Suhama S, Yamamoto R. Latitudinal cline of larval growth rate and its proximate mechanisms in a rhinoceros beetle. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13572] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Wataru Kojima
- Graduate School of Sciences and Technology for Innovation Yamaguchi University Yamaguchi Japan
| | - Tatsunori Nakakura
- Graduate School of Sciences and Technology for Innovation Yamaguchi University Yamaguchi Japan
| | - Ayumi Fukuda
- Graduate School of Sciences and Technology for Innovation Yamaguchi University Yamaguchi Japan
| | - Chung‐Ping Lin
- Department of Life Science National Taiwan Normal University Taipei Taiwan
| | - Masahiro Harada
- Graduate School of Sciences and Technology for Innovation Yamaguchi University Yamaguchi Japan
| | - Yuki Hashimoto
- Graduate School of Sciences and Technology for Innovation Yamaguchi University Yamaguchi Japan
| | - Aika Kawachi
- Graduate School of Sciences and Technology for Innovation Yamaguchi University Yamaguchi Japan
| | - Shiho Suhama
- Graduate School of Sciences and Technology for Innovation Yamaguchi University Yamaguchi Japan
| | - Ryo Yamamoto
- Graduate School of Sciences and Technology for Innovation Yamaguchi University Yamaguchi Japan
| |
Collapse
|
5
|
Abarca M, Larsen EA, Ries L. Heatwaves and Novel Host Consumption Increase Overwinter Mortality of an Imperiled Wetland Butterfly. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00193] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
6
|
Benowitz KM, Sparks ME, McKinney EC, Moore PJ, Moore AJ. Variation in mandible development and its relationship to dependence on parents across burying beetles. Ecol Evol 2018; 8:12832-12840. [PMID: 30619586 PMCID: PMC6308864 DOI: 10.1002/ece3.4713] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 10/16/2018] [Accepted: 10/24/2018] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND In species with parental care, there is striking variation in offspring dependence at birth, ranging from feeding independence to complete dependency on parents for nutrition. Frequently, highly dependent offspring further evolve reductions or alterations of morphological traits that would otherwise promote self-sufficiency. Here, we examine evidence for morphological evolution associated with dependence in burying beetles (Nicrophorus spp.), in which dependence upon parents appears to have several independent origins. In many species, precocial first instar larvae can survive without parenting, but several altricial species die at this stage on their own. We focused specifically on the mandibles, which are expected to be related to feeding ability and therefore independence from parents. RESULTS We find no evidence that the size of the mandible is related to dependence on parents. However, we do find a developmental and phylogenetic correlation between independence and the presence of serrations on the inner edge of the mandible. Mandibles of independent species bear serrations at hatching, whereas dependent species hatch with smooth mandibles, only developing serrations in the second instar when these larvae gain the ability to survive on their own. Phylogenetic evidence suggests that serrations coincide with independence repeatedly. We note a single exception to this trend, a beetle with a serrated mandible that cannot survive without parents. However, this exception occurs in a species that has recently evolved the loss of independence. CONCLUSIONS We argue that the absence of mandible serrations occurs due to alternative selection pressures incurred in larvae dependent upon parents to survive. We suggest that this may have led to a variable function for mandibles, perhaps related to increased competitive ability among siblings or increased efficiency in receiving nutrition from parents. Furthermore, we propose that the phylogenetic pattern we see is consistent with the long-held evolutionary hypothesis that evolutionary change in behavior and physiology precede morphological change.
Collapse
Affiliation(s)
| | | | | | | | - Allen J. Moore
- Department of EntomologyUniversity of GeorgiaAthensGeorgia
| |
Collapse
|
7
|
Microbiome-assisted carrion preservation aids larval development in a burying beetle. Proc Natl Acad Sci U S A 2018; 115:11274-11279. [PMID: 30322931 PMCID: PMC6217399 DOI: 10.1073/pnas.1812808115] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The ability to feed on a wide range of diets has enabled insects to diversify and colonize specialized niches. Carrion, for example, is highly susceptible to microbial decomposers, but is kept palatable several days after an animal's death by carrion-feeding insects. Here we show that the burying beetle Nicrophorus vespilloides preserves carrion by preventing the microbial succession associated with carrion decomposition, thus ensuring a high-quality resource for their developing larvae. Beetle-tended carcasses showed no signs of degradation and hosted a microbial community containing the beetles' gut microbiota, including the yeast Yarrowia In contrast, untended carcasses showed visual and olfactory signs of putrefaction, and their microbial community consisted of endogenous and soil-originating microbial decomposers. This regulation of the carcass' bacterial and fungal community and transcriptomic profile was associated with lower concentrations of putrescine and cadaverine (toxic polyamines associated with carcass putrefaction) and altered levels of proteases, lipases, and free amino acids. Beetle-tended carcasses develop a biofilm-like matrix housing the yeast, which, when experimentally removed, leads to reduced larval growth. Thus, tended carcasses hosted a mutualistic microbial community that promotes optimal larval development, likely through symbiont-mediated extraintestinal digestion and detoxification of carrion nutrients. The adaptive preservation of carrion coordinated by the beetles and their symbionts demonstrates a specialized resource-management strategy through which insects modify their habitats to enhance fitness.
Collapse
|
8
|
Smith AN, Belk MC. Does body size affect fitness the same way in males and females? A test of multiple fitness components. Biol J Linn Soc Lond 2018. [DOI: 10.1093/biolinnean/bly025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Ashlee N Smith
- Biology Department, Brigham Young University, Provo, UT, USA
| | - Mark C Belk
- Biology Department, Brigham Young University, Provo, UT, USA
| |
Collapse
|
9
|
Okuzaki Y, Sota T. Factors Related to Altitudinal Body Size Variation in the Earthworm-Eating Ground Beetle Carabus japonicus. Zoolog Sci 2017; 34:229-234. [DOI: 10.2108/zs160182] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Yutaka Okuzaki
- Field Science Center for Northern Biosphere, Hokkaido University, Kita, Sapporo 060-0811, Japan
| | - Teiji Sota
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| |
Collapse
|
10
|
Wang Y, Rozen DE. Gut Microbiota Colonization and Transmission in the Burying Beetle Nicrophorus vespilloides throughout Development. Appl Environ Microbiol 2017; 83:e03250-16. [PMID: 28213538 PMCID: PMC5394326 DOI: 10.1128/aem.03250-16] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 02/08/2017] [Indexed: 12/22/2022] Open
Abstract
Carrion beetles in the genus Nicrophorus rear their offspring on decomposing carcasses where larvae are exposed to a diverse community of decomposer bacteria. Parents coat the carcass with antimicrobial secretions prior to egg hatch (defined as prehatch care) and also feed regurgitated food, and potentially bacteria, to larvae throughout development (defined as full care). Here, we partition the roles of prehatch and posthatch parental care in the transmission and persistence of culturable symbiotic bacteria to larvae. Using three treatment groups (full care, prehatch care only, and no care), we found that larvae receiving full care are predominantly colonized by bacteria resident in the maternal gut while larvae receiving no care are colonized with bacteria from the carcass. More importantly, larvae receiving only prehatch care were also predominantly colonized by maternal bacteria; this result indicates that parental treatment of the carcass, including application of bacteria to the carcass surface, is sufficient to ensure symbiont transfer even in the absence of direct larval feeding. Later in development, we found striking evidence that pupae undergo an aposymbiotic stage, after which they are recolonized at eclosion with bacteria similar to those found on the molted larval cuticle and on the wall of the pupal chamber. Our results clarify the importance of prehatch parental care for symbiont transmission in Nicrophorus vespilloides and suggest that these bacteria successfully outcompete decomposer bacteria during larval and pupal gut colonization.IMPORTANCE Here, we examine the origin and persistence of the culturable gut microbiota of larvae in the burying beetle Nicrophorus vespilloides This insect is particularly interesting for this study because larvae are reared on decomposing vertebrate carcasses, where they are exposed to high densities of carrion-decomposing microbes. Larvae also receive extensive parental care in the form of carcass preservation and direct larval feeding. We find that parents transmit their gut bacteria to larvae both directly, through regurgitation, and indirectly via their effects on the carcass. In addition, we find that larvae become aposymbiotic during pupation but are recolonized apparently from bacteria shed onto the insect cuticle before adult eclosion. Our results highlight the diverse interactions between insect behavior and development on microbiota composition. They further suggest that competitive interactions mediate the bacterial composition of Nicrophorus larvae together with or apart from the influence of beetle immunity, suggesting that the bacterial communities of these insects may be highly coevolved with those of their host species.
Collapse
Affiliation(s)
- Yin Wang
- Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Daniel E Rozen
- Institute of Biology, Leiden University, Leiden, The Netherlands
| |
Collapse
|
11
|
Tan EJ, Reid CAM, Elgar MA. Predators, Parasites and Heterospecific Aggregations in Chrysomeline Larvae. Ethology 2017. [DOI: 10.1111/eth.12598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Eunice Jingmei Tan
- School of BioSciences; University of Melbourne; Melbourne Victoria Australia
- Division of Science; Yale-NUS College; Singapore City Singapore
| | - Chris A. M. Reid
- Entomology; The Australian Museum; Sydney New South Wales Australia
| | - Mark A. Elgar
- School of BioSciences; University of Melbourne; Melbourne Victoria Australia
| |
Collapse
|
12
|
Musiolek D, Kočárek P. Weather-dependent microhabitat use by Tetrix tenuicornis (Orthoptera: Tetrigidae). Naturwissenschaften 2016; 103:68. [PMID: 27437707 DOI: 10.1007/s00114-016-1393-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 06/30/2016] [Accepted: 07/03/2016] [Indexed: 11/27/2022]
Abstract
For ectothermic animals, selection of a suitable microhabitat is affected by a combination of abiotic and biotic factors. Also important is the trade-off between those microhabitats with optimal microclimatic conditions and food availability vs. those with the lowest level of competition and lowest risk of predation. Central European species of groundhoppers (Orthoptera: Tetrigidae) live in locations with small-scale mosaics of patches formed by bare ground, moss cushions and vascular plants (grasses and forbs). Our research focused on the effects of selected weather components (current temperature, humidity, atmospheric pressure and sunlight) on specific microhabitat selection by adults (during the reproductive season) and by the last-instar nymphs (during the non-reproductive season) of the groundhopper Tetrix tenuicornis. Using experimental conditions, we determined that microhabitat use by T. tenuicornis is sex-specific and that microhabitat preference differs between adults and nymphs. We suppose that microhabitats are used according to groundhopper current needs in relation to each habitat's suitability for maintaining body temperature, food intake and reproductive behaviour. Microhabitat preferences were significantly associated with temperature and atmospheric pressure. Changes in atmospheric pressure signal changes in weather, and insects respond to increases or decreases in pressure by adjusting their behaviour in order to enhance survival. We propose that, under low atmospheric pressure, T. tenuicornis actively seeks microhabitats that provide increased protection from adverse weather.
Collapse
Affiliation(s)
- David Musiolek
- Department of Biology and Ecology, and Institute of Environmental Technologies, Faculty of Science, University of Ostrava, Chittussiho 10, 710 00, Ostrava, Czech Republic
| | - Petr Kočárek
- Department of Biology and Ecology, and Institute of Environmental Technologies, Faculty of Science, University of Ostrava, Chittussiho 10, 710 00, Ostrava, Czech Republic.
| |
Collapse
|
13
|
Davis JM, Coogan LE, Papaj DR. Big maggots dig deeper: size-dependent larval dispersal in flies. Oecologia 2015; 179:55-62. [PMID: 25894095 DOI: 10.1007/s00442-015-3314-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 04/07/2015] [Indexed: 11/28/2022]
Abstract
The ability of individual animals to select habitats optimal for development and survival can be constrained by the costs of moving through the environment. Animals that seek overwintering sites underground, for example, may be constrained by the energy required to burrow into the soil. We conducted field and laboratory studies to determine the relationship between individual size and overwintering site selection in the tephritid flies, Rhagoletis juglandis and Rhagoletis suavis. We also explored the effect of site selection on pupal mortality, parasitism, and the ability to emerge from overwintering sites after eclosion. In both species, and in both lab and field tests, larger pupae were found at deeper soil depths. In addition, marginally non-significant trends indicated pupae in deeper sites were 48% more likely to survive the overwintering period. Finally, larger individuals were more likely to eclose and emerge from the soil at a given depth, but flies in deep overwintering sites were less likely to emerge from those sites than flies in shallow sites. Our data indicate that overwintering site selection represents a trade-off between avoiding predators and parasites that occur at shallow sites, and the energetic and mortality costs of burrowing to, overwintering in, and emerging from, deeper sites. The size-dependent overwintering site selection demonstrated here has implications for population dynamics and pest control strategies. Some fly control measures, such as the introduction of parasites or predators, will be mitigated when the deepest and least accessible overwintering pupae represent a disproportionately large amount of the population's reproductive capacity.
Collapse
Affiliation(s)
- Jeremy M Davis
- Department of Biology, Vassar College, Poughkeepsie, NY, USA,
| | | | | |
Collapse
|
14
|
Baena ML, Macías-Ordóñez R. Mobility and mating frequency in the scramble competition polygyny of a chrysomelid beetle. Behav Ecol 2014. [DOI: 10.1093/beheco/aru197] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
15
|
Le Henanff M, Meylan S, Lourdais O. The sooner the better: reproductive phenology drives ontogenetic trajectories in a temperate squamate (Podarcis muralis). Biol J Linn Soc Lond 2012. [DOI: 10.1111/j.1095-8312.2012.02005.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Sundström LF, Devlin RH. Increased intrinsic growth rate is advantageous even under ecologically stressful conditions in coho salmon (Oncorhynchus kisutch). Evol Ecol 2010. [DOI: 10.1007/s10682-010-9406-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
17
|
Trumbo ST. Age-related reproductive performance in the parental burying beetle, Nicrophorus orbicollis. Behav Ecol 2009. [DOI: 10.1093/beheco/arp082] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
18
|
Abstract
Rich and ephemeral resources, such as carrion, are a source of intense interspecific competition among animal scavengers and microbial decomposers. Janzen [Janzen DH (1977) Am Nat 111:691-713] hypothesized that microbes should be selected to defend such resources by rendering them unpalatable or toxic to animals, and that animals should evolve counterstrategies of avoidance or detoxification. Despite the ubiquity of animal-microbe competition, there are few tests of Janzen's hypothesis, in particular with respect to antimicrobial strategies in animals. Here, we use the burying beetle Nicrophorus vespilloides, a species that obligately breeds on carcasses of small vertebrates, to investigate the role of parental care and avoidance as antimicrobial strategies. We manipulated competition between beetle larvae and microbes by providing beetles with either fresh carcasses or old ones that had reached advanced putrefaction. We found evidence for a strong detrimental effect of microbial competition on beetle reproductive success and larval growth. We also found that parental care can largely compensate for these negative effects, and that when given a choice between old and fresh carcasses, parents tended to choose to rear their broods on the latter. We conclude that parental care and carcass avoidance can function as antimicrobial strategies in this species. Our findings extend the range of behavioral counterstrategies used by animals during competition with microbes, and generalize the work of Janzen to include competition between microbes and insects that rely on carrion as an obligate resource for breeding and not just as an opportunistic meal.
Collapse
|
19
|
Carlson SM, Olsen EM, Vllestad LA. Seasonal mortality and the effect of body size: a review and an empirical test using individual data on brown trout. Funct Ecol 2008. [DOI: 10.1111/j.1365-2435.2008.01416.x] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Sears MW. Geographic variation in the life history of the sagebrush lizard: the role of thermal constraints on activity. Oecologia 2004; 143:25-36. [PMID: 15742218 DOI: 10.1007/s00442-004-1767-0] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2003] [Accepted: 10/21/2004] [Indexed: 11/26/2022]
Abstract
Thermal constraints on the time available for activity have been proposed as a proximate mechanism to explain variation in suites of life history traits. The longer that an ectotherm can maintain activity, the more time it has to forage and the greater chance that it will encounter a predator and be eaten. Thus, the thermal environment may produce a trade off between growth and survival when variation in the environment favors increased activity. I used mark-recapture data from a demographic study of three natural populations of the sagebrush lizard (Sceloporus graciosus) and estimates of thermal opportunity for each population to evaluate whether variation in the thermal environment can explain patterns of growth and survival that occur over an elevational gradient. Lizards from the highest elevation population exhibited higher individual growth rates than those of lizards from lower elevation, while mortality rates increased with elevation for these populations. The covariation of fast growth and high mortality with increased thermal opportunity is the opposite trend expected if the thermal environment alone is to explain patterns of life history in these lizards. Additional factors including thermal heterogeneity in the distribution of microhabitats of lizards, adaptation to local environmental conditions, and a potential trade-off between resource acquisition and predation risk need to be addressed to obtain a satisfactory explanation of the causative mechanisms producing life history variation.
Collapse
Affiliation(s)
- Michael W Sears
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104-6018, USA.
| |
Collapse
|