1
|
Kravchenko VS, Gumerov RA, Papadakis CM, Potemkin II. Self-Assembly of Molecular Brushes with Responsive Alternating Copolymer Side Chains. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Vitaly S. Kravchenko
- Physics Department, Lomonosov Moscow State University, Leninskie Gory 1-2, Moscow 119991, Russian Federation
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow 119991, Russian Federation
| | - Rustam A. Gumerov
- Physics Department, Lomonosov Moscow State University, Leninskie Gory 1-2, Moscow 119991, Russian Federation
| | - Christine M. Papadakis
- Fachgebiet Physik weicher Materie, Physik-Department, Technische Universität München, James-Franck-Straße 1, Garching 85748, Germany
| | - Igor I. Potemkin
- Physics Department, Lomonosov Moscow State University, Leninskie Gory 1-2, Moscow 119991, Russian Federation
- National Research South Ural State University, Chelyabinsk 454080, Russian Federation
| |
Collapse
|
2
|
Mesoscale Modeling of Agglomeration of Molecular Bottlebrushes: Focus on Conformations and Clustering Criteria. Polymers (Basel) 2022; 14:polym14122339. [PMID: 35745920 PMCID: PMC9227207 DOI: 10.3390/polym14122339] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/03/2022] [Accepted: 06/06/2022] [Indexed: 02/04/2023] Open
Abstract
Using dissipative particle dynamics, we characterize dynamics of aggregation of molecular bottlebrushes in solvents of various qualities by tracking the number of clusters, the size of the largest cluster, and an average aggregation number. We focus on a low volume fraction of bottlebrushes in a range of solvents and probe three different cutoff criteria to identify bottlebrushes belonging to the same cluster. We demonstrate that the cutoff criteria which depend on both the coordination number and the length of the side chain allows one to correlate the agglomeration status with the structural characteristics of bottlebrushes in solvents of various qualities. We characterize conformational changes of the bottlebrush within the agglomerates with respect to those of an isolated bottlebrush in the same solvents. The characterization of bottlebrush conformations within the agglomerates is an important step in understanding the relationship between the bottlebrush architecture and material properties. An analysis of three distinct cutoff criteria to identify bottlebrushes belonging to the same cluster introduces a framework to identify both short-lived transient and long-lived agglomerates; the same approach could be further extended to characterize agglomerates of various macromolecules with complex architectures beyond the specific bottlebrush architecture considered herein.
Collapse
|
3
|
Conformational characteristics of regioselectively PEG/PS-grafted cellulosic bottlebrushes in solution: cross-sectional structure and main-chain stiffness. Polym J 2022. [DOI: 10.1038/s41428-021-00594-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
4
|
Hils C, Schmelz J, Drechsler M, Schmalz H. Janus Micelles by Crystallization-Driven Self-Assembly of an Amphiphilic, Double-Crystalline Triblock Terpolymer. J Am Chem Soc 2021; 143:15582-15586. [PMID: 34529422 DOI: 10.1021/jacs.1c08076] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Surface-compartmentalized micellar nanostructures (Janus and patchy micelles) have gained increasing interest due to their unique properties opening highly relevant applications, e.g., as efficient particulate surfactants, compatibilizers in polymer blends, or templates for catalytically active nanoparticles. We present a facile method for the production of worm-like Janus micelles based on crystallization-driven self-assembly of a double-crystalline triblock terpolymer with a crystallizable polyethylene middle block and two highly incompatible corona blocks, polystyrene and poly(ethylene oxide). This approach enables the production of amphiphilic Janus micelles with excellent interfacial activity by a comparably simple heating and cooling protocol directly in solution.
Collapse
Affiliation(s)
- Christian Hils
- Macromolecular Chemistry II, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Joachim Schmelz
- Macromolecular Chemistry II, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Markus Drechsler
- Keylab Electron and Optical Microscopy, Bavarian Polymer Institute, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Holger Schmalz
- Macromolecular Chemistry II, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany.,Keylab Synthesis and Molecular Characterization, Bavarian Polymer Institute, Universitätsstraße 30, 95447 Bayreuth, Germany
| |
Collapse
|
5
|
Abstract
Bottlebrush polymers (BBPs), composed of relatively short polymeric side chains densely grafted on a polymer backbone, exhibit many unique characteristics and hold promise for a variety of applications. This Perspective focuses on environmentally induced shape-changing behavior of BBPs at interface and in solution, particularly worm/star-globule shape transitions. While BBPs with a single type of homopolymer or random copolymer side chains have been shown to undergo pronounced worm-to-globule shape changes in response to external stimuli, the collapsed brushes are unstable and prone to aggregation. By introducing a second, solvophilic polymer into the side chains, either as a distinct type of side chain or as the outer block of block copolymer side chains, the collapsed brushes not only are stabilized but also create unimolecular micellar nanostructures, which can be used for, e.g., encapsulation and delivery of substances. The current challenges in the design, synthesis, and characterization of stimuli-responsive shape-changing BBPs are discussed.
Collapse
Affiliation(s)
- Bin Zhao
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
6
|
Computer simulations of comb-like macromolecules with responsive diblock copolymer side chains. Colloid Polym Sci 2020. [DOI: 10.1007/s00396-020-04753-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
7
|
Gumus B, Herrera-Alonso M, Ramírez-Hernández A. Kinetically-arrested single-polymer nanostructures from amphiphilic mikto-grafted bottlebrushes in solution: a simulation study. SOFT MATTER 2020; 16:4969-4979. [PMID: 32432304 DOI: 10.1039/d0sm00771d] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Solution self-assembly of molecular bottlebrushes offers a rich platform to create complex functional organic nanostructures. Recently, it has become evident that kinetics, not just thermodynamics, plays an important role in defining the self-assembled structures that can be formed. In this work, we present results from extensive molecular dynamics simulations that explore the self-assembly behavior of mikto-grafted bottlebrushes when the solvent quality for one of the side blocks is changed by a rapid quench. We have performed a systematic study of the effect of different structural parameters and the degree of incompatibility between side chains on the final self-assembled nanostructures in the low concentration limit. We found that kinetically-trapped complex nanostructures are prevalent as the number of macromonomers increases. We performed a quantitative analysis of the self-assembled morphologies by computing the radius of gyration tensor and relative shape anisotropy as the different relevant parameters were varied. Our results are summarized in terms of non-equilibrium morphology diagrams.
Collapse
Affiliation(s)
- Bahar Gumus
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas San Antonio, TX 78249, USA.
| | | | | |
Collapse
|
8
|
Wessels MG, Jayaraman A. Self-assembly of amphiphilic polymers of varying architectures near attractive surfaces. SOFT MATTER 2020; 16:623-633. [PMID: 31808757 DOI: 10.1039/c9sm02104c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We use coarse-grained molecular dynamics simulations to investigate the assembly of A-B amphiphilic polymers near/on surfaces as a function of polymer architecture and surface attraction to the solvophobic B-block in the polymer. We study four polymer architectures: linear, bottlebrush with a backbone that is longer than each of the side chains, bottlebrush where the solvophobic backbone is similar in length to each of the side chains, and 'star-like' architectures where the backbone is significantly shorter than the side chain lengths. For each architecture and surface-B attraction, we quantify the assembled aggregate structure (i.e., aggregation number, domain shapes and sizes) and the chain conformations (i.e., components of the chain radius of gyration) on and away from the surface. For all the architectures and surface-B attraction strengths, the assembled structure away from the surface is similar to the assembly observed in bulk systems without surfaces. Near/on the surface, the assembled B-blocks form domains whose shapes and sizes are dependent on the surface-B attraction strength and the ability of the B-block in the polymer architecture to change conformations and pack on the surface. Domain sizes formed from linear and 'star-like' polymer architectures show the highest sensitivity to surface-B-block attraction strength, transitioning from hemispherical to disordered domains with increasing attraction strength. In contrast, bottlebrushes with long backbones and short side chains transition from hemispherical to striped to continuous domains with increasing surface-B attraction strength. Bottlebrushes with similar solvophobic backbone and side chain lengths form hemispherical domains that do not change significantly with the surface-B-block attraction strength. These computational results can guide experimentalists in their choices of surface chemistry and polymer architecture to achieve desired assembled domain shapes and sizes on the surface.
Collapse
Affiliation(s)
- Michiel G Wessels
- Colburn Laboratory, Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, DE 19716, USA.
| | | |
Collapse
|
9
|
Wessels MG, Jayaraman A. Molecular dynamics simulation study of linear, bottlebrush, and star-like amphiphilic block polymer assembly in solution. SOFT MATTER 2019; 15:3987-3998. [PMID: 31025695 DOI: 10.1039/c9sm00375d] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this study we investigate the effect of varying branched polymer architectures on the assembly of amphiphilic block polymers in solution using coarse-grained molecular dynamics simulations. We quantify assembly structure (e.g., aggregation number, assembly morphology, and micelle core size) and thermodynamics (e.g., unimer to micelle transition conditions) as a function of increasing solvophobicity of the solvophobic block in the copolymer for three broad categories of polymer architectures: linear, 'bottlebrush' (with many short side chains on a long backbone), and 'star-like' (with few long side chains on a short backbone). Keeping the total number of coarse-grained beads in each polymer (or polymer molecular weight) constant, as we go from either linear or 'star-like' to 'bottlebrush' polymer architectures, the micelle aggregation number and micelle core size decrease, and the solvophobicity required for assembly (i.e., transition solvophobicity) increases. This trend is linked to the topological/steric hinderance for making solvophobic bead contacts between neighboring polymers for the 'bottlebrush' polymer architecture compared to the linear or 'star-like' architectures. We are able to identify some universal trends in assembly by plotting the assembly structure and thermodynamics data as a function of branching parameter defined as the ratio of the branched chain to the linear chain radius of gyration in the unimer state, and the relative lengths of the backbone versus side chain. The results in this paper guide how one could manipulate the amphiphilic block polymer assembly structure and thermodynamics by choosing appropriate polymer architecture, block sequence, and composition.
Collapse
Affiliation(s)
- Michiel G Wessels
- Colburn Laboratory, Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, DE 19716, USA.
| | | |
Collapse
|
10
|
Lyubimov I, Wessels MG, Jayaraman A. Molecular Dynamics Simulation and PRISM Theory Study of Assembly in Solutions of Amphiphilic Bottlebrush Block Copolymers. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01535] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ivan Lyubimov
- Department of Chemical and Biomolecular Engineering, 150 Academy Street, Colburn Laboratory, Newark, Delaware 19716, United States
| | - Michiel G. Wessels
- Department of Chemical and Biomolecular Engineering, 150 Academy Street, Colburn Laboratory, Newark, Delaware 19716, United States
| | - Arthi Jayaraman
- Department of Chemical and Biomolecular Engineering, 150 Academy Street, Colburn Laboratory, Newark, Delaware 19716, United States
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
11
|
Zhou Y, Tang H, Wu P. Intra-molecular interactions dominating the dehydration of a poly(2-isopropyl-2-oxazoline)-based densely grafted polymer comb in aqueous solution and hysteretic liquid–liquid phase separation. Phys Chem Chem Phys 2017; 19:6626-6635. [DOI: 10.1039/c6cp08574a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Temperature-induced association and hysteretic LLPS process of a poly(2-isopropyl-2-oxazoline) (PiPOx)-based polymer comb in water.
Collapse
Affiliation(s)
- Yuanyuan Zhou
- The State Key Laboratory of Molecular Engineering of Polymers
- Collaborative Innovation Center of Polymers and Polymer Composite Materials
- Department of Macromolecular Science and Laboratory for Advanced Materials
- Fudan University
- Shanghai 200433
| | - Hui Tang
- The State Key Laboratory of Molecular Engineering of Polymers
- Collaborative Innovation Center of Polymers and Polymer Composite Materials
- Department of Macromolecular Science and Laboratory for Advanced Materials
- Fudan University
- Shanghai 200433
| | - Peiyi Wu
- The State Key Laboratory of Molecular Engineering of Polymers
- Collaborative Innovation Center of Polymers and Polymer Composite Materials
- Department of Macromolecular Science and Laboratory for Advanced Materials
- Fudan University
- Shanghai 200433
| |
Collapse
|
12
|
Chen C, Tang P, Qiu F. Binary hairy nanoparticles: Recent progress in theory and simulations. ACTA ACUST UNITED AC 2014. [DOI: 10.1002/polb.23528] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Cangyi Chen
- Department of Macromolecular Science; State Key Laboratory of Molecular Engineering of Polymers, Fudan University; Shanghai 200433 China
| | - Ping Tang
- Department of Macromolecular Science; State Key Laboratory of Molecular Engineering of Polymers, Fudan University; Shanghai 200433 China
| | - Feng Qiu
- Department of Macromolecular Science; State Key Laboratory of Molecular Engineering of Polymers, Fudan University; Shanghai 200433 China
| |
Collapse
|
13
|
Fytas NG, Theodorakis PE. Molecular dynamics simulations of single-component bottle-brush polymers with flexible backbones under poor solvent conditions. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2013; 25:285105. [PMID: 23765452 DOI: 10.1088/0953-8984/25/28/285105] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Conformations of a single-component bottle-brush polymer with a fully flexible backbone under poor solvent conditions are studied by molecular dynamics simulations, using a coarse-grained bead-spring model with side chains of up to N = 40 effective monomers. By variation of the solvent quality and the grafting density σ with which side chains are grafted onto the flexible backbone, we study for backbone lengths of up to Nb = 100 the crossover from the brush/coil regime to the dense collapsed state. At lower temperatures, where collapsed chains with a constant monomer density are observed, the choice of the above parameters does not play any role and it is the total number of monomers that defines the dimensions of the chains. Furthermore, bottle-brush polymers with longer side chains possess higher spherical symmetry compared to polymers with lower side-chain lengths in contrast to what one may intuitively expect, as the stretching of the side chains is less important than the increase of their length. At higher temperatures, always below the Theta (Θ) temperature, coil-like configurations, similar to a single polymer chain, or brush-like configurations, similar to a homogeneous cylindrical bottle-brush polymer with a rigid backbone, are observed, depending on the choice of the particular parameters N and σ. In the crossover regime between the collapsed state (globule) and the coil/brush regime the acylindricity increases, whereas for temperatures outside of this range, bottle-brush polymers maintain a highly cylindrical symmetry in all configurational states.
Collapse
Affiliation(s)
- Nikolaos G Fytas
- Applied Mathematics Research Centre, Coventry University, Coventry CV1 5FB, UK.
| | | |
Collapse
|
14
|
Theodorakis PE, Dellago C, Kahl G. A coarse-grained model for DNA-functionalized spherical colloids, revisited: effective pair potential from parallel replica simulations. J Chem Phys 2013; 138:025101. [PMID: 23320725 DOI: 10.1063/1.4773920] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
We discuss a coarse-grained model recently proposed by Starr and Sciortino [J. Phys.: Condens. Matter 18, L347 (2006)] for spherical particles functionalized with short single DNA strands. The model incorporates two key aspects of DNA hybridization, i.e., the specificity of binding between DNA bases and the strong directionality of hydrogen bonds. Here, we calculate the effective potential between two DNA-functionalized particles of equal size using a parallel replica protocol. We find that the transition from bonded to unbonded configurations takes place at considerably lower temperatures compared to those that were originally predicted using standard simulations in the canonical ensemble. We put particular focus on DNA-decorations of tetrahedral and octahedral symmetry, as they are promising candidates for the self-assembly into a single-component diamond structure. Increasing colloid size hinders hybridization of the DNA strands, in agreement with experimental findings.
Collapse
|
15
|
Binder K, Milchev A. Polymer brushes on flat and curved surfaces: How computer simulations can help to test theories and to interpret experiments. ACTA ACUST UNITED AC 2012. [DOI: 10.1002/polb.23168] [Citation(s) in RCA: 166] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
16
|
Theodorakis PE, Fytas NG. A study for the static properties of symmetric linear multiblock copolymers under poor solvent conditions. J Chem Phys 2012; 136:094902. [DOI: 10.1063/1.3689303] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
17
|
Maleki H, Theodorakis PE. Structure of bottle-brush brushes under good solvent conditions: a molecular dynamics study. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2011; 23:505104. [PMID: 22086109 DOI: 10.1088/0953-8984/23/50/505104] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
We report a simulation study for bottle-brush polymers grafted on a rigid backbone. Using a standard coarse-grained bead-spring model extensive molecular dynamics simulations for such macromolecules under good solvent conditions are performed. We consider a broad range of parameters and present numerical results for the monomer density profile, density of the untethered ends of the grafted flexible backbones and the correlation function describing the range that neighboring grafted bottle-brushes are affected by the presence of the others due to the excluded-volume interactions. The end beads of the flexible backbones of the grafted bottle-brushes do not access the region close to the rigid backbone due to the presence of the side chains of the grafted bottle-brush polymers, which stretch the chains further in the radial directions. Although a number of different correlation lengths exist as a result of the complex structure of these macromolecules, their properties can be tuned with high accuracy in good solvents. Moreover, qualitative differences with 'typical' bottle-brushes are discussed. Our results provide a first approach to characterizing such complex macromolecules with a standard bead-spring model.
Collapse
Affiliation(s)
- Hamed Maleki
- Institut für Physik, Johannes Gutenberg-Universität, Staudinger Weg 7, D-55099 Mainz, Germany.
| | | |
Collapse
|