1
|
Lavrentovich MO, Carrillo JMY, Collier CP, Katsaras J, Bolmatov D. Curvature Memory in Electrically Stimulated Lipid Membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:3157-3165. [PMID: 39871541 DOI: 10.1021/acs.langmuir.4c03799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
We demonstrate, using non-equilibrium molecular dynamics simulations, that lipid membrane capacitance varies with surface charge accumulation linked to membrane shape and curvature changes. Specifically, we show that lipid membranes exhibit a hysteretic response when exposed to oscillatory electric fields. The electromechanical coupling in these membranes leads to hysteretic buckling, in which the membrane can spontaneously buckle in one of two distinct directions along the electric field, even for the same ionic charge accumulation at the water-membrane interface. In this regard, these binary buckled membrane states suggest potential applications in neuromorphic computing. Their bistable nature, characterized by two distinct and stable configurations, could serve as a foundation for implementing memory storage systems and logic operations. Furthermore, we introduce a circuit model that captures these dynamic effects, offering insights into emergent memory effects in electrically stimulated lipid membranes. Finally, this work presents lipid bilayers as dynamic, adaptable elements and suggests a new platform for exploring energy storage, information processing, and memory encoding at the lipid membrane level.
Collapse
Affiliation(s)
- Maxim O Lavrentovich
- Department of Earth, Environment, and Physics, Worcester State University, Worcester, Massachusetts 01602, United States
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Jan-Michael Y Carrillo
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Charles Patrick Collier
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - John Katsaras
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, United States
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- Shull-Wollan Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Dima Bolmatov
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, United States
- Shull-Wollan Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
2
|
Zhu S, Underhill PT. Stochastic kinetic theory applied to coarse-grained polymer model. J Chem Phys 2024; 160:114903. [PMID: 38506294 DOI: 10.1063/5.0186783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/28/2024] [Indexed: 03/21/2024] Open
Abstract
A stochastic field theory approach is applied to a coarse-grained polymer model that will enable studies of polymer behavior under non-equilibrium conditions. This article is focused on the validation of the new model in comparison with explicit Langevin equation simulations under conditions with analytical solutions. The polymers are modeled as Hookean dumbbells in one dimension, without including hydrodynamic interactions and polymer-polymer interactions. Stochastic moment equations are derived from full field theory. The accuracy of the field theory and moment equations is quantified using autocorrelation functions. The full field theory is only accurate for a large number of polymers due to keeping track of rare occurrences of polymers with a large stretch. The moment equations do not have this error because they do not explicitly track these configurations. The accuracy of both methods depends on the spatial degree of discretization. The timescale of decorrelation over length scales bigger than the spatial discretization is accurate, while there is an error over the scale of single mesh points.
Collapse
Affiliation(s)
- Shangren Zhu
- Rensselaer Polytechnic Institute, 110 8th St., Troy, New York 12180, USA
| | | |
Collapse
|
3
|
G Lopez C, Matsumoto A, Shen AQ. Dilute polyelectrolyte solutions: recent progress and open questions. SOFT MATTER 2024; 20:2635-2687. [PMID: 38427030 DOI: 10.1039/d3sm00468f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Polyelectrolytes are a class of polymers possessing ionic groups on their repeating units. Since counterions can dissociate from the polymer backbone, polyelectrolyte chains are strongly influenced by electrostatic interactions. As a result, the physical properties of polyelectrolyte solutions are significantly different from those of electrically neutral polymers. The aim of this article is to highlight key results and some outstanding questions in the polyelectrolyte research from recent literature. We focus on the influence of electrostatics on conformational and hydrodynamic properties of polyelectrolyte chains. A compilation of experimental results from the literature reveals significant disparities with theoretical predictions. We also discuss a new class of polyelectrolytes called poly(ionic liquid)s that exhibit unique physical properties in comparison to ordinary polyelectrolytes. We conclude this review by listing some key research challenges in order to fully understand the conformation and dynamics of polyelectrolytes in solutions.
Collapse
Affiliation(s)
- Carlos G Lopez
- Institute of Physical Chemistry, RWTH Aachen University, Aachen, 52056, Germany
| | - Atsushi Matsumoto
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui City, Fukui 910-8507, Japan.
| | - Amy Q Shen
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan.
| |
Collapse
|