1
|
Prassas I, Clarke B, Youssef T, Phlamon J, Dimitrakopoulos L, Rofaeil A, Yousef GM. Computational pathology: an evolving concept. Clin Chem Lab Med 2024; 62:2148-2155. [PMID: 38646706 DOI: 10.1515/cclm-2023-1124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 04/10/2024] [Indexed: 04/23/2024]
Abstract
The initial enthusiasm about computational pathology (CP) and artificial intelligence (AI) was that they will replace pathologists entirely on the way to fully automated diagnostics. It is becoming clear that currently this is not the immediate model to pursue. On top of the legal and regulatory complexities surrounding its implementation, the majority of tested machine learning (ML)-based predictive algorithms do not display the exquisite performance needed to render them unequivocal, standalone decision makers for matters with direct implications to human health. We are thus moving into a different model of "computer-assisted diagnostics", where AI is there to provide support, rather than replacing, the pathologist. Herein we focus on the practical aspects of CP, from a pathologist perspective. There is a wide range of potential applications where CP can enhance precision of pathology diagnosis, tailor prognostic and predictive information, as well as save time. There are, however, a number of potential limitations for CP that currently hinder their wider adoption in the clinical setting. We address the key necessary steps towards clinical implementation of computational pathology, discuss the significant obstacles that hinders its adoption in the clinical context and summarize some proposed solutions. We conclude that the advancement of CP in the clinic is a promising resource-intensive endeavour that requires broad and inclusive collaborations between academia, industry, and regulatory bodies.
Collapse
Affiliation(s)
- Ioannis Prassas
- Laboratory Medicine Program, 7989 University Health Network , Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Blaise Clarke
- Laboratory Medicine Program, 7989 University Health Network , Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Timothy Youssef
- Laboratory Medicine Program, 7989 University Health Network , Toronto, ON, Canada
| | - Juliana Phlamon
- Laboratory Medicine Program, 7989 University Health Network , Toronto, ON, Canada
| | | | - Andrew Rofaeil
- Laboratory Medicine Program, 7989 University Health Network , Toronto, ON, Canada
| | - George M Yousef
- Laboratory Medicine Program, 7989 University Health Network , Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
2
|
Alahmari SS, Goldgof D, Hall LO, Mouton PR. A Review of Nuclei Detection and Segmentation on Microscopy Images Using Deep Learning With Applications to Unbiased Stereology Counting. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2024; 35:7458-7477. [PMID: 36327184 DOI: 10.1109/tnnls.2022.3213407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The detection and segmentation of stained cells and nuclei are essential prerequisites for subsequent quantitative research for many diseases. Recently, deep learning has shown strong performance in many computer vision problems, including solutions for medical image analysis. Furthermore, accurate stereological quantification of microscopic structures in stained tissue sections plays a critical role in understanding human diseases and developing safe and effective treatments. In this article, we review the most recent deep learning approaches for cell (nuclei) detection and segmentation in cancer and Alzheimer's disease with an emphasis on deep learning approaches combined with unbiased stereology. Major challenges include accurate and reproducible cell detection and segmentation of microscopic images from stained sections. Finally, we discuss potential improvements and future trends in deep learning applied to cell detection and segmentation.
Collapse
|
3
|
Mahbod A, Polak C, Feldmann K, Khan R, Gelles K, Dorffner G, Woitek R, Hatamikia S, Ellinger I. NuInsSeg: A fully annotated dataset for nuclei instance segmentation in H&E-stained histological images. Sci Data 2024; 11:295. [PMID: 38486039 PMCID: PMC10940572 DOI: 10.1038/s41597-024-03117-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 03/04/2024] [Indexed: 03/18/2024] Open
Abstract
In computational pathology, automatic nuclei instance segmentation plays an essential role in whole slide image analysis. While many computerized approaches have been proposed for this task, supervised deep learning (DL) methods have shown superior segmentation performances compared to classical machine learning and image processing techniques. However, these models need fully annotated datasets for training which is challenging to acquire, especially in the medical domain. In this work, we release one of the biggest fully manually annotated datasets of nuclei in Hematoxylin and Eosin (H&E)-stained histological images, called NuInsSeg. This dataset contains 665 image patches with more than 30,000 manually segmented nuclei from 31 human and mouse organs. Moreover, for the first time, we provide additional ambiguous area masks for the entire dataset. These vague areas represent the parts of the images where precise and deterministic manual annotations are impossible, even for human experts. The dataset and detailed step-by-step instructions to generate related segmentation masks are publicly available on the respective repositories.
Collapse
Affiliation(s)
- Amirreza Mahbod
- Research Center for Medical Image Analysis and Artificial Intelligence, Department of Medicine, Danube Private University, Krems an der Donau, 3500, Austria.
- Institute for Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, 1090, Austria.
| | - Christine Polak
- Institute for Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, 1090, Austria
| | - Katharina Feldmann
- Institute for Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, 1090, Austria
| | - Rumsha Khan
- Institute for Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, 1090, Austria
| | - Katharina Gelles
- Institute for Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, 1090, Austria
| | - Georg Dorffner
- Institute of Artificial Intelligence, Medical University of Vienna, Vienna, 1090, Austria
| | - Ramona Woitek
- Research Center for Medical Image Analysis and Artificial Intelligence, Department of Medicine, Danube Private University, Krems an der Donau, 3500, Austria
| | - Sepideh Hatamikia
- Research Center for Medical Image Analysis and Artificial Intelligence, Department of Medicine, Danube Private University, Krems an der Donau, 3500, Austria
- Austrian Center for Medical Innovation and Technology, Wiener Neustadt, 2700, Austria
| | - Isabella Ellinger
- Institute for Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, 1090, Austria
| |
Collapse
|
4
|
Wang Z, Zhang J, Bai L, Chang H, Chen Y, Zhang Y, Tao J. A Deep Learning Based Platform for Remote Sensing Images Change Detection Integrating Crowdsourcing and Active Learning. SENSORS (BASEL, SWITZERLAND) 2024; 24:1509. [PMID: 38475044 DOI: 10.3390/s24051509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/07/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024]
Abstract
Remote sensing images change detection technology has become a popular tool for monitoring the change type, area, and distribution of land cover, including cultivated land, forest land, photovoltaic, roads, and buildings. However, traditional methods which rely on pre-annotation and on-site verification are time-consuming and challenging to meet timeliness requirements. With the emergence of artificial intelligence, this paper proposes an automatic change detection model and a crowdsourcing collaborative framework. The framework uses human-in-the-loop technology and an active learning approach to transform the manual interpretation method into a human-machine collaborative intelligent interpretation method. This low-cost and high-efficiency framework aims to solve the problem of weak model generalization caused by the lack of annotated data in change detection. The proposed framework can effectively incorporate expert domain knowledge and reduce the cost of data annotation while improving model performance. To ensure data quality, a crowdsourcing quality control model is constructed to evaluate the annotation qualification of the annotators and check their annotation results. Furthermore, a prototype of automatic detection and crowdsourcing collaborative annotation management platform is developed, which integrates annotation, crowdsourcing quality control, and change detection applications. The proposed framework and platform can help natural resource departments monitor land cover changes efficiently and effectively.
Collapse
Affiliation(s)
- Zhibao Wang
- School of Computer and Information Technology, Northeast Petroleum University, Daqing 163318, China
- Bohai-Rim Energy Research Institute, Northeast Petroleum University, Qinhuangdao 066004, China
| | - Jie Zhang
- School of Computer and Information Technology, Northeast Petroleum University, Daqing 163318, China
| | - Lu Bai
- School of Electronics, Electrical Engineering and Computer Science, Queen's University Belfast, Belfast BT9 6SB, UK
| | - Huan Chang
- School of Computer and Information Technology, Northeast Petroleum University, Daqing 163318, China
| | - Yuanlin Chen
- School of Computer and Information Technology, Northeast Petroleum University, Daqing 163318, China
| | - Ying Zhang
- State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing Normal University, Beijing 100101, China
| | - Jinhua Tao
- State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing Normal University, Beijing 100101, China
| |
Collapse
|
5
|
Othman BK, Bradová M, Dobner T, Michal M, Skálová A. Reply: Salivary Gland Secretory Carcinoma: Clinicopathologic and Genetic Characteristics of 215 Cases and Proposal for a Grading System. Am J Surg Pathol 2023; 47:1332-1334. [PMID: 37750535 DOI: 10.1097/pas.0000000000002129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Affiliation(s)
| | - Martina Bradová
- Department of Pathology, Charles University, Faculty of Medicine
- Bioptic Laboratory, Ltd
| | - Tomáš Dobner
- Information Technology Department Bioptic Laboratory, Ltd., Pilsen Czech Republic
| | - Michal Michal
- Department of Pathology, Charles University, Faculty of Medicine
- Bioptic Laboratory, Ltd
| | - Alena Skálová
- Department of Pathology, Charles University, Faculty of Medicine
- Bioptic Laboratory, Ltd
| |
Collapse
|
6
|
Li Z, Li C, Luo X, Zhou Y, Zhu J, Xu C, Yang M, Wu Y, Chen Y. Toward Source-Free Cross Tissues Histopathological Cell Segmentation via Target-Specific Finetuning. IEEE TRANSACTIONS ON MEDICAL IMAGING 2023; 42:2666-2677. [PMID: 37030826 DOI: 10.1109/tmi.2023.3263465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Recognition and quantitative analytics of histopathological cells are the golden standard for diagnosing multiple cancers. Despite recent advances in deep learning techniques that have been widely investigated for the automated segmentation of various types of histopathological cells, the heavy dependency on specific histopathological image types with sufficient supervised annotations, as well as the limited access to clinical data in hospitals, still pose significant challenges in the application of computer-aided diagnosis in pathology. In this paper, we focus on the model generalization of cell segmentation towards cross-tissue histopathological images. Remarkably, a novel target-specific finetuning-based self-supervised domain adaptation framework is proposed to transfer the cell segmentation model to unlabeled target datasets, without access to source datasets and annotations. When performed on the target unlabeled histopathological image set, the proposed method only needs to tune very few parameters of the pre-trained model in a self-supervised manner. Considering the morphological properties of pathological cells, we introduce two constraint terms at both local and global levels into this framework to access more reliable predictions. The proposed cross-domain framework is validated on three different types of histopathological tissues, showing promising performance in self-supervised cell segmentation. Additionally, the whole framework can be further applied to clinical tools in pathology without accessing the original training image data. The code and dataset are released at: https://github.com/NeuronXJTU/SFDA-CellSeg.
Collapse
|
7
|
Anderson M, Sadiq S, Nahaboo Solim M, Barker H, Steel DH, Habib M, Obara B. Biomedical Data Annotation: An OCT Imaging Case Study. J Ophthalmol 2023; 2023:5747010. [PMID: 37650051 PMCID: PMC10465257 DOI: 10.1155/2023/5747010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 07/20/2023] [Accepted: 08/02/2023] [Indexed: 09/01/2023] Open
Abstract
In ophthalmology, optical coherence tomography (OCT) is a widely used imaging modality, allowing visualisation of the structures of the eye with objective and quantitative cross-sectional three-dimensional (3D) volumetric scans. Due to the quantity of data generated from OCT scans and the time taken for an ophthalmologist to inspect for various disease pathology features, automated image analysis in the form of deep neural networks has seen success for the classification and segmentation of OCT layers and quantification of features. However, existing high-performance deep learning approaches rely on huge training datasets with high-quality annotations, which are challenging to obtain in many clinical applications. The collection of annotations from less experienced clinicians has the potential to alleviate time constraints from more senior clinicians, allowing faster data collection of medical image annotations; however, with less experience, there is the possibility of reduced annotation quality. In this study, we evaluate the quality of diabetic macular edema (DME) intraretinal fluid (IRF) biomarker image annotations on OCT B-scans from five clinicians with a range of experience. We also assess the effectiveness of annotating across multiple sessions following a training session led by an expert clinician. Our investigation shows a notable variance in annotation performance, with a correlation that depends on the clinician's experience with OCT image interpretation of DME, and that having multiple annotation sessions has a limited effect on the annotation quality.
Collapse
Affiliation(s)
- Matthew Anderson
- School of Computing, Newcastle University, Urban Sciences Building, Newcastle upon Tyne NE4 5TG, UK
| | - Salman Sadiq
- Sunderland Eye Infirmary, Queen Alexandra Rd, Sunderland NE4 5TG, UK
| | | | - Hannah Barker
- Sunderland Eye Infirmary, Queen Alexandra Rd, Sunderland NE4 5TG, UK
| | - David H. Steel
- Sunderland Eye Infirmary, Queen Alexandra Rd, Sunderland NE4 5TG, UK
- Bioscience Institute, Newcastle University, Catherine Cookson Building, Newcastle upon Tyne NE2 4HH, UK
| | - Maged Habib
- Sunderland Eye Infirmary, Queen Alexandra Rd, Sunderland NE4 5TG, UK
- Bioscience Institute, Newcastle University, Catherine Cookson Building, Newcastle upon Tyne NE2 4HH, UK
| | - Boguslaw Obara
- School of Computing, Newcastle University, Urban Sciences Building, Newcastle upon Tyne NE4 5TG, UK
- Bioscience Institute, Newcastle University, Catherine Cookson Building, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
8
|
Islam Sumon R, Bhattacharjee S, Hwang YB, Rahman H, Kim HC, Ryu WS, Kim DM, Cho NH, Choi HK. Densely Convolutional Spatial Attention Network for nuclei segmentation of histological images for computational pathology. Front Oncol 2023; 13:1009681. [PMID: 37305563 PMCID: PMC10248729 DOI: 10.3389/fonc.2023.1009681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 05/05/2023] [Indexed: 06/13/2023] Open
Abstract
Introduction Automatic nuclear segmentation in digital microscopic tissue images can aid pathologists to extract high-quality features for nuclear morphometrics and other analyses. However, image segmentation is a challenging task in medical image processing and analysis. This study aimed to develop a deep learning-based method for nuclei segmentation of histological images for computational pathology. Methods The original U-Net model sometime has a caveat in exploring significant features. Herein, we present the Densely Convolutional Spatial Attention Network (DCSA-Net) model based on U-Net to perform the segmentation task. Furthermore, the developed model was tested on external multi-tissue dataset - MoNuSeg. To develop deep learning algorithms for well-segmenting nuclei, a large quantity of data are mandatory, which is expensive and less feasible. We collected hematoxylin and eosin-stained image data sets from two hospitals to train the model with a variety of nuclear appearances. Because of the limited number of annotated pathology images, we introduced a small publicly accessible data set of prostate cancer (PCa) with more than 16,000 labeled nuclei. Nevertheless, to construct our proposed model, we developed the DCSA module, an attention mechanism for capturing useful information from raw images. We also used several other artificial intelligence-based segmentation methods and tools to compare their results to our proposed technique. Results To prioritize the performance of nuclei segmentation, we evaluated the model's outputs based on the Accuracy, Dice coefficient (DC), and Jaccard coefficient (JC) scores. The proposed technique outperformed the other methods and achieved superior nuclei segmentation with accuracy, DC, and JC of 96.4% (95% confidence interval [CI]: 96.2 - 96.6), 81.8 (95% CI: 80.8 - 83.0), and 69.3 (95% CI: 68.2 - 70.0), respectively, on the internal test data set. Conclusion Our proposed method demonstrates superior performance in segmenting cell nuclei of histological images from internal and external datasets, and outperforms many standard segmentation algorithms used for comparative analysis.
Collapse
Affiliation(s)
- Rashadul Islam Sumon
- Department of Digital Anti-Aging Healthcare, Ubiquitous-Anti-aging-Healthcare Research Center (u-AHRC), Inje University, Gimhae, Republic of Korea
| | - Subrata Bhattacharjee
- Department of Computer Engineering, Ubiquitous-Anti-aging-Healthcare Research Center (u-AHRC), Inje University, Gimhae, Republic of Korea
| | - Yeong-Byn Hwang
- Department of Digital Anti-Aging Healthcare, Ubiquitous-Anti-aging-Healthcare Research Center (u-AHRC), Inje University, Gimhae, Republic of Korea
| | - Hafizur Rahman
- Department of Digital Anti-Aging Healthcare, Ubiquitous-Anti-aging-Healthcare Research Center (u-AHRC), Inje University, Gimhae, Republic of Korea
| | - Hee-Cheol Kim
- Department of Digital Anti-Aging Healthcare, Ubiquitous-Anti-aging-Healthcare Research Center (u-AHRC), Inje University, Gimhae, Republic of Korea
| | - Wi-Sun Ryu
- Artificial Intelligence R&D Center, JLK Inc., Seoul, Republic of Korea
| | - Dong Min Kim
- Artificial Intelligence R&D Center, JLK Inc., Seoul, Republic of Korea
| | - Nam-Hoon Cho
- Department of Pathology, Yonsei University Hospital, Seoul, Republic of Korea
| | - Heung-Kook Choi
- Department of Computer Engineering, Ubiquitous-Anti-aging-Healthcare Research Center (u-AHRC), Inje University, Gimhae, Republic of Korea
- Artificial Intelligence R&D Center, JLK Inc., Seoul, Republic of Korea
| |
Collapse
|
9
|
Sasmal B, Dhal KG. A survey on the utilization of Superpixel image for clustering based image segmentation. MULTIMEDIA TOOLS AND APPLICATIONS 2023; 82:1-63. [PMID: 37362658 PMCID: PMC9992924 DOI: 10.1007/s11042-023-14861-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 06/22/2022] [Accepted: 02/06/2023] [Indexed: 06/28/2023]
Abstract
Superpixel become increasingly popular in image segmentation field as it greatly helps image segmentation techniques to segment the region of interest accurately in noisy environment and also reduces the computation effort to a great extent. However, selection of proper superpixel generation techniques and superpixel image segmentation techniques play a very crucial role in the domain of different kinds of image segmentation. Clustering is a well-accepted image segmentation technique and proved their effective performance over various image segmentation field. Therefore, this study presents an up-to-date survey on the employment of superpixel image in combined with clustering techniques for the various image segmentation. The contribution of the survey has four parts namely (i) overview of superpixel image generation techniques, (ii) clustering techniques especially efficient partitional clustering techniques, their issues and overcoming strategies, (iii) Review of superpixel combined with clustering strategies exist in literature for various image segmentation, (iv) lastly, the comparative study among superpixel combined with partitional clustering techniques has been performed over oral pathology and leaf images to find out the efficacy of the combination of superpixel and partitional clustering approaches. Our evaluations and observation provide in-depth understanding of several superpixel generation strategies and how they apply to the partitional clustering method.
Collapse
Affiliation(s)
- Buddhadev Sasmal
- Department of Computer Science and Application, Midnapore College (Autonomous), Paschim Medinipur, West Bengal India
| | - Krishna Gopal Dhal
- Department of Computer Science and Application, Midnapore College (Autonomous), Paschim Medinipur, West Bengal India
| |
Collapse
|
10
|
Haq MM, Ma H, Huang J. NuSegDA: Domain adaptation for nuclei segmentation. Front Big Data 2023; 6:1108659. [PMID: 36936996 PMCID: PMC10018010 DOI: 10.3389/fdata.2023.1108659] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 02/13/2023] [Indexed: 03/06/2023] Open
Abstract
The accurate segmentation of nuclei is crucial for cancer diagnosis and further clinical treatments. To successfully train a nuclei segmentation network in a fully-supervised manner for a particular type of organ or cancer, we need the dataset with ground-truth annotations. However, such well-annotated nuclei segmentation datasets are highly rare, and manually labeling an unannotated dataset is an expensive, time-consuming, and tedious process. Consequently, we require to discover a way for training the nuclei segmentation network with unlabeled dataset. In this paper, we propose a model named NuSegUDA for nuclei segmentation on the unlabeled dataset (target domain). It is achieved by applying Unsupervised Domain Adaptation (UDA) technique with the help of another labeled dataset (source domain) that may come from different type of organ, cancer, or source. We apply UDA technique at both of feature space and output space. We additionally utilize a reconstruction network and incorporate adversarial learning into it so that the source-domain images can be accurately translated to the target-domain for further training of the segmentation network. We validate our proposed NuSegUDA on two public nuclei segmentation datasets, and obtain significant improvement as compared with the baseline methods. Extensive experiments also verify the contribution of newly proposed image reconstruction adversarial loss, and target-translated source supervised loss to the performance boost of NuSegUDA. Finally, considering the scenario when we have a small number of annotations available from the target domain, we extend our work and propose NuSegSSDA, a Semi-Supervised Domain Adaptation (SSDA) based approach.
Collapse
Affiliation(s)
- Mohammad Minhazul Haq
- Department of Computer Science and Engineering, University of Texas at Arlington, Arlington, TX, United States
| | - Hehuan Ma
- Department of Computer Science and Engineering, University of Texas at Arlington, Arlington, TX, United States
| | - Junzhou Huang
- Department of Computer Science and Engineering, University of Texas at Arlington, Arlington, TX, United States
| |
Collapse
|
11
|
Dhal KG, Ray S, Rai R, Das A. Archimedes Optimizer: Theory, Analysis, Improvements, and Applications. ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING : STATE OF THE ART REVIEWS 2023; 30:2543-2578. [PMID: 36624874 PMCID: PMC9813472 DOI: 10.1007/s11831-022-09876-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 12/19/2022] [Indexed: 06/02/2023]
Abstract
The intricacy of the real-world numerical optimization tribulations has full-fledged and diversely amplified necessitating proficient yet ingenious optimization algorithms. In the domain wherein the classical approaches fall short, the predicament resolving nature-inspired optimization algorithms (NIOA) tend to hit upon an excellent solution to unbendable optimization problems consuming sensible computation time. Nevertheless, in the last few years approaches anchored in nonlinear physics have been anticipated, announced, and flourished. The process based on non-linear physics modeled in the form of optimization algorithms and as a subset of NIOA, in countless cases, has successfully surpassed the existing optimization methods with their effectual exploration knack thus formulating utterly fresh search practices. Archimedes Optimization Algorithm (AOA) is one of the recent and most promising physics optimization algorithms that use meta-heuristics phenomenon to solve real-world problems by either maximizing or minimizing a variety of measurable variables such as performance, profit, and quality. In this paper, Archimedes Optimization Algorithm (AOA) has been discussed in great detail, and also its performance was examined for Multi-Level Thresholding (MLT) based image segmentation domain by considering t-entropy and Tsallis entropy as objective functions. The experimental results showed that among recent Physics Inspired Optimization Algorithms (PIOA), the Archimedes Optimization Algorithm (AOA) produces very promising outcomes with Tsallis entropy rather than with t-entropy in both color standard images and medical pathology images.
Collapse
Affiliation(s)
- Krishna Gopal Dhal
- Department of Computer Science and Application, Midnapore College (Autonomous), Paschim Medinipur, Midnapore, West Bengal India
| | - Swarnajit Ray
- Department of Computer Science and Engineering, Maulana Abul Kalam Azad University of Technology, Kolkata, West Bengal India
| | - Rebika Rai
- Department of Computer Applications, Sikkim University, Gangtok, Sikkim India
| | - Arunita Das
- Department of Computer Science and Application, Midnapore College (Autonomous), Paschim Medinipur, Midnapore, West Bengal India
| |
Collapse
|
12
|
Zhang H, Liu J, Wang P, Yu Z, Liu W, Chen H. Cross-Boosted Multi-Target Domain Adaptation for Multi-Modality Histopathology Image Translation and Segmentation. IEEE J Biomed Health Inform 2022; 26:3197-3208. [PMID: 35196252 DOI: 10.1109/jbhi.2022.3153793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Recent digital pathology workflows mainly focus on mono-modality histopathology image analysis. However, they ignore the complementarity between Haematoxylin & Eosin (H&E) and Immunohistochemically (IHC) stained images, which can provide comprehensive gold standard for cancer diagnosis. To resolve this issue, we propose a cross-boosted multi-target domain adaptation pipeline for multi-modality histopathology images, which contains Cross-frequency Style-auxiliary Translation Network (CSTN) and Dual Cross-boosted Segmentation Network (DCSN). Firstly, CSTN achieves the one-to-many translation from fluorescence microscopy images to H&E and IHC images for providing source domain training data. To generate images with realistic color and texture, Cross-frequency Feature Transfer Module (CFTM) is developed to pertinently restructure and normalize high-frequency content and low-frequency style features from different domains. Then, DCSN fulfills multi-target domain adaptive segmentation, where a dual-branch encoder is introduced, and Bidirectional Cross-domain Boosting Module (BCBM) is designed to implement cross-modality information complementation through bidirectional inter-domain collaboration. Finally, we establish Multi-modality Thymus Histopathology (MThH) dataset, which is the largest publicly available H&E and IHC image benchmark. Experiments on MThH dataset and several public datasets show that the proposed pipeline outperforms state-of-the-art methods on both histopathology image translation and segmentation.
Collapse
|
13
|
Amgad M, Atteya LA, Hussein H, Mohammed KH, Hafiz E, Elsebaie MAT, Alhusseiny AM, AlMoslemany MA, Elmatboly AM, Pappalardo PA, Sakr RA, Mobadersany P, Rachid A, Saad AM, Alkashash AM, Ruhban IA, Alrefai A, Elgazar NM, Abdulkarim A, Farag AA, Etman A, Elsaeed AG, Alagha Y, Amer YA, Raslan AM, Nadim MK, Elsebaie MAT, Ayad A, Hanna LE, Gadallah A, Elkady M, Drumheller B, Jaye D, Manthey D, Gutman DA, Elfandy H, Cooper LAD. NuCLS: A scalable crowdsourcing approach and dataset for nucleus classification and segmentation in breast cancer. Gigascience 2022; 11:giac037. [PMID: 35579553 PMCID: PMC9112766 DOI: 10.1093/gigascience/giac037] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/24/2021] [Accepted: 03/18/2022] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Deep learning enables accurate high-resolution mapping of cells and tissue structures that can serve as the foundation of interpretable machine-learning models for computational pathology. However, generating adequate labels for these structures is a critical barrier, given the time and effort required from pathologists. RESULTS This article describes a novel collaborative framework for engaging crowds of medical students and pathologists to produce quality labels for cell nuclei. We used this approach to produce the NuCLS dataset, containing >220,000 annotations of cell nuclei in breast cancers. This builds on prior work labeling tissue regions to produce an integrated tissue region- and cell-level annotation dataset for training that is the largest such resource for multi-scale analysis of breast cancer histology. This article presents data and analysis results for single and multi-rater annotations from both non-experts and pathologists. We present a novel workflow that uses algorithmic suggestions to collect accurate segmentation data without the need for laborious manual tracing of nuclei. Our results indicate that even noisy algorithmic suggestions do not adversely affect pathologist accuracy and can help non-experts improve annotation quality. We also present a new approach for inferring truth from multiple raters and show that non-experts can produce accurate annotations for visually distinctive classes. CONCLUSIONS This study is the most extensive systematic exploration of the large-scale use of wisdom-of-the-crowd approaches to generate data for computational pathology applications.
Collapse
Affiliation(s)
- Mohamed Amgad
- Department of Pathology, Northwestern University, 750 N Lake Shore Dr., Chicago, IL 60611, USA
| | - Lamees A Atteya
- Cairo Health Care Administration, Egyptian Ministry of Health, 3 Magles El Shaab Street, Cairo, Postal code 222, Egypt
| | - Hagar Hussein
- Department of Pathology, Nasser institute for research and treatment, 3 Magles El Shaab Street, Cairo, Postal code 222, Egypt
| | - Kareem Hosny Mohammed
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, 3620 Hamilton Walk M163, Philadelphia, PA 19104, USA
| | - Ehab Hafiz
- Department of Clinical Laboratory Research, Theodor Bilharz Research Institute, 1 El-Nile Street, Imbaba Warrak El-Hadar, Giza, Postal code 12411, Egypt
| | - Maha A T Elsebaie
- Department of Medicine, Cook County Hospital, 1969 W Ogden Ave, Chicago, IL 60612, USA
| | - Ahmed M Alhusseiny
- Department of Pathology, Baystate Medical Center, University of Massachusetts, 759 Chestnut St, Springfield, MA 01199, USA
| | - Mohamed Atef AlMoslemany
- Faculty of Medicine, Menoufia University, Gamal Abd El-Nasir, Qism Shebeen El-Kom, Shibin el Kom, Menofia Governorate, Postal code: 32511, Egypt
| | - Abdelmagid M Elmatboly
- Faculty of Medicine, Al-Azhar University, 15 Mohammed Abdou, El-Darb El-Ahmar, Cairo Governorate, Postal code 11651, Egypt
| | - Philip A Pappalardo
- Consultant for The Center for Applied Proteomics and Molecular Medicine (CAPMM), George Mason University, 10920 George Mason Circle Institute for Advanced Biomedical Research Room 2008, MS1A9 Manassas, Virginia 20110, USA
| | - Rokia Adel Sakr
- Department of Pathology, National Liver Institute, Gamal Abd El-Nasir, Qism Shebeen El-Kom, Shibin el Kom, Menofia Governorate, Postal code: 32511, Egypt
| | - Pooya Mobadersany
- Department of Pathology, Northwestern University, 750 N Lake Shore Dr., Chicago, IL 60611, USA
| | - Ahmad Rachid
- Faculty of Medicine, Ain Shams University, 38 Abbassia, Next to the Al-Nour Mosque, Cairo, Postal code: 1181, Egypt
| | - Anas M Saad
- Cleveland Clinic Foundation, 9500 Euclid Ave. Cleveland, Ohio 44195, USA
| | - Ahmad M Alkashash
- Department of Pathology, Indiana University, 635 Barnhill Drive Medical Science Building A-128 Indianapolis, IN 46202, USA
| | - Inas A Ruhban
- Faculty of Medicine, Damascus University, Damascus, Damaskus, PO Box 30621, Syria
| | - Anas Alrefai
- Faculty of Medicine, Ain Shams University, 38 Abbassia, Next to the Al-Nour Mosque, Cairo, Postal code: 1181, Egypt
| | - Nada M Elgazar
- Faculty of Medicine, Mansoura University, 1 El Gomhouria St, Dakahlia Governorate 35516, Egypt
| | - Ali Abdulkarim
- Faculty of Medicine, Cairo University, Kasr Al Ainy Hospitals, Kasr Al Ainy St., Cairo, Postal code: 11562, Egypt
| | - Abo-Alela Farag
- Faculty of Medicine, Ain Shams University, 38 Abbassia, Next to the Al-Nour Mosque, Cairo, Postal code: 1181, Egypt
| | - Amira Etman
- Faculty of Medicine, Menoufia University, Gamal Abd El-Nasir, Qism Shebeen El-Kom, Shibin el Kom, Menofia Governorate, Postal code: 32511, Egypt
| | - Ahmed G Elsaeed
- Faculty of Medicine, Mansoura University, 1 El Gomhouria St, Dakahlia Governorate 35516, Egypt
| | - Yahya Alagha
- Faculty of Medicine, Cairo University, Kasr Al Ainy Hospitals, Kasr Al Ainy St., Cairo, Postal code: 11562, Egypt
| | - Yomna A Amer
- Faculty of Medicine, Menoufia University, Gamal Abd El-Nasir, Qism Shebeen El-Kom, Shibin el Kom, Menofia Governorate, Postal code: 32511, Egypt
| | - Ahmed M Raslan
- Department of Anaesthesia and Critical Care, Menoufia University Hospital, Gamal Abd El-Nasir, Qism Shebeen El-Kom, Shibin el Kom, Menofia Governorate, Postal code: 32511, Egypt
| | - Menatalla K Nadim
- Department of Clinical Pathology, Ain Shams University, 38 Abbassia, Next to the Al-Nour Mosque, Cairo, Postal code: 1181, Egypt
| | - Mai A T Elsebaie
- Faculty of Medicine, Ain Shams University, 38 Abbassia, Next to the Al-Nour Mosque, Cairo, Postal code: 1181, Egypt
| | - Ahmed Ayad
- Research Department, Oncology Consultants, 2130 W. Holcombe Blvd, 10th Floor, Houston, Texas 77030, USA
| | - Liza E Hanna
- Department of Pathology, Nasser institute for research and treatment, 3 Magles El Shaab Street, Cairo, Postal code 222, Egypt
| | - Ahmed Gadallah
- Faculty of Medicine, Ain Shams University, 38 Abbassia, Next to the Al-Nour Mosque, Cairo, Postal code: 1181, Egypt
| | - Mohamed Elkady
- Siparadigm Diagnostic Informatics, 25 Riverside Dr no. 2, Pine Brook, NJ 07058, USA
| | - Bradley Drumheller
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, 201 Dowman Dr, Atlanta, GA 30322, USA
| | - David Jaye
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, 201 Dowman Dr, Atlanta, GA 30322, USA
| | - David Manthey
- Kitware Inc., 1712 Route 9. Suite 300. Clifton Park, New York 12065, USA
| | - David A Gutman
- Department of Neurology, Emory University School of Medicine, 201 Dowman Dr, Atlanta, GA 30322, USA
| | - Habiba Elfandy
- Department of Pathology, National Cancer Institute, Kasr Al Eini Street, Fom El Khalig, Cairo, Postal code: 11562, Egypt
- Department of Pathology, Children’s Cancer Hospital Egypt (CCHE 57357), 1 Seket Al-Emam Street, El-Madbah El-Kadeem Yard, El-Saida Zenab, Cairo, Postal code: 11562, Egypt
| | - Lee A D Cooper
- Department of Pathology, Northwestern University, 750 N Lake Shore Dr., Chicago, IL 60611, USA
- Lurie Cancer Center, Northwestern University, 675 N St Clair St Fl 21 Ste 100, Chicago, IL 60611, USA
- Center for Computational Imaging and Signal Analytics, Northwestern University Feinberg School of Medicine, 750 N Lake Shore Dr., Chicago, IL 60611, USA
| |
Collapse
|
14
|
Lessons from a breast cell annotation competition series for school pupils. Sci Rep 2022; 12:7792. [PMID: 35551217 PMCID: PMC9098471 DOI: 10.1038/s41598-022-11782-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 03/21/2022] [Indexed: 12/03/2022] Open
Abstract
Due to COVID-19 outbreaks, most school pupils have had to be home-schooled for long periods of time. Two editions of a web-based competition “Beat the Pathologists” for school age participants in the UK ran to fill up pupils’ spare time after home-schooling and evaluate their ability on contributing to AI annotation. The two editions asked the participants to annotate different types of cells on Ki67 stained breast cancer images. The Main competition was at four levels with different level of complexity. We obtained annotations of four kinds of cells entered by school pupils and ground truth from expert pathologists. In this paper, we analyse school pupils’ performance on differentiating different kinds of cells and compare their performance with two neural networks (AlexNet and VGG16). It was observed that children tend to get very good performance in tumour cell annotation with the best F1 measure 0.81 which is a metrics taking both false positives and false negatives into account. Low accuracy was achieved with F1 score 0.75 on positive non-tumour cells and 0.59 on negative non-tumour cells. Superior performance on non-tumour cell detection was achieved by neural networks. VGG16 with training from scratch achieved an F1 score over 0.70 in all cell categories and 0.92 in tumour cell detection. We conclude that non-experts like school pupils have the potential to contribute to large-scale labelling for AI algorithm development if sufficient training activities are organised. We hope that competitions like this can promote public interest in pathology and encourage participation by more non-experts for annotation.
Collapse
|
15
|
Chanchal AK, Lal S, Kini J. Deep structured residual encoder-decoder network with a novel loss function for nuclei segmentation of kidney and breast histopathology images. MULTIMEDIA TOOLS AND APPLICATIONS 2022; 81:9201-9224. [PMID: 35125928 PMCID: PMC8809220 DOI: 10.1007/s11042-021-11873-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/10/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
To improve the process of diagnosis and treatment of cancer disease, automatic segmentation of haematoxylin and eosin (H & E) stained cell nuclei from histopathology images is the first step in digital pathology. The proposed deep structured residual encoder-decoder network (DSREDN) focuses on two aspects: first, it effectively utilized residual connections throughout the network and provides a wide and deep encoder-decoder path, which results to capture relevant context and more localized features. Second, vanished boundary of detected nuclei is addressed by proposing an efficient loss function that better train our proposed model and reduces the false prediction which is undesirable especially in healthcare applications. The proposed architecture experimented on three different publicly available H&E stained histopathological datasets namely: (I) Kidney (RCC) (II) Triple Negative Breast Cancer (TNBC) (III) MoNuSeg-2018. We have considered F1-score, Aggregated Jaccard Index (AJI), the total number of parameters, and FLOPs (Floating point operations), which are mostly preferred performance measure metrics for comparison of nuclei segmentation. The evaluated score of nuclei segmentation indicated that the proposed architecture achieved a considerable margin over five state-of-the-art deep learning models on three different histopathology datasets. Visual segmentation results show that the proposed DSREDN model accurately segment the nuclear regions than those of the state-of-the-art methods.
Collapse
Affiliation(s)
- Amit Kumar Chanchal
- Department of Electronics and Communication Engineering, National Institute of Technology Karnataka, Surathkal, Mangaluru-575025 Karnataka India
| | - Shyam Lal
- Department of Electronics and Communication Engineering, National Institute of Technology Karnataka, Surathkal, Mangaluru-575025 Karnataka India
| | - Jyoti Kini
- Department of Pathology, Kasturba Medical College Mangalore, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
16
|
Verma R, Kumar N, Patil A, Kurian NC, Rane S, Graham S, Vu QD, Zwager M, Raza SEA, Rajpoot N, Wu X, Chen H, Huang Y, Wang L, Jung H, Brown GT, Liu Y, Liu S, Jahromi SAF, Khani AA, Montahaei E, Baghshah MS, Behroozi H, Semkin P, Rassadin A, Dutande P, Lodaya R, Baid U, Baheti B, Talbar S, Mahbod A, Ecker R, Ellinger I, Luo Z, Dong B, Xu Z, Yao Y, Lv S, Feng M, Xu K, Zunair H, Hamza AB, Smiley S, Yin TK, Fang QR, Srivastava S, Mahapatra D, Trnavska L, Zhang H, Narayanan PL, Law J, Yuan Y, Tejomay A, Mitkari A, Koka D, Ramachandra V, Kini L, Sethi A. MoNuSAC2020: A Multi-Organ Nuclei Segmentation and Classification Challenge. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:3413-3423. [PMID: 34086562 DOI: 10.1109/tmi.2021.3085712] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Detecting various types of cells in and around the tumor matrix holds a special significance in characterizing the tumor micro-environment for cancer prognostication and research. Automating the tasks of detecting, segmenting, and classifying nuclei can free up the pathologists' time for higher value tasks and reduce errors due to fatigue and subjectivity. To encourage the computer vision research community to develop and test algorithms for these tasks, we prepared a large and diverse dataset of nucleus boundary annotations and class labels. The dataset has over 46,000 nuclei from 37 hospitals, 71 patients, four organs, and four nucleus types. We also organized a challenge around this dataset as a satellite event at the International Symposium on Biomedical Imaging (ISBI) in April 2020. The challenge saw a wide participation from across the world, and the top methods were able to match inter-human concordance for the challenge metric. In this paper, we summarize the dataset and the key findings of the challenge, including the commonalities and differences between the methods developed by various participants. We have released the MoNuSAC2020 dataset to the public.
Collapse
|
17
|
CACTUS: A Digital Tool for Quality Assurance, Education and Evaluation in Surgical Pathology. J Med Biol Eng 2021. [DOI: 10.1007/s40846-021-00643-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
18
|
Learning from crowds in digital pathology using scalable variational Gaussian processes. Sci Rep 2021; 11:11612. [PMID: 34078955 PMCID: PMC8172863 DOI: 10.1038/s41598-021-90821-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 05/11/2021] [Indexed: 11/08/2022] Open
Abstract
The volume of labeled data is often the primary determinant of success in developing machine learning algorithms. This has increased interest in methods for leveraging crowds to scale data labeling efforts, and methods to learn from noisy crowd-sourced labels. The need to scale labeling is acute but particularly challenging in medical applications like pathology, due to the expertise required to generate quality labels and the limited availability of qualified experts. In this paper we investigate the application of Scalable Variational Gaussian Processes for Crowdsourcing (SVGPCR) in digital pathology. We compare SVGPCR with other crowdsourcing methods using a large multi-rater dataset where pathologists, pathology residents, and medical students annotated tissue regions breast cancer. Our study shows that SVGPCR is competitive with equivalent methods trained using gold-standard pathologist generated labels, and that SVGPCR meets or exceeds the performance of other crowdsourcing methods based on deep learning. We also show how SVGPCR can effectively learn the class-conditional reliabilities of individual annotators and demonstrate that Gaussian-process classifiers have comparable performance to similar deep learning methods. These results suggest that SVGPCR can meaningfully engage non-experts in pathology labeling tasks, and that the class-conditional reliabilities estimated by SVGPCR may assist in matching annotators to tasks where they perform well.
Collapse
|
19
|
Lagree A, Mohebpour M, Meti N, Saednia K, Lu FI, Slodkowska E, Gandhi S, Rakovitch E, Shenfield A, Sadeghi-Naini A, Tran WT. A review and comparison of breast tumor cell nuclei segmentation performances using deep convolutional neural networks. Sci Rep 2021; 11:8025. [PMID: 33850222 PMCID: PMC8044238 DOI: 10.1038/s41598-021-87496-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 03/30/2021] [Indexed: 02/07/2023] Open
Abstract
Breast cancer is currently the second most common cause of cancer-related death in women. Presently, the clinical benchmark in cancer diagnosis is tissue biopsy examination. However, the manual process of histopathological analysis is laborious, time-consuming, and limited by the quality of the specimen and the experience of the pathologist. This study's objective was to determine if deep convolutional neural networks can be trained, with transfer learning, on a set of histopathological images independent of breast tissue to segment tumor nuclei of the breast. Various deep convolutional neural networks were evaluated for the study, including U-Net, Mask R-CNN, and a novel network (GB U-Net). The networks were trained on a set of Hematoxylin and Eosin (H&E)-stained images of eight diverse types of tissues. GB U-Net demonstrated superior performance in segmenting sites of invasive diseases (AJI = 0.53, mAP = 0.39 & AJI = 0.54, mAP = 0.38), validated on two hold-out datasets exclusively containing breast tissue images of approximately 7,582 annotated cells. The results of the networks, trained on images independent of breast tissue, demonstrated that tumor nuclei of the breast could be accurately segmented.
Collapse
Affiliation(s)
- Andrew Lagree
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, Canada
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Canada
- Radiogenomics Laboratory, Sunnybrook Health Sciences Centre, Toronto, Canada
- Temerty Centre for AI Research and Education in Medicine, University of Toronto, Toronto, Canada
| | - Majidreza Mohebpour
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Canada
| | - Nicholas Meti
- Radiogenomics Laboratory, Sunnybrook Health Sciences Centre, Toronto, Canada
- Division of Medical Oncology, Department of Medicine, University of Toronto, Toronto, Canada
| | - Khadijeh Saednia
- Department of Electrical Engineering and Computer Science, York University, Toronto, Canada
| | - Fang-I Lu
- Radiogenomics Laboratory, Sunnybrook Health Sciences Centre, Toronto, Canada
- Department of Laboratory Medicine and Molecular Diagnostics, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Elzbieta Slodkowska
- Department of Laboratory Medicine and Molecular Diagnostics, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Sonal Gandhi
- Radiogenomics Laboratory, Sunnybrook Health Sciences Centre, Toronto, Canada
- Division of Medical Oncology, Department of Medicine, University of Toronto, Toronto, Canada
| | - Eileen Rakovitch
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Alex Shenfield
- Department of Engineering and Mathematics, Sheffield Hallam University, Sheffield, UK
| | - Ali Sadeghi-Naini
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, Canada
- Temerty Centre for AI Research and Education in Medicine, University of Toronto, Toronto, Canada
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada
- Department of Electrical Engineering and Computer Science, York University, Toronto, Canada
| | - William T Tran
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, Canada.
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Canada.
- Radiogenomics Laboratory, Sunnybrook Health Sciences Centre, Toronto, Canada.
- Temerty Centre for AI Research and Education in Medicine, University of Toronto, Toronto, Canada.
- Department of Radiation Oncology, University of Toronto, Toronto, Canada.
- Department of Radiation Oncology, University of Toronto and Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, TB 095, Toronto, ON, M4N 3M5, Canada.
| |
Collapse
|
20
|
Mahmood F, Borders D, Chen RJ, Mckay GN, Salimian KJ, Baras A, Durr NJ. Deep Adversarial Training for Multi-Organ Nuclei Segmentation in Histopathology Images. IEEE TRANSACTIONS ON MEDICAL IMAGING 2020; 39:3257-3267. [PMID: 31283474 PMCID: PMC8588951 DOI: 10.1109/tmi.2019.2927182] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Nuclei mymargin segmentation is a fundamental task for various computational pathology applications including nuclei morphology analysis, cell type classification, and cancer grading. Deep learning has emerged as a powerful approach to segmenting nuclei but the accuracy of convolutional neural networks (CNNs) depends on the volume and the quality of labeled histopathology data for training. In particular, conventional CNN-based approaches lack structured prediction capabilities, which are required to distinguish overlapping and clumped nuclei. Here, we present an approach to nuclei segmentation that overcomes these challenges by utilizing a conditional generative adversarial network (cGAN) trained with synthetic and real data. We generate a large dataset of H&E training images with perfect nuclei segmentation labels using an unpaired GAN framework. This synthetic data along with real histopathology data from six different organs are used to train a conditional GAN with spectral normalization and gradient penalty for nuclei segmentation. This adversarial regression framework enforces higher-order spacial-consistency when compared to conventional CNN models. We demonstrate that this nuclei segmentation approach generalizes across different organs, sites, patients and disease states, and outperforms conventional approaches, especially in isolating individual and overlapping nuclei.
Collapse
|
21
|
Hou L, Gupta R, Van Arnam JS, Zhang Y, Sivalenka K, Samaras D, Kurc TM, Saltz JH. Dataset of segmented nuclei in hematoxylin and eosin stained histopathology images of ten cancer types. Sci Data 2020; 7:185. [PMID: 32561748 PMCID: PMC7305328 DOI: 10.1038/s41597-020-0528-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 05/14/2020] [Indexed: 12/03/2022] Open
Abstract
The distribution and appearance of nuclei are essential markers for the diagnosis and study of cancer. Despite the importance of nuclear morphology, there is a lack of large scale, accurate, publicly accessible nucleus segmentation data. To address this, we developed an analysis pipeline that segments nuclei in whole slide tissue images from multiple cancer types with a quality control process. We have generated nucleus segmentation results in 5,060 Whole Slide Tissue images from 10 cancer types in The Cancer Genome Atlas. One key component of our work is that we carried out a multi-level quality control process (WSI-level and image patch-level), to evaluate the quality of our segmentation results. The image patch-level quality control used manual segmentation ground truth data from 1,356 sampled image patches. The datasets we publish in this work consist of roughly 5 billion quality controlled nuclei from more than 5,060 TCGA WSIs from 10 different TCGA cancer types and 1,356 manually segmented TCGA image patches from the same 10 cancer types plus additional 4 cancer types.
Collapse
Affiliation(s)
- Le Hou
- Computer Science Department, 203C New Computer Science Building, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Rajarsi Gupta
- Biomedical Informatics Department, HSC L3-045, Stony Brook Medicine, Stony Brook University, Stony Brook, NY, 11794, USA
| | - John S Van Arnam
- Biomedical Informatics Department, HSC L3-045, Stony Brook Medicine, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Yuwei Zhang
- Biomedical Informatics Department, HSC L3-045, Stony Brook Medicine, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Kaustubh Sivalenka
- Computer Science Department, 203C New Computer Science Building, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Dimitris Samaras
- Computer Science Department, 203C New Computer Science Building, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Tahsin M Kurc
- Biomedical Informatics Department, HSC L3-045, Stony Brook Medicine, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Joel H Saltz
- Biomedical Informatics Department, HSC L3-045, Stony Brook Medicine, Stony Brook University, Stony Brook, NY, 11794, USA.
| |
Collapse
|
22
|
Nam S, Chong Y, Jung CK, Kwak TY, Lee JY, Park J, Rho MJ, Go H. Introduction to digital pathology and computer-aided pathology. J Pathol Transl Med 2020; 54:125-134. [PMID: 32045965 PMCID: PMC7093286 DOI: 10.4132/jptm.2019.12.31] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 12/31/2019] [Indexed: 12/13/2022] Open
Abstract
Digital pathology (DP) is no longer an unfamiliar term for pathologists, but it is still difficult for many pathologists to understand the engineering and mathematics concepts involved in DP. Computer-aided pathology (CAP) aids pathologists in diagnosis. However, some consider CAP a threat to the existence of pathologists and are skeptical of its clinical utility. Implementation of DP is very burdensome for pathologists because technical factors, impact on workflow, and information technology infrastructure must be considered. In this paper, various terms related to DP and computer-aided pathologic diagnosis are defined, current applications of DP are discussed, and various issues related to implementation of DP are outlined. The development of computer-aided pathologic diagnostic tools and their limitations are also discussed.
Collapse
Affiliation(s)
- Soojeong Nam
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Yosep Chong
- Department of Hospital Pathology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Chan Kwon Jung
- Department of Hospital Pathology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | | | - Ji Youl Lee
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jihwan Park
- Catholic Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Mi Jung Rho
- Catholic Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Heounjeong Go
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
23
|
Prior F, Almeida J, Kathiravelu P, Kurc T, Smith K, Fitzgerald TJ, Saltz J. Open access image repositories: high-quality data to enable machine learning research. Clin Radiol 2020; 75:7-12. [PMID: 31040006 PMCID: PMC6815686 DOI: 10.1016/j.crad.2019.04.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/01/2019] [Indexed: 02/07/2023]
Abstract
Originally motivated by the need for research reproducibility and data reuse, large-scale, open access information repositories have become key resources for training and testing of advanced machine learning applications in biomedical and clinical research. To be of value, such repositories must provide large, high-quality data sets, where quality is defined as minimising variance due to data collection protocols and data misrepresentations. Curation is the key to quality. We have constructed a large public access image repository, The Cancer Imaging Archive, dedicated to the promotion of open science to advance the global effort to diagnose and treat cancer. Drawing on this experience and our experience in applying machine learning techniques to the analysis of radiology and pathology image data, we will review the requirements placed on such information repositories by state-of-the-art machine learning applications and how these requirements can be met.
Collapse
Affiliation(s)
- F Prior
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, 4301 W. Markham St, Little Rock, AR 72205, USA.
| | - J Almeida
- National Institutes of Health, National Cancer Institute, 9609 Medical Center Drive, Bethesda, MD 20892, USA
| | - P Kathiravelu
- Department of Biomedical Informatics, Emory University, 101 Woodruff Circle, #4104, Atlanta, GA 30322, USA
| | - T Kurc
- Department of Biomedical Informatics, Stoney Brook University, Health Science Center Level 3, Room 043, Stony Brook, NY 11794, USA
| | - K Smith
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, 4301 W. Markham St, Little Rock, AR 72205, USA
| | - T J Fitzgerald
- Department of Radiation Oncology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - J Saltz
- Department of Biomedical Informatics, Stoney Brook University, Health Science Center Level 3, Room 043, Stony Brook, NY 11794, USA
| |
Collapse
|
24
|
Amgad M, Elfandy H, Hussein H, Atteya LA, Elsebaie MAT, Abo Elnasr LS, Sakr RA, Salem HSE, Ismail AF, Saad AM, Ahmed J, Elsebaie MAT, Rahman M, Ruhban IA, Elgazar NM, Alagha Y, Osman MH, Alhusseiny AM, Khalaf MM, Younes AAF, Abdulkarim A, Younes DM, Gadallah AM, Elkashash AM, Fala SY, Zaki BM, Beezley J, Chittajallu DR, Manthey D, Gutman DA, Cooper LAD. Structured crowdsourcing enables convolutional segmentation of histology images. Bioinformatics 2019; 35:3461-3467. [PMID: 30726865 PMCID: PMC6748796 DOI: 10.1093/bioinformatics/btz083] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 12/30/2018] [Accepted: 02/05/2019] [Indexed: 01/17/2023] Open
Abstract
MOTIVATION While deep-learning algorithms have demonstrated outstanding performance in semantic image segmentation tasks, large annotation datasets are needed to create accurate models. Annotation of histology images is challenging due to the effort and experience required to carefully delineate tissue structures, and difficulties related to sharing and markup of whole-slide images. RESULTS We recruited 25 participants, ranging in experience from senior pathologists to medical students, to delineate tissue regions in 151 breast cancer slides using the Digital Slide Archive. Inter-participant discordance was systematically evaluated, revealing low discordance for tumor and stroma, and higher discordance for more subjectively defined or rare tissue classes. Feedback provided by senior participants enabled the generation and curation of 20 000+ annotated tissue regions. Fully convolutional networks trained using these annotations were highly accurate (mean AUC=0.945), and the scale of annotation data provided notable improvements in image classification accuracy. AVAILABILITY AND IMPLEMENTATION Dataset is freely available at: https://goo.gl/cNM4EL. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Mohamed Amgad
- Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, GA, USA
| | - Habiba Elfandy
- Department of Pathology, National Cancer Institute, Cairo, Egypt
| | - Hagar Hussein
- Department of Medicine, Cairo University, Cairo, Egypt
| | | | | | | | - Rokia A Sakr
- Department of Medicine, Menoufia University, Menoufia, Egypt
| | | | - Ahmed F Ismail
- Department of Pathology, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Anas M Saad
- Department of Medicine, Ain Shams University, Cairo, Egypt
| | - Joumana Ahmed
- Department of Medicine, Cairo University, Cairo, Egypt
| | | | - Mustafijur Rahman
- Department of Medicine, Chittagong University, Chittagong, Bangladesh
| | - Inas A Ruhban
- Department of Medicine, Damascus University, Damascus, Syria
| | - Nada M Elgazar
- Department of Medicine, Mansoura University, Mansoura, Egypt
| | - Yahya Alagha
- Department of Medicine, Cairo University, Cairo, Egypt
| | | | | | - Mariam M Khalaf
- Department of Medicine, Batterjee Medical College, Jeddah, Saudi Arabia
| | | | | | - Duaa M Younes
- Department of Medicine, Ain Shams University, Cairo, Egypt
| | | | | | - Salma Y Fala
- Department of Medicine, Suez Canal University, Ismailia, Egypt
| | - Basma M Zaki
- Department of Medicine, Suez Canal University, Ismailia, Egypt
| | | | | | | | - David A Gutman
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Lee A D Cooper
- Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, GA, USA
- Department of Biomedical Engineering, Emory University, Atlanta, GA, USA
| |
Collapse
|
25
|
Abels E, Pantanowitz L, Aeffner F, Zarella MD, van der Laak J, Bui MM, Vemuri VN, Parwani AV, Gibbs J, Agosto-Arroyo E, Beck AH, Kozlowski C. Computational pathology definitions, best practices, and recommendations for regulatory guidance: a white paper from the Digital Pathology Association. J Pathol 2019; 249:286-294. [PMID: 31355445 PMCID: PMC6852275 DOI: 10.1002/path.5331] [Citation(s) in RCA: 219] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/18/2019] [Accepted: 07/26/2019] [Indexed: 12/27/2022]
Abstract
In this white paper, experts from the Digital Pathology Association (DPA) define terminology and concepts in the emerging field of computational pathology, with a focus on its application to histology images analyzed together with their associated patient data to extract information. This review offers a historical perspective and describes the potential clinical benefits from research and applications in this field, as well as significant obstacles to adoption. Best practices for implementing computational pathology workflows are presented. These include infrastructure considerations, acquisition of training data, quality assessments, as well as regulatory, ethical, and cyber-security concerns. Recommendations are provided for regulators, vendors, and computational pathology practitioners in order to facilitate progress in the field. © 2019 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Esther Abels
- Regulatory and Clinical Affairs, PathAI, Boston, MA, USA
| | - Liron Pantanowitz
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Famke Aeffner
- Amgen Research, Comparative Biology and Safety Sciences, Amgen Inc., South San Francisco, CA, USA
| | - Mark D Zarella
- Department of Pathology and Laboratory Medicine, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Jeroen van der Laak
- Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands.,Center for Medical Image Science and Visualization, Linköping University, Linköping, Sweden
| | - Marilyn M Bui
- Department of Pathology, Moffitt Cancer Center, Tampa, FL, USA
| | - Venkata Np Vemuri
- Data Science Department, Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Anil V Parwani
- Department of Pathology, The Ohio State University, Columbus, OH, USA
| | - Jeff Gibbs
- Hyman, Phelps & McNamara, P.C, Washington, DC, USA
| | | | | | - Cleopatra Kozlowski
- Department of Development Sciences, Genentech Inc., South San Francisco, CA, USA
| |
Collapse
|
26
|
Romanowski A, Łuczak P, Grudzień K. X-ray Imaging Analysis of Silo Flow Parameters Based on Trace Particles Using Targeted Crowdsourcing. SENSORS (BASEL, SWITZERLAND) 2019; 19:E3317. [PMID: 31357713 PMCID: PMC6695825 DOI: 10.3390/s19153317] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/26/2019] [Accepted: 07/26/2019] [Indexed: 11/20/2022]
Abstract
This paper presents a novel method for tomographic measurement and data analysis based on crowdsourcing. X-ray radiography imaging was initially applied to determine silo flow parameters. We used traced particles immersed in the bulk to investigate gravitational silo flow. The reconstructed images were not perfect, due to inhomogeneous silo filling and nonlinear attenuation of the X-rays on the way to the detector. Automatic processing of such data is not feasible. Therefore, we used crowdsourcing for human-driven annotation of the trace particles. As we aimed to extract meaningful flow parameters, we developed a modified crowdsourcing annotation method, focusing on selected important areas of the silo pictures only. We call this method "targeted crowdsourcing", and it enables more efficient crowd work, as it is focused on the most important areas of the image that allow determination of the flow parameters. The results show that it is possible to analyze volumetric material structure movement based on 2D radiography data showing the location and movement of tiny metal trace particles. A quantitative description of the flow obtained from the horizontal and vertical velocity components was derived for different parts of the model silo volume. Targeting the attention of crowd workers towards either a specific zone or a particular particle speeds up the pre-processing stage while preserving the same quality of the output, quantified by important flow parameters.
Collapse
Affiliation(s)
- Andrzej Romanowski
- Institute of Applied Computer Science, Lodz University of Technology, 90924 Lodz, Stefanowskiego 18/22 str., Poland.
| | - Piotr Łuczak
- Institute of Applied Computer Science, Lodz University of Technology, 90924 Lodz, Stefanowskiego 18/22 str., Poland
| | - Krzysztof Grudzień
- Institute of Applied Computer Science, Lodz University of Technology, 90924 Lodz, Stefanowskiego 18/22 str., Poland
| |
Collapse
|
27
|
CIA-Net: Robust Nuclei Instance Segmentation with Contour-Aware Information Aggregation. LECTURE NOTES IN COMPUTER SCIENCE 2019. [DOI: 10.1007/978-3-030-20351-1_53] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
28
|
Albayrak A, Bilgin G. Automatic cell segmentation in histopathological images via two-staged superpixel-based algorithms. Med Biol Eng Comput 2018; 57:653-665. [PMID: 30327998 DOI: 10.1007/s11517-018-1906-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 09/26/2018] [Indexed: 11/29/2022]
Abstract
The analysis of cell characteristics from high-resolution digital histopathological images is the standard clinical practice for the diagnosis and prognosis of cancer. Yet, it is a rather exhausting process for pathologists to examine the cellular structures manually in this way. Automating this tedious and time-consuming process is an emerging topic of the histopathological image-processing studies in the literature. This paper presents a two-stage segmentation method to obtain cellular structures in high-dimensional histopathological images of renal cell carcinoma. First, the image is segmented to superpixels with simple linear iterative clustering (SLIC) method. Then, the obtained superpixels are clustered by the state-of-the-art clustering-based segmentation algorithms to find similar superpixels that compose the cell nuclei. Furthermore, the comparison of the global clustering-based segmentation methods and local region-based superpixel segmentation algorithms are also compared. The results show that the use of the superpixel segmentation algorithm as a pre-segmentation method improves the performance of the cell segmentation as compared to the simple single clustering-based segmentation algorithm. The true positive ratio (TPR), true negative ratio (TNR), F-measure, precision, and overlap ratio (OR) measures are utilized as segmentation performance evaluation. The computation times of the algorithms are also evaluated and presented in the study. Graphical Abstract The visual flowchart of the proposed automatic cell segmentation in histopathological images via two-staged superpixel-based algorithms.
Collapse
Affiliation(s)
- Abdulkadir Albayrak
- Department of Computer Engineering, Yildiz Technical University (YTU), 34220, Istanbul, Turkey
- Signal and Image Processing Lab. (SIMPLAB) in YTU, 34220, Istanbul, Turkey
| | - Gokhan Bilgin
- Department of Computer Engineering, Yildiz Technical University (YTU), 34220, Istanbul, Turkey.
- Signal and Image Processing Lab. (SIMPLAB) in YTU, 34220, Istanbul, Turkey.
| |
Collapse
|
29
|
Créquit P, Mansouri G, Benchoufi M, Vivot A, Ravaud P. Mapping of Crowdsourcing in Health: Systematic Review. J Med Internet Res 2018; 20:e187. [PMID: 29764795 PMCID: PMC5974463 DOI: 10.2196/jmir.9330] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 02/10/2018] [Accepted: 03/14/2018] [Indexed: 11/22/2022] Open
Abstract
Background Crowdsourcing involves obtaining ideas, needed services, or content by soliciting Web-based contributions from a crowd. The 4 types of crowdsourced tasks (problem solving, data processing, surveillance or monitoring, and surveying) can be applied in the 3 categories of health (promotion, research, and care). Objective This study aimed to map the different applications of crowdsourcing in health to assess the fields of health that are using crowdsourcing and the crowdsourced tasks used. We also describe the logistics of crowdsourcing and the characteristics of crowd workers. Methods MEDLINE, EMBASE, and ClinicalTrials.gov were searched for available reports from inception to March 30, 2016, with no restriction on language or publication status. Results We identified 202 relevant studies that used crowdsourcing, including 9 randomized controlled trials, of which only one had posted results at ClinicalTrials.gov. Crowdsourcing was used in health promotion (91/202, 45.0%), research (73/202, 36.1%), and care (38/202, 18.8%). The 4 most frequent areas of application were public health (67/202, 33.2%), psychiatry (32/202, 15.8%), surgery (22/202, 10.9%), and oncology (14/202, 6.9%). Half of the reports (99/202, 49.0%) referred to data processing, 34.6% (70/202) referred to surveying, 10.4% (21/202) referred to surveillance or monitoring, and 5.9% (12/202) referred to problem-solving. Labor market platforms (eg, Amazon Mechanical Turk) were used in most studies (190/202, 94%). The crowd workers’ characteristics were poorly reported, and crowdsourcing logistics were missing from two-thirds of the reports. When reported, the median size of the crowd was 424 (first and third quartiles: 167-802); crowd workers’ median age was 34 years (32-36). Crowd workers were mainly recruited nationally, particularly in the United States. For many studies (58.9%, 119/202), previous experience in crowdsourcing was required, and passing a qualification test or training was seldom needed (11.9% of studies; 24/202). For half of the studies, monetary incentives were mentioned, with mainly less than US $1 to perform the task. The time needed to perform the task was mostly less than 10 min (58.9% of studies; 119/202). Data quality validation was used in 54/202 studies (26.7%), mainly by attention check questions or by replicating the task with several crowd workers. Conclusions The use of crowdsourcing, which allows access to a large pool of participants as well as saving time in data collection, lowering costs, and speeding up innovations, is increasing in health promotion, research, and care. However, the description of crowdsourcing logistics and crowd workers’ characteristics is frequently missing in study reports and needs to be precisely reported to better interpret the study findings and replicate them.
Collapse
Affiliation(s)
- Perrine Créquit
- INSERM UMR1153, Methods Team, Epidemiology and Statistics Sorbonne Paris Cité Research Center, Paris Descartes University, Paris, France.,Centre d'Epidémiologie Clinique, Hôpital Hôtel Dieu, Assistance Publique des Hôpitaux de Paris, Paris, France.,Cochrane France, Paris, France
| | - Ghizlène Mansouri
- INSERM UMR1153, Methods Team, Epidemiology and Statistics Sorbonne Paris Cité Research Center, Paris Descartes University, Paris, France
| | - Mehdi Benchoufi
- Centre d'Epidémiologie Clinique, Hôpital Hôtel Dieu, Assistance Publique des Hôpitaux de Paris, Paris, France
| | - Alexandre Vivot
- INSERM UMR1153, Methods Team, Epidemiology and Statistics Sorbonne Paris Cité Research Center, Paris Descartes University, Paris, France.,Centre d'Epidémiologie Clinique, Hôpital Hôtel Dieu, Assistance Publique des Hôpitaux de Paris, Paris, France
| | - Philippe Ravaud
- INSERM UMR1153, Methods Team, Epidemiology and Statistics Sorbonne Paris Cité Research Center, Paris Descartes University, Paris, France.,Centre d'Epidémiologie Clinique, Hôpital Hôtel Dieu, Assistance Publique des Hôpitaux de Paris, Paris, France.,Cochrane France, Paris, France.,Department of Epidemiology, Columbia University, Mailman School of Public Health, New York, NY, United States
| |
Collapse
|
30
|
Sonabend AM, Zacharia BE, Cloney MB, Sonabend A, Showers C, Ebiana V, Nazarian M, Swanson KR, Baldock A, Brem H, Bruce JN, Butler W, Cahill DP, Carter B, Orringer DA, Roberts DW, Sagher O, Sanai N, Schwartz TH, Silbergeld DL, Sisti MB, Thompson RC, Waziri AE, Ghogawala Z, McKhann G. Defining Glioblastoma Resectability Through the Wisdom of the Crowd: A Proof-of-Principle Study. Neurosurgery 2017; 80:590-601. [PMID: 27509070 DOI: 10.1227/neu.0000000000001374] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 05/26/2016] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Extent of resection (EOR) correlates with glioblastoma outcomes. Resectability and EOR depend on anatomical, clinical, and surgeon factors. Resectability likely influences outcome in and of itself, but an accurate measurement of resectability remains elusive. An understanding of resectability and the factors that influence it may provide a means to control a confounder in clinical trials and provide reference for decision making. OBJECTIVE To provide proof of concept of the use of the collective wisdom of experienced brain tumor surgeons in assessing glioblastoma resectability. METHODS We surveyed 13 academic tumor neurosurgeons nationwide to assess the resectability of newly diagnosed glioblastoma. Participants reviewed 20 cases, including digital imaging and communications in medicine-formatted pre- and postoperative magnetic resonance images and clinical vignettes. The selected cases involved a variety of anatomical locations and a range of EOR. Participants were asked about surgical goal, eg, gross total resection, subtotal resection (STR), or biopsy, and rationale for their decision. We calculated a "resectability index" for each lesion by pooling responses from all 13 surgeons. RESULTS Neurosurgeons' individual surgical goals varied significantly ( P = .015), but the resectability index calculated from the surgeons' pooled responses was strongly correlated with the percentage of contrast-enhancing residual tumor ( R = 0.817, P < .001). The collective STR goal predicted intraoperative decision of intentional STR documented on operative notes ( P < .01) and nonresectable residual ( P < .01), but not resectable residual. CONCLUSION In this pilot study, we demonstrate the feasibility of measuring the resectability of glioblastoma through crowdsourcing. This tool could be used to quantify resectability, a potential confounder in neuro-oncology clinical trials.
Collapse
Affiliation(s)
- Adam M Sonabend
- Department of Neurological Surgery, College of Physicians and Surgeons, Columbia University Medical Center, New York, New York
| | - Brad E Zacharia
- Department of Neurosurgery, Penn State Milton S. Hershey Medical Center, Penn State College of Medicine, Hershey, Pennsylvania
| | - Michael B Cloney
- Department of Neurological Surgery, College of Physicians and Surgeons, Columbia University Medical Center, New York, New York
| | - Aarón Sonabend
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Christopher Showers
- Department of Neurological Surgery, College of Physicians and Surgeons, Columbia University Medical Center, New York, New York
| | - Victoria Ebiana
- Department of Neurological Surgery, College of Physicians and Surgeons, Columbia University Medical Center, New York, New York
| | - Matthew Nazarian
- Department of Neurological Surgery, College of Physicians and Surgeons, Columbia University Medical Center, New York, New York
| | - Kristin R Swanson
- Department of Neurological Surgery, Mayo Clinic, Scottsdale, Arizona
| | - Anne Baldock
- University California at San Diego School of Medicine, San Diego, California
| | - Henry Brem
- Department of Neurological Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jeffrey N Bruce
- Department of Neurological Surgery, College of Physicians and Surgeons, Columbia University Medical Center, New York, New York
| | - William Butler
- Department of Neurological Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Daniel P Cahill
- Department of Neurological Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Bob Carter
- Division of Neurosurgery, Department of Surgery, University California at San Diego School of Medicine, San Diego, California
| | - Daniel A Orringer
- Department of Neurological Surgery, University of Michigan School of Medicine, Ann Arbor, Michigan
| | - David W Roberts
- Division of Neurosurgery, Dartmouth University, Lebanon, New Hampshire
| | - Oren Sagher
- Department of Neurological Surgery, University of Michigan School of Medicine, Ann Arbor, Michigan
| | - Nader Sanai
- Division of Neurosurgical Oncology, Barrow Neurological Institute, Phoenix, Arizona
| | - Theodore H Schwartz
- Department of Neurological Surgery, Weill Cornell Medical College, New York Presbyterian Hospital, New York, New York
| | - Daniel L Silbergeld
- Department of Neurological Surgery, University of Washington School of Medicine, Seattle, Washington
| | - Michael B Sisti
- Department of Neurological Surgery, College of Physicians and Surgeons, Columbia University Medical Center, New York, New York
| | - Reid C Thompson
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | | | - Zoher Ghogawala
- Alan and Jacqueline Stuart Spine Research Center, Lahey Hospital and Medical Center, Burlington, Massachusetts
| | - Guy McKhann
- Department of Neurological Surgery, College of Physicians and Surgeons, Columbia University Medical Center, New York, New York
| |
Collapse
|
31
|
Gibson E, Hu Y, Huisman HJ, Barratt DC. Designing image segmentation studies: Statistical power, sample size and reference standard quality. Med Image Anal 2017; 42:44-59. [PMID: 28772163 PMCID: PMC5666910 DOI: 10.1016/j.media.2017.07.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 04/03/2017] [Accepted: 07/21/2017] [Indexed: 11/18/2022]
Abstract
Segmentation algorithms are typically evaluated by comparison to an accepted reference standard. The cost of generating accurate reference standards for medical image segmentation can be substantial. Since the study cost and the likelihood of detecting a clinically meaningful difference in accuracy both depend on the size and on the quality of the study reference standard, balancing these trade-offs supports the efficient use of research resources. In this work, we derive a statistical power calculation that enables researchers to estimate the appropriate sample size to detect clinically meaningful differences in segmentation accuracy (i.e. the proportion of voxels matching the reference standard) between two algorithms. Furthermore, we derive a formula to relate reference standard errors to their effect on the sample sizes of studies using lower-quality (but potentially more affordable and practically available) reference standards. The accuracy of the derived sample size formula was estimated through Monte Carlo simulation, demonstrating, with 95% confidence, a predicted statistical power within 4% of simulated values across a range of model parameters. This corresponds to sample size errors of less than 4 subjects and errors in the detectable accuracy difference less than 0.6%. The applicability of the formula to real-world data was assessed using bootstrap resampling simulations for pairs of algorithms from the PROMISE12 prostate MR segmentation challenge data set. The model predicted the simulated power for the majority of algorithm pairs within 4% for simulated experiments using a high-quality reference standard and within 6% for simulated experiments using a low-quality reference standard. A case study, also based on the PROMISE12 data, illustrates using the formulae to evaluate whether to use a lower-quality reference standard in a prostate segmentation study.
Collapse
Affiliation(s)
- Eli Gibson
- Department of Radiology, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom; Centre for Medical Image Computing, The Engineering Front Building, University College London, Malet Place, London, WC1E 6BT, United Kingdom.
| | - Yipeng Hu
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Henkjan J Huisman
- Department of Radiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Dean C Barratt
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| |
Collapse
|
32
|
Abstract
Decision-making accuracy typically increases through collective integration of people's judgments into group decisions, a phenomenon known as the wisdom of crowds. For simple perceptual laboratory tasks, classic signal detection theory specifies the upper limit for collective integration benefits obtained by weighted averaging of people's confidences, and simple majority voting can often approximate that limit. Life-critical perceptual decisions often involve searching large image data (e.g., medical, security, and aerial imagery), but the expected benefits and merits of using different pooling algorithms are unknown for such tasks. Here, we show that expected pooling benefits are significantly greater for visual search than for single-location perceptual tasks and the prediction given by classic signal detection theory. In addition, we show that simple majority voting obtains inferior accuracy benefits for visual search relative to averaging and weighted averaging of observers' confidences. Analysis of gaze behavior across observers suggests that the greater collective integration benefits for visual search arise from an interaction between the foveated properties of the human visual system (high foveal acuity and low peripheral acuity) and observers' nonexhaustive search patterns, and can be predicted by an extended signal detection theory framework with trial to trial sampling from a varying mixture of high and low target detectabilities across observers (SDT-MIX). These findings advance our theoretical understanding of how to predict and enhance the wisdom of crowds for real world search tasks and could apply more generally to any decision-making task for which the minority of group members with high expertise varies from decision to decision.
Collapse
|
33
|
Cell segmentation in histopathological images with deep learning algorithms by utilizing spatial relationships. Med Biol Eng Comput 2017; 55:1829-1848. [DOI: 10.1007/s11517-017-1630-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 02/13/2017] [Indexed: 01/12/2023]
|
34
|
Crowdsourcing scoring of immunohistochemistry images: Evaluating Performance of the Crowd and an Automated Computational Method. Sci Rep 2017; 7:43286. [PMID: 28230179 PMCID: PMC5322394 DOI: 10.1038/srep43286] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 01/23/2017] [Indexed: 01/07/2023] Open
Abstract
The assessment of protein expression in immunohistochemistry (IHC) images provides important diagnostic, prognostic and predictive information for guiding cancer diagnosis and therapy. Manual scoring of IHC images represents a logistical challenge, as the process is labor intensive and time consuming. Since the last decade, computational methods have been developed to enable the application of quantitative methods for the analysis and interpretation of protein expression in IHC images. These methods have not yet replaced manual scoring for the assessment of IHC in the majority of diagnostic laboratories and in many large-scale research studies. An alternative approach is crowdsourcing the quantification of IHC images to an undefined crowd. The aim of this study is to quantify IHC images for labeling of ER status with two different crowdsourcing approaches, image-labeling and nuclei-labeling, and compare their performance with automated methods. Crowdsourcing- derived scores obtained greater concordance with the pathologist interpretations for both image-labeling and nuclei-labeling tasks (83% and 87%), as compared to the pathologist concordance achieved by the automated method (81%) on 5,338 TMA images from 1,853 breast cancer patients. This analysis shows that crowdsourcing the scoring of protein expression in IHC images is a promising new approach for large scale cancer molecular pathology studies.
Collapse
|
35
|
Lawson J, Robinson-Vyas RJ, McQuillan JP, Paterson A, Christie S, Kidza-Griffiths M, McDuffus LA, Moutasim KA, Shaw EC, Kiltie AE, Howat WJ, Hanby AM, Thomas GJ, Smittenaar P. Crowdsourcing for translational research: analysis of biomarker expression using cancer microarrays. Br J Cancer 2017; 116:237-245. [PMID: 27959886 PMCID: PMC5243992 DOI: 10.1038/bjc.2016.404] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Revised: 11/07/2016] [Accepted: 11/09/2016] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Academic pathology suffers from an acute and growing lack of workforce resource. This especially impacts on translational elements of clinical trials, which can require detailed analysis of thousands of tissue samples. We tested whether crowdsourcing - enlisting help from the public - is a sufficiently accurate method to score such samples. METHODS We developed a novel online interface to train and test lay participants on cancer detection and immunohistochemistry scoring in tissue microarrays. Lay participants initially performed cancer detection on lung cancer images stained for CD8, and we measured how extending a basic tutorial by annotated example images and feedback-based training affected cancer detection accuracy. We then applied this tutorial to additional cancer types and immunohistochemistry markers - bladder/ki67, lung/EGFR, and oesophageal/CD8 - to establish accuracy compared with experts. Using this optimised tutorial, we then tested lay participants' accuracy on immunohistochemistry scoring of lung/EGFR and bladder/p53 samples. RESULTS We observed that for cancer detection, annotated example images and feedback-based training both improved accuracy compared with a basic tutorial only. Using this optimised tutorial, we demonstrate highly accurate (>0.90 area under curve) detection of cancer in samples stained with nuclear, cytoplasmic and membrane cell markers. We also observed high Spearman correlations between lay participants and experts for immunohistochemistry scoring (0.91 (0.78, 0.96) and 0.97 (0.91, 0.99) for lung/EGFR and bladder/p53 samples, respectively). CONCLUSIONS These results establish crowdsourcing as a promising method to screen large data sets for biomarkers in cancer pathology research across a range of cancers and immunohistochemical stains.
Collapse
Affiliation(s)
| | | | | | - Andy Paterson
- Cancer Research UK, 407 St John Street, London EC1V 4AD, UK
| | - Sarah Christie
- Cancer Research UK, 407 St John Street, London EC1V 4AD, UK
| | | | - Leigh-Anne McDuffus
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UK
| | - Karwan A Moutasim
- Southampton CRUK Centre, University of Southampton Faculty of Medicine, Tremona Road, Southampton SO16 6YD, UK
| | - Emily C Shaw
- Cancer Research UK, 407 St John Street, London EC1V 4AD, UK
- Southampton CRUK Centre, University of Southampton Faculty of Medicine, Tremona Road, Southampton SO16 6YD, UK
| | - Anne E Kiltie
- CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - William J Howat
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UK
| | - Andrew M Hanby
- Cancer Research UK Leeds Centre, University of Leeds, Beckett Street, Leeds LS9 7TF, UK
| | - Gareth J Thomas
- Southampton CRUK Centre, University of Southampton Faculty of Medicine, Tremona Road, Southampton SO16 6YD, UK
| | | |
Collapse
|