1
|
Gallucci A, Varoli E, Del Mauro L, Hassan G, Rovida M, Comanducci A, Casarotto S, Lo Re V, Romero Lauro LJ. Multimodal approaches supporting the diagnosis, prognosis and investigation of neural correlates of disorders of consciousness: A systematic review. Eur J Neurosci 2024; 59:874-933. [PMID: 38140883 DOI: 10.1111/ejn.16149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 08/30/2023] [Accepted: 09/11/2023] [Indexed: 12/24/2023]
Abstract
The limits of the standard, behaviour-based clinical assessment of patients with disorders of consciousness (DoC) prompted the employment of functional neuroimaging, neurometabolic, neurophysiological and neurostimulation techniques, to detect brain-based covert markers of awareness. However, uni-modal approaches, consisting in employing just one of those techniques, are usually not sufficient to provide an exhaustive exploration of the neural underpinnings of residual awareness. This systematic review aimed at collecting the evidence from studies employing a multimodal approach, that is, combining more instruments to complement DoC diagnosis, prognosis and better investigating their neural correlates. Following the PRISMA guidelines, records from PubMed, EMBASE and Scopus were screened to select peer-review original articles in which a multi-modal approach was used for the assessment of adult patients with a diagnosis of DoC. Ninety-two observational studies and 32 case reports or case series met the inclusion criteria. Results highlighted a diagnostic and prognostic advantage of multi-modal approaches that involve electroencephalography-based (EEG-based) measurements together with neuroimaging or neurometabolic data or with neurostimulation. Multimodal assessment deepened the knowledge on the neural networks underlying consciousness, by showing correlations between the integrity of the default mode network and the different clinical diagnosis of DoC. However, except for studies using transcranial magnetic stimulation combined with electroencephalography, the integration of more than one technique in most of the cases occurs without an a priori-designed multi-modal diagnostic approach. Our review supports the feasibility and underlines the advantages of a multimodal approach for the diagnosis, prognosis and for the investigation of neural correlates of DoCs.
Collapse
Affiliation(s)
- Alessia Gallucci
- Ph.D. Program in Neuroscience, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- NeuroMi (Neuroscience Center), University of Milano-Bicocca, Milan, Italy
| | - Erica Varoli
- Neurology Service, Department of Diagnostic and Therapeutic Services, Istituto di Ricovero e Cura a Carattere Scientifico-Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione (IRCCS ISMETT), Palermo, Italy
| | - Lilia Del Mauro
- Department of Psychology, University of Milano-Bicocca, Milan, Italy
| | - Gabriel Hassan
- Department of Biomedical and Clinical Sciences, University of Milan, Italy
| | - Margherita Rovida
- Department of Psychology, University of Milano-Bicocca, Milan, Italy
| | - Angela Comanducci
- IRCSS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
- Università Campus Bio-Medico di Roma, Rome, Italy
| | - Silvia Casarotto
- Department of Biomedical and Clinical Sciences, University of Milan, Italy
- IRCCS Fondazione Don Carlo Gnocchi, Milan, Italy
| | - Vincenzina Lo Re
- Neurology Service, Department of Diagnostic and Therapeutic Services, Istituto di Ricovero e Cura a Carattere Scientifico-Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione (IRCCS ISMETT), Palermo, Italy
| | - Leonor J Romero Lauro
- NeuroMi (Neuroscience Center), University of Milano-Bicocca, Milan, Italy
- Department of Psychology, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
2
|
Gunduz ME, Bucak B, Keser Z. Advances in Stroke Neurorehabilitation. J Clin Med 2023; 12:6734. [PMID: 37959200 PMCID: PMC10650295 DOI: 10.3390/jcm12216734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Stroke is one of the leading causes of disability worldwide despite recent advances in hyperacute interventions to lessen the initial impact of stroke. Stroke recovery therapies are crucial in reducing the long-term disability burden after stroke. Stroke recovery treatment options have rapidly expanded within the last decade, and we are in the dawn of an exciting era of multimodal therapeutic approaches to improve post-stroke recovery. In this narrative review, we highlighted various promising advances in treatment and technologies targeting stroke rehabilitation, including activity-based therapies, non-invasive and minimally invasive brain stimulation techniques, robotics-assisted therapies, brain-computer interfaces, pharmacological treatments, and cognitive therapies. These new therapies are targeted to enhance neural plasticity as well as provide an adequate dose of rehabilitation and improve adherence and participation. Novel activity-based therapies and telerehabilitation are promising tools to improve accessibility and provide adequate dosing. Multidisciplinary treatment models are crucial for post-stroke neurorehabilitation, and further adjuvant treatments with brain stimulation techniques and pharmacological agents should be considered to maximize the recovery. Among many challenges in the field, the heterogeneity of patients included in the study and the mixed methodologies and results across small-scale studies are the cardinal ones. Biomarker-driven individualized approaches will move the field forward, and so will large-scale clinical trials with a well-targeted patient population.
Collapse
Affiliation(s)
- Muhammed Enes Gunduz
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Bilal Bucak
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA; (B.B.); (Z.K.)
| | - Zafer Keser
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA; (B.B.); (Z.K.)
| |
Collapse
|
3
|
Bakulin IS, Poydasheva AG, Zabirova AH, Suponeva NA, Piradov MA. Metaplasticity and non-invasive brain stimulation: the search for new biomarkers and directions for therapeutic neuromodulation. ANNALS OF CLINICAL AND EXPERIMENTAL NEUROLOGY 2022; 16:74-82. [DOI: 10.54101/acen.2022.3.9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Metaplasticity (plasticity of synaptic plasticity) is defined as a change in the direction or degree of synaptic plasticity in response to preceding neuronal activity. Recent advances in brain stimulation methods have enabled us to non-invasively examine cortical metaplasticity, including research in a clinical setting. According to current knowledge, non-invasive neuromodulation affects synaptic plasticity by inducing cortical processes that are similar to long-term potentiation and depression. Two stimulation blocks are usually used to assess metaplasticity priming and testing blocks. The technology of studying metaplasticity involves assessing the influence of priming on the testing protocol effect.
Several dozen studies have examined the effects of different stimulation protocols in healthy persons. They found that priming can both enhance and weaken, or even change the direction of the testing protocol effect. The interaction between priming and testing stimulation depends on many factors: the direction of their effect, duration of the stimulation blocks, and the interval between them.
Non-invasive brain stimulation can be used to assess aberrant metaplasticity in nervous system diseases, in order to develop new biomarkers. Metaplasticity disorders are found in focal hand dystonia, migraine with aura, multiple sclerosis, chronic disorders of consciousness, and age-related cognitive changes.
The development of new, metaplasticity-based, optimized, combined stimulation protocols appears to be highly promising for use in therapeutic neuromodulation in clinical practice.
Collapse
|
4
|
Wu M, Luo B, Yu Y, Li X, Gao J, Li J, Sorger B, Riecke L. Rhythmic musical-electrical trigeminal nerve stimulation improves impaired consciousness. Neuroimage Clin 2022; 36:103170. [PMID: 36063757 PMCID: PMC9460811 DOI: 10.1016/j.nicl.2022.103170] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 07/27/2022] [Accepted: 08/23/2022] [Indexed: 12/14/2022]
Abstract
Accumulating evidence shows that consciousness is linked to neural oscillations in the thalamocortical system, suggesting that deficits in these oscillations may underlie disorders of consciousness (DOC). However, patient-friendly non-invasive treatments targeting this functional anomaly are still missing and the therapeutic value of oscillation restoration has remained unclear. We propose a novel approach that aims to restore DOC patients' thalamocortical oscillations by combining rhythmic trigeminal-nerve stimulation with comodulated musical stimulation ("musical-electrical TNS"). In a double-blind, placebo-controlled, parallel-group study, we recruited 63 patients with DOC and randomly assigned them to groups receiving gamma, beta, or sham musical-electrical TNS. The stimulation was applied for 40 min on five consecutive days. We measured patients' consciousness before and after the stimulation using behavioral indicators and neural responses to rhythmic auditory speech. We further assessed their outcomes one year later. We found that musical-electrical TNS reliably lead to improvements in consciousness and oscillatory brain activity at the stimulation frequency: 43.5 % of patients in the gamma group and 25 % of patients in the beta group showed an improvement of their diagnosis after being treated with the stimulation. This group of benefitting patients still showed more positive outcomes one year later. Moreover, patients with stronger behavioral benefits showed stronger improvements in oscillatory brain activity. These findings suggest that brain oscillations contribute to consciousness and that musical-electrical TNS may serve as a promising approach to improve consciousness and predict long-term outcomes in patients with DOC.
Collapse
Affiliation(s)
- Min Wu
- Department of Neurology & Brain Medical Centre, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China,Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Benyan Luo
- Department of Neurology & Brain Medical Centre, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China,Corresponding author.
| | - Yamei Yu
- Department of Neurology & Brain Medical Centre, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaoxia Li
- Department of Neurology & Brain Medical Centre, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jian Gao
- Hangzhou Mingzhou Brain Rehabilitation Hospital, Hangzhou, China
| | - Jingqi Li
- Hangzhou Mingzhou Brain Rehabilitation Hospital, Hangzhou, China
| | - Bettina Sorger
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Lars Riecke
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
5
|
Abstract
Background: Reviving patients with prolonged disorders of consciousness (DOCs) has always been focused and challenging in medical research. Owing to the limited effectiveness of available medicine, recent research has increasingly turned towards neuromodulatory therapies, involving the stimulation of neural circuits. We summarised the progression of research regarding neuromodulatory therapies in the field of DOCs, compared the differences among different studies, in an attempt to explore optimal stimulation patterns and parameters, and analyzed the major limitations of the relevant studies to facilitate future research. Methods: We performed a search in the PubMed database, using the concepts of DOCs and neuromodulation. Inclusion criteria were: articles in English, published after 2002, and reporting clinical trials of neuromodulatory therapies in human patients with DOCs. Results: Overall, 187 published articles met the search criteria, and 60 articles met the inclusion criteria. There are differences among these studies regarding the clinical efficacies of neurostimulation techniques for patients with DOCs, and large-sample studies are still lacking. Conclusions: Neuromodulatory techniques were used as trial therapies for DOCs wherein their curative effects were controversial. The difficulties in detecting residual consciousness, the confounding effect between the natural course of the disease and therapeutic effect, and the heterogeneity across patients are the major limitations. Large-sample, well-designed studies, and innovations for both treatment and assessment are anticipated in future research.
Collapse
|
6
|
Boltzmann M, Schmidt SB, Gutenbrunner C, Krauss JK, Stangel M, Höglinger GU, Wallesch CW, Münte TF, Rollnik JD. Auditory Stimulation Modulates Resting-State Functional Connectivity in Unresponsive Wakefulness Syndrome Patients. Front Neurosci 2021; 15:554194. [PMID: 33664643 PMCID: PMC7921457 DOI: 10.3389/fnins.2021.554194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 01/06/2021] [Indexed: 12/23/2022] Open
Abstract
Passive listening to music is associated with several psychological and physical benefits in both, healthy and diseased populations. In this fMRI study, we examined whether preferred music has effects on the functional connectivity within resting-state networks related to consciousness. Thirteen patients in unresponsive wakefulness syndrome (UWS) and 18 healthy controls (HC) were enrolled. Both groups were exposed to different auditory stimulation (scanner noise, preferred music, and aversive auditory stimulation). Functional connectivity was analyzed using a seed-based approach. In HC, no differences were found between the three conditions, indicating that their networks are already working at high level. UWS patients showed impaired functional connectivity within all resting-state networks. In addition, functional connectivity of the auditory network was modulated by preferred music and aversive auditory stimulation. Hence, both conditions have the potential to modulate brain activity of UWS patients.
Collapse
Affiliation(s)
| | | | | | - Joachim K Krauss
- Department of Neurosurgery, Hannover Medical School, Hannover, Germany
| | - Martin Stangel
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | | | | | - Thomas F Münte
- Department of Neurology, University of Lübeck, Lübeck, Germany
| | - Jens D Rollnik
- BDH-Klinik Hessisch Oldendorf, Hessisch Oldendorf, Germany
| |
Collapse
|
7
|
Shou Z, Li Z, Wang X, Chen M, Bai Y, Di H. Non-invasive brain intervention techniques used in patients with disorders of consciousness. Int J Neurosci 2020; 131:390-404. [PMID: 32238043 DOI: 10.1080/00207454.2020.1744598] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Aim of the study: With the development of emergency medicine and intensive care technology, the number of people who survive with disorders of consciousness (DOC) has dramatically increased. The diagnosis and treatment of such patients have attracted much attention from the medical community. From the latest evidence-based guidelines, non-invasive brain intervention (NIBI) techniques may be valuable and promising in the diagnosis and conscious rehabilitation of DOC patients.Methods: This work reviews the studies on NIBI techniques for the assessment and intervention of DOC patients.Results: A large number of studies have explored the application of NIBI techniques in DOC patients. The NIBI techniques include transcranial magnetic stimulation, transcranial electric stimulation, music stimulation, near-infrared laser stimulation, focused shock wave therapy, low-intensity focused ultrasound pulsation and transcutaneous auricular vagus nerve stimulation.Conclusions: NIBI techniques present numerous advantages such as being painless, safe and inexpensive; having adjustable parameters and targets; and having broad development prospects in treating DOC patients.
Collapse
Affiliation(s)
- Zeyu Shou
- International Vegetative State and Consciousness Science Institute, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Zhilong Li
- International Vegetative State and Consciousness Science Institute, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Xueying Wang
- International Vegetative State and Consciousness Science Institute, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Miaoyang Chen
- International Vegetative State and Consciousness Science Institute, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Yang Bai
- International Vegetative State and Consciousness Science Institute, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Haibo Di
- International Vegetative State and Consciousness Science Institute, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
8
|
Billeri L, Filoni S, Russo EF, Portaro S, Militi D, Calabrò RS, Naro A. Toward Improving Diagnostic Strategies in Chronic Disorders of Consciousness: An Overview on the (Re-)Emergent Role of Neurophysiology. Brain Sci 2020; 10:brainsci10010042. [PMID: 31936844 PMCID: PMC7016627 DOI: 10.3390/brainsci10010042] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/03/2020] [Accepted: 01/08/2020] [Indexed: 12/13/2022] Open
Abstract
The differential diagnosis of patients with Disorder of Consciousness (DoC), in particular in the chronic phase, is significantly difficult. Actually, about 40% of patients with unresponsive wakefulness syndrome (UWS) and the minimally conscious state (MCS) are misdiagnosed. Indeed, only advanced paraclinical approaches, including advanced EEG analyses, can allow achieving a more reliable diagnosis, that is, discovering residual traces of awareness in patients with UWS (namely, functional Locked-In Syndrome (fLIS)). These approaches aim at capturing the residual brain network models, at rest or that may be activated in response to relevant stimuli, which may be appropriate for awareness to emerge (despite their insufficiency to generate purposeful motor behaviors). For this, different brain network models have been studied in patients with DoC by using sensory stimuli (i.e., passive tasks), probing response to commands (i.e., active tasks), and during resting-state. Since it can be difficult for patients with DoC to perform even simple active tasks, this scoping review aims at summarizing the current, innovative neurophysiological examination methods in resting state/passive modality to differentiate and prognosticate patients with DoC. We conclude that the electrophysiologically-based diagnostic procedures represent an important resource for diagnosis, prognosis, and, therefore, management of patients with DoC, using advance passive and resting state paradigm analyses for the patients who lie in the “greyzones” between MCS, UWS, and fLIS.
Collapse
Affiliation(s)
- Luana Billeri
- IRCCS Centro Neurolesi Bonino Pulejo, 98124 Messina, Italy; (L.B.); (S.P.); (A.N.)
| | - Serena Filoni
- Padre Pio Foundation and Rehabilitation Centers, San Giovanni Rotondo, 71013 Foggia, Italy;
- Correspondence: (S.F.); (R.S.C.); Tel.: +39-090-6012-8166 (R.S.C.)
| | | | - Simona Portaro
- IRCCS Centro Neurolesi Bonino Pulejo, 98124 Messina, Italy; (L.B.); (S.P.); (A.N.)
| | | | - Rocco Salvatore Calabrò
- IRCCS Centro Neurolesi Bonino Pulejo, 98124 Messina, Italy; (L.B.); (S.P.); (A.N.)
- Correspondence: (S.F.); (R.S.C.); Tel.: +39-090-6012-8166 (R.S.C.)
| | - Antonino Naro
- IRCCS Centro Neurolesi Bonino Pulejo, 98124 Messina, Italy; (L.B.); (S.P.); (A.N.)
| |
Collapse
|
9
|
Bernert M, Yvert B. An Attention-Based Spiking Neural Network for Unsupervised Spike-Sorting. Int J Neural Syst 2019; 29:1850059. [DOI: 10.1142/s0129065718500594] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Bio-inspired computing using artificial spiking neural networks promises performances outperforming currently available computational approaches. Yet, the number of applications of such networks remains limited due to the absence of generic training procedures for complex pattern recognition, which require the design of dedicated architectures for each situation. We developed a spike-timing-dependent plasticity (STDP) spiking neural network (SSN) to address spike-sorting, a central pattern recognition problem in neuroscience. This network is designed to process an extracellular neural signal in an online and unsupervised fashion. The signal stream is continuously fed to the network and processed through several layers to output spike trains matching the truth after a short learning period requiring only few data. The network features an attention mechanism to handle the scarcity of action potential occurrences in the signal, and a threshold adaptation mechanism to handle patterns with different sizes. This method outperforms two existing spike-sorting algorithms at low signal-to-noise ratio (SNR) and can be adapted to process several channels simultaneously in the case of tetrode recordings. Such attention-based STDP network applied to spike-sorting opens perspectives to embed neuromorphic processing of neural data in future brain implants.
Collapse
Affiliation(s)
- Marie Bernert
- BrainTech Laboratory U1205, INSERM, 2280 Rue de la Piscine, 38400 Saint-Martin-d’Hères, France
- BrainTech Laboratory U1205, Université Grenoble Alpes, 2280 rue de la piscine, 38400 Saint-Martin-d’Hères, France
- LETI, CEA Grenoble, 17 Rue des Martyrs, 38000 Grenoble, France
| | - Blaise Yvert
- BrainTech Laboratory U1205, INSERM, 2280 Rue de la Piscine, 38400 Saint-Martin-d’Hères, France
- BrainTech Laboratory U1205, Université Grenoble Alpes, 2280 rue de la piscine, 38400 Saint-Martin-d’Hères, France
| |
Collapse
|
10
|
Functional Brain Network Topology Discriminates between Patients with Minimally Conscious State and Unresponsive Wakefulness Syndrome. J Clin Med 2019; 8:jcm8030306. [PMID: 30841486 PMCID: PMC6463121 DOI: 10.3390/jcm8030306] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 02/23/2019] [Accepted: 02/27/2019] [Indexed: 12/11/2022] Open
Abstract
Consciousness arises from the functional interaction of multiple brain structures and their ability to integrate different complex patterns of internal communication. Although several studies demonstrated that the fronto-parietal and functional default mode networks play a key role in conscious processes, it is still not clear which topological network measures (that quantifies different features of whole-brain functional network organization) are altered in patients with disorders of consciousness. Herein, we investigate the functional connectivity of unresponsive wakefulness syndrome (UWS) and minimally conscious state (MCS) patients from a topological network perspective, by using resting-state EEG recording. Network-based statistical analysis reveals a subnetwork of decreased functional connectivity in UWS compared to in the MCS patients, mainly involving the interhemispheric fronto-parietal connectivity patterns. Network topological analysis reveals increased values of local-community-paradigm correlation, as well as higher clustering coefficient and local efficiency in UWS patients compared to in MCS patients. At the nodal level, the UWS patients showed altered functional topology in several limbic and temporo-parieto-occipital regions. Taken together, our results highlight (i) the involvement of the interhemispheric fronto-parietal functional connectivity in the pathophysiology of consciousness disorders and (ii) an aberrant connectome organization both at the network topology level and at the nodal level in UWS patients compared to in the MCS patients.
Collapse
|
11
|
Billeri L, Naro A, Leo A, Galletti B, Tomasello P, Manuli A, Andronaco V, Lauria P, Bramanti A, Calabrò RS. Looking toward predicting functional recovery in disorders of consciousness: can sensorimotor integration help us? Brain Inj 2018; 33:364-369. [PMID: 30501423 DOI: 10.1080/02699052.2018.1553309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
PRIMARY OBJECTIVE Only a few objective prognostic markers are available for patients with disorders of consciousness (DoC). We assessed whether the magnitude of short-latency afferent inhibition (SAI) might be a useful predictor of responsiveness recovery and functional outcome in patients with DoC. RESEARCH DESIGN We enrolled 40 patients with prolonged Minimally Conscious State (MCS) and Unresponsive Wakefulness Syndrome (UWS) in a longitudinal, observational study. METHODS AND PROCEDURES Clinical features (including Coma Recovery Scale-Revised, CRS-R, and Glasgow Outcome Scale, GOS) and SAI were collected at the study entry and after 18 months from study inclusion, to assess a correlation between SAI and the clinical outcome. MAIN OUTCOMES AND RESULTS At the follow-up, 19 patients remained in their baseline condition, whereas 7 UWS evolved into MCS or emerged-from-MCS (EMCS), eight MCS evolved into EMCS, and two MCS- evolved into MCS+. Two UWS and one MCS+ died for cardiopulmonary complications. The patients who showed the highest GOS, the highest CRS-R and the lowest SAI strength at study entry, improved at the follow-up. CONCLUSIONS Our findings suggest that an objective and simple neurophysiologic measure as SAI strength could provide useful information to predict the outcome and the behavioral responsiveness of patients with DoC.
Collapse
Affiliation(s)
- Luana Billeri
- a Behavioral and Robotic Neurorehabilitation Laboratory , IRCCS Centro Neurolesi "Bonino-Pulejo" , Messina , Italy
| | - Antonino Naro
- a Behavioral and Robotic Neurorehabilitation Laboratory , IRCCS Centro Neurolesi "Bonino-Pulejo" , Messina , Italy
| | - Antonino Leo
- a Behavioral and Robotic Neurorehabilitation Laboratory , IRCCS Centro Neurolesi "Bonino-Pulejo" , Messina , Italy
| | - Bruno Galletti
- b Otolaryngology Unit , University of Messina , Messina , Italy
| | - Provvidenza Tomasello
- a Behavioral and Robotic Neurorehabilitation Laboratory , IRCCS Centro Neurolesi "Bonino-Pulejo" , Messina , Italy
| | - Alfredo Manuli
- a Behavioral and Robotic Neurorehabilitation Laboratory , IRCCS Centro Neurolesi "Bonino-Pulejo" , Messina , Italy
| | - Veronica Andronaco
- a Behavioral and Robotic Neurorehabilitation Laboratory , IRCCS Centro Neurolesi "Bonino-Pulejo" , Messina , Italy
| | - Paola Lauria
- a Behavioral and Robotic Neurorehabilitation Laboratory , IRCCS Centro Neurolesi "Bonino-Pulejo" , Messina , Italy
| | - Alessia Bramanti
- a Behavioral and Robotic Neurorehabilitation Laboratory , IRCCS Centro Neurolesi "Bonino-Pulejo" , Messina , Italy
| | - Rocco Salvatore Calabrò
- a Behavioral and Robotic Neurorehabilitation Laboratory , IRCCS Centro Neurolesi "Bonino-Pulejo" , Messina , Italy
| |
Collapse
|