1
|
Pan G, Chai L, Chen R, Yuan Q, Song Z, Feng W, Wei J, Yang Z, Zhang Y, Xie G, Yan A, Lv Q, Wang C, Zhao Y, Wang Y. Potential mechanism of Qinggong Shoutao pill alleviating age-associated memory decline based on integration strategy. PHARMACEUTICAL BIOLOGY 2024; 62:105-119. [PMID: 38145345 PMCID: PMC10763866 DOI: 10.1080/13880209.2023.2291689] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 11/30/2023] [Indexed: 12/26/2023]
Abstract
CONTEXT Qinggong Shoutao Wan (QGSTW) is a pill used as a traditional medicine to treat age-associated memory decline (AAMI). However, its potential mechanisms are unclear. OBJECTIVE This study elucidates the possible mechanisms of QGSTW in treating AAMI. MATERIALS AND METHODS Network pharmacology and molecular docking approaches were utilized to identify the potential pathway by which QGSTW alleviates AAMI. C57BL/6J mice were divided randomly into control, model, and QGSTW groups. A mouse model of AAMI was established by d-galactose, and the pathways that QGSTW acts on to ameliorate AAMI were determined by ELISA, immunofluorescence staining and Western blotting after treatment with d-gal (100 mg/kg) and QGSTW (20 mL/kg) for 12 weeks. RESULTS Network pharmacology demonstrated that the targets of the active components were significantly enriched in the cAMP signaling pathway. AKT1, FOS, GRIN2B, and GRIN1 were the core target proteins. QGSTW treatment increased the discrimination index from -16.92 ± 7.06 to 23.88 ± 15.94% in the novel location test and from -19.54 ± 5.71 to 17.55 ± 6.73% in the novel object recognition test. ELISA showed that QGSTW could increase the levels of cAMP. Western blot analysis revealed that QGSTW could upregulate the expression of PKA, CREB, c-Fos, GluN1, GluA1, CaMKII-α, and SYN. Immunostaining revealed that the expression of SYN was decreased in the CA1 and DG. DISCUSSION AND CONCLUSIONS This study not only provides new insights into the mechanism of QGSTW in the treatment of AAMI but also provides important information and new research ideas for the discovery of traditional Chinese medicine compounds that can treat AAMI.
Collapse
Affiliation(s)
- Guiyun Pan
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Second Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lijuan Chai
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Rui Chen
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qing Yuan
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhihui Song
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wanying Feng
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jinna Wei
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhihua Yang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuhang Zhang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Guinan Xie
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - An Yan
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qingbo Lv
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Caijun Wang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yingqiang Zhao
- Second Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yi Wang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
2
|
Yang C, Qu L, Wang R, Wang F, Yang Z, Xiao F. Multi-layered effects of Panax notoginseng on immune system. Pharmacol Res 2024; 204:107203. [PMID: 38719196 DOI: 10.1016/j.phrs.2024.107203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024]
Abstract
Recent research has demonstrated the immunomodulatory potential of Panax notoginseng in the treatment of chronic inflammatory diseases and cerebral hemorrhage, suggesting its significance in clinical practice. Nevertheless, the complex immune activity of various components has hindered a comprehensive understanding of the immune-regulating properties of Panax notoginseng, impeding its broader utilization. This review evaluates the effect of Panax notoginseng to various types of white blood cells, elucidates the underlying mechanisms, and compares the immunomodulatory effects of different Panax notoginseng active fractions, aiming to provide the theory basis for future immunomodulatory investigation.
Collapse
Affiliation(s)
- Chunhao Yang
- Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming 650106, China; Yunnan Botanee Bio-Technology Group Co., Ltd., Kunming 650106, China
| | - Liping Qu
- Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming 650106, China; Yunnan Botanee Bio-Technology Group Co., Ltd., Kunming 650106, China; Innovation Materials Research and Development Center, Botanee Research Institute, Shanghai Jiyan Biomedical Development Co., Ltd., Shanghai 201702, China
| | - Rui Wang
- Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming 650106, China; Yunnan Botanee Bio-Technology Group Co., Ltd., Kunming 650106, China
| | - Feifei Wang
- Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming 650106, China; Yunnan Botanee Bio-Technology Group Co., Ltd., Kunming 650106, China; Innovation Materials Research and Development Center, Botanee Research Institute, Shanghai Jiyan Biomedical Development Co., Ltd., Shanghai 201702, China
| | - Zhaoxiang Yang
- Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming 650106, China; Yunnan Botanee Bio-Technology Group Co., Ltd., Kunming 650106, China
| | - Fengkun Xiao
- Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming 650106, China; Yunnan Botanee Bio-Technology Group Co., Ltd., Kunming 650106, China.
| |
Collapse
|
3
|
Zhang N, Yang Y, Li C, Zhang K, GAO X, Shen J, Wang Y, Cheng D, Lv J, Sun J. Based on 1H NMR and LC-MS metabolomics reveals biomarkers with neuroprotective effects in multi-parts ginseng powder. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
|
4
|
The Untapped Potential of Ginsenosides and American Ginseng Berry in Promoting Mental Health via the Gut-Brain Axis. Nutrients 2022; 14:nu14122523. [PMID: 35745252 PMCID: PMC9227060 DOI: 10.3390/nu14122523] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 02/04/2023] Open
Abstract
Despite the popularity of the ginseng (Panax) root in health research and on the market, the ginseng berry’s potential remains relatively unexplored. Implementing ginseng berry cultivations and designing berry-derived products could improve the accessibility to mental health-promoting nutraceuticals. Indeed, the berry could have a higher concentration of neuroprotective and antidepressant compounds than the root, which has already been the subject of research demonstrating its efficacy in the context of neuroprotection and mental health. In this review, data on the berry’s application in supporting mental health via the gut–brain axis is compiled and discussed.
Collapse
|
5
|
Hong J, Gwon D, Jang CY. Ginsenoside Rg1 suppresses cancer cell proliferation through perturbing mitotic progression. J Ginseng Res 2021; 46:481-488. [PMID: 35600766 PMCID: PMC9120780 DOI: 10.1016/j.jgr.2021.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 11/05/2021] [Accepted: 11/10/2021] [Indexed: 10/27/2022] Open
|
6
|
Chun YL, Lee S, Park KH, Park C, Huh Y, Jeong NY, Jung J. Protective and therapeutic effect of (S)-ginsenoside F1 on peripheral nerve degeneration targeting Schwann cells: a pharmaco-neuroanatomical approach. Anat Sci Int 2021; 97:79-89. [PMID: 34535878 DOI: 10.1007/s12565-021-00630-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 09/05/2021] [Indexed: 10/20/2022]
Abstract
Damaged peripheral nerves undergo peripheral neurodegenerative processes that are essential for the nerve regeneration. Peripheral neurodegenerative diseases, including diabetic peripheral neuropathy, are induced by irreversible nerve damage caused by abnormal peripheral nerve degeneration. However, until now, there have been no effective therapeutic treatments for these diseases. Ginsenosides are the most pharmacologically active compounds in Panax ginseng, and are being actively studied. Ginsenosides have a variety of effects, including neuroprotective, antioxidative, anti-cytotoxic, and anti-inflammatory effects. Here, we investigated the efficacy of 18 ginsenosides. We then tested the ability of the most effective ginsenoside, (S)-ginsenosides F1 (sF1), to inhibit peripheral neurodegenerative processes using mouse sciatic ex vivo culture, and several morphological and biochemical indicators. Our results suggest that sF1 could effectively protect Schwann cells against peripheral nerve degeneration.
Collapse
Affiliation(s)
- Yoo Lim Chun
- Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Korea.,Department of Biomedical Science, Graduation School, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Korea
| | - Sumin Lee
- Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Korea.,Department of Biomedical Science, Graduation School, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Korea
| | - Ki-Hoon Park
- Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Korea
| | - Chan Park
- Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Korea.,Department of Biomedical Science, Graduation School, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Korea
| | - Youngbuhm Huh
- Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Korea.,Department of Biomedical Science, Graduation School, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Korea
| | - Na Young Jeong
- Department of Anatomy and Cell Biology, College of Medicine, Dong-A University, 32, Daesingongwon-ro, Seo-gu, Busan, 49201, Korea.
| | - Junyang Jung
- Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Korea. .,Department of Biomedical Science, Graduation School, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Korea.
| |
Collapse
|
7
|
Zhao L, Ma Y, Chen C, Liu S, Wu W. Pharmacokinetic and metabolic studies of ginsenoside Rb3 in rats using RRLC-Q-TOF-MS. J Chromatogr Sci 2018; 56:480-487. [PMID: 29897460 DOI: 10.1093/chromsci/bmy019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Indexed: 11/13/2022]
Abstract
Ginsenoside Rb3 is one of major ginsenosides in Panax ginseng with effect on cardio-vascular and central nervous system. The aim of this study is to develop a rapid resolution liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry (RRLC-Q-TOF-MS) method for pharmacokinetic study of ginsenoside Rb3 and simultaneous determination of metabolites in rats. The results showed that the concentration-time profile of ginsenoside Rb3 conformed to a two-compartment pharmacokinetic model after intravenous administration at the dosage of 2.0 mg/kg for rats. The mean plasma elimination half-lives were 13.77 ± 1.23 min and 2045.70 ± 156.20 min for the distribution and exterminate phases t1/2α and t1/2β. In the metabolic study, prototype ginsenoside Rb3 and deglycosylation metabolites were characterized by comparison with the retention time of the standard compounds, accurate mass measurement and the characteristic fragment ions obtained from MS/MS. Two major metabolites Mb1 and M2' were tentatively identified in rat urine samples after intravenous administration, and four possible metabolites Mb1, F2, M2' and CK were detected in rat feces samples after oral administration. The deglycosylation was found to be the major metabolic pathways of ginsenoside Rb3 in rat. The in vivo metabolic pathway of ginsenoside Rb3 was summarized.
Collapse
Affiliation(s)
- Lefeng Zhao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, 1035 Boshuo Road, Changchun, China
| | - Yue Ma
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, 1035 Boshuo Road, Changchun, China
| | - Changbao Chen
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, 1035 Boshuo Road, Changchun, China
| | - Shuying Liu
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, 1035 Boshuo Road, Changchun, China.,Changchun Center of Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, China
| | - Wei Wu
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, 1035 Boshuo Road, Changchun, China
| |
Collapse
|
8
|
Jakaria M, Kim J, Karthivashan G, Park SY, Ganesan P, Choi DK. Emerging signals modulating potential of ginseng and its active compounds focusing on neurodegenerative diseases. J Ginseng Res 2018; 43:163-171. [PMID: 30976157 PMCID: PMC6437449 DOI: 10.1016/j.jgr.2018.01.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 01/08/2018] [Accepted: 01/12/2018] [Indexed: 02/08/2023] Open
Abstract
Common features of neurodegenerative diseases (NDDs) include progressive dysfunctions and neuronal injuries leading to deterioration in normal brain functions. At present, ginseng is one of the most frequently used natural products. Its use has a long history as a cure for various diseases because its extracts and active compounds exhibit several pharmacological properties against several disorders. However, the pathophysiology of NDDs is not fully clear, but researchers have found that various ion channels and specific signaling pathways might have contributed to the disease pathogenesis. Apart from the different pharmacological potentials, ginseng and its active compounds modulate various ion channels and specific molecular signaling pathways related to the nervous system. Here, we discuss the signal modulating potential of ginseng and its active compounds mainly focusing on those relevant to NDDs.
Collapse
Affiliation(s)
- Md Jakaria
- Department of Applied Life Science, Graduate School, Konkuk University, Chungju, Republic of Korea
| | - Joonsoo Kim
- Department of Applied Life Science, Graduate School, Konkuk University, Chungju, Republic of Korea
| | - Govindarajan Karthivashan
- Research Institute of Inflammatory Disease, and Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju 27478, Korea
| | - Shin-Young Park
- Department of Applied Life Science, Graduate School, Konkuk University, Chungju, Republic of Korea
| | - Palanivel Ganesan
- Research Institute of Inflammatory Disease, and Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju 27478, Korea.,Nanotechnology Research Center, Konkuk University, Chungju, Republic of Korea
| | - Dong-Kug Choi
- Department of Applied Life Science, Graduate School, Konkuk University, Chungju, Republic of Korea.,Research Institute of Inflammatory Disease, and Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju 27478, Korea.,Nanotechnology Research Center, Konkuk University, Chungju, Republic of Korea
| |
Collapse
|
9
|
Jiang S, Fang DF, Chen Y. Involvement of N-Methyl-D-Aspartic Acid Receptor and DL-α-Amino-3-Hydroxy-5- Methyl-4-Isoxazole Propionic Acid Receptor in Ginsenosides Rb1 and Rb3 against Oxygen-Glucose Deprivation-Induced Injury in Hippocampal Slices from Rat. Pharmacology 2017; 101:133-139. [PMID: 29207398 DOI: 10.1159/000481710] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 09/22/2017] [Indexed: 01/16/2023]
Abstract
OBJECTIVE Ginsenosides, Rb1 and Rb3, are the major protopanaxadiol components of ginseng saponin. In the present study, the influences of ginsenosides Rb1 and Rb3 on N-methyl-D-aspartic acid (NMDA) receptor or DL-α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor-mediated synaptic transmission after oxygen-glucose deprivation (OGD) were investigated. METHODS NMDA receptor population spike (NMDA-PS) or AMPA receptor-mediated population spike (AMPA-PS) was recorded in the CA1 pyramidal cell layer of rat hippocampal slices by electrophysiological techniques. RESULTS Under normal conditions, ginsenosides Rb3 and Rb1 depressed glutamate receptors-mediated synaptic transmission. Fourteen min of OGD resulted in a poor recovery amplitude of NMDA-PS or AMPA-PS after reoxygenation. Ginsenoside Rb3 significantly delayed the appearance of transient recovery of PS during OGD, and improved the recovery amplitudes of NMDA-PS and AMPA-PS after reoxygenation. However, the similar protective effects of ginsenoside Rb1 were observed only on NMDA-PS but not AMPA-PS. CONCLUSION These results suggest that ginsenosides Rb1 and Rb3 have the different inhibitions on NMDA and AMPA receptors-mediated response, which may partially explain the different protective effects of these agents on ischemic neuronal death.
Collapse
Affiliation(s)
- Shan Jiang
- Department of Anatomy and Physiology, Lianyungang Branch of Traditional Chinese Medicine, Jiangsu Union Technical Institute, Lianyungang, China
| | - De-Fang Fang
- Department of Anatomy and Physiology, Lianyungang Branch of Traditional Chinese Medicine, Jiangsu Union Technical Institute, Lianyungang, China
| | - Ying Chen
- Department of Anesthesiology, The First People's Hospital of Lianyungang, Lianyungang, China
| |
Collapse
|
10
|
Singh D, Goel RK. Anticonvulsant mechanism of saponins fraction from adventitious roots of Ficus religiosa: possible modulation of GABAergic, calcium and sodium channel functions. REVISTA BRASILEIRA DE FARMACOGNOSIA-BRAZILIAN JOURNAL OF PHARMACOGNOSY 2016. [DOI: 10.1016/j.bjp.2015.10.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Xie Z, Shi M, Zhang C, Zhao H, Hui H, Zhao G. Ginsenoside Rd Protects Against Cerebral Ischemia-Reperfusion Injury Via Decreasing the Expression of the NMDA Receptor 2B Subunit and its Phosphorylated Product. Neurochem Res 2016; 41:2149-59. [PMID: 27165636 DOI: 10.1007/s11064-016-1930-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Revised: 04/09/2016] [Accepted: 04/18/2016] [Indexed: 12/13/2022]
Abstract
Ginsenoside Rd (GSRd) is one of the active ingredients in ginseng. Recent studies have shown that GSRd can protect against cerebral ischemia through several pathways, one of which is mediated by the N-methyl-D-aspartate receptor (NMDAR). In this study, we aimed to investigate the effects of GSRd on the phosphorylation of the NMDAR 2B subunit (NR2B subunit) in cerebral ischemia. Ischemia-reperfusion injury (IRI) models induced by transient middle cerebral artery occlusion (MCAO) and oxygen glucose deprivation (OGD) were used to mimic in vivo or in vitro injury during cerebral ischemia. The models were pretreated or post-treated with GSRd after MCAO or OGD. As a vehicle control, 1,3-propanediol was used. The expression levels of the NR2B subunit and the phosphorylated NR2B subunit were determined using western blotting. GSRd significantly improved the behavior score, infarct volume, and viability of the cultured neurons after ischemia. GSRd inhibited the hyperphosphorylation of NR2B subunit and decreased the expression levels of NR2B subunit in cell membrane but did not change their levels in the total proteins after IRI. GSRd protected Sprague-Dawley rats and cultured neurons from IRI via inhibiting the hyperphosphorylation of NR2B subunit and decreasing its expression levels in cell membrane.
Collapse
Affiliation(s)
- Zhen Xie
- Department of Neurology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China.,Department 2 of Neurology, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Ming Shi
- Department of Neurology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Chen Zhang
- Department of Neurology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Haibo Zhao
- Department of Neurology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Hao Hui
- Department of Neurology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Gang Zhao
- Department of Neurology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
12
|
Chen J, Du B, Cai W, Xu B. Ginsenosides and amino acids in flavored ginseng chips as affected by food formulation and processing technology. Lebensm Wiss Technol 2015. [DOI: 10.1016/j.lwt.2014.10.047] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
13
|
Smith I, Williamson EM, Putnam S, Farrimond J, Whalley BJ. Effects and mechanisms of ginseng and ginsenosides on cognition. Nutr Rev 2014; 72:319-33. [DOI: 10.1111/nure.12099] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Affiliation(s)
- Imogen Smith
- School of Chemistry; Food and Nutritional Sciences and Pharmacy; University of Reading; Reading Berkshire UK
| | - Elizabeth M Williamson
- School of Chemistry; Food and Nutritional Sciences and Pharmacy; University of Reading; Reading Berkshire UK
| | | | | | - Benjamin J Whalley
- School of Chemistry; Food and Nutritional Sciences and Pharmacy; University of Reading; Reading Berkshire UK
| |
Collapse
|
14
|
Wang ZJ, Sun L, Peng W, Ma S, Zhu C, Fu F, Heinbockel T. Ginseng derivative ocotillol enhances neuronal activity through increased glutamate release: a possible mechanism underlying increased spontaneous locomotor activity of mice. Neuroscience 2011; 195:1-8. [PMID: 21864652 DOI: 10.1016/j.neuroscience.2011.08.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Revised: 06/06/2011] [Accepted: 08/02/2011] [Indexed: 10/17/2022]
Abstract
Ginsenosides are the main active ingredients in ginseng and have recently been reported to have beneficial effects on the CNS. Ocotillol is a derivate of pseudoginsenoside-F11, which is an ocotillol-type ginsenoside found in American ginseng. We examined the effects of ocotillol (a) on neuronal activity of projection neurons, mitral cells (MC), in a mouse olfactory bulb brain slice preparation using whole-cell patch-clamp recording, and (b) on animal behavior by measuring locomotor activity of mice in vivo. Ocotillol displayed an excitatory effect on spontaneous action potential firing and depolarized the membrane potential of MCs. The effect was concentration-dependent, with an EC(50) of 4 μM. In the presence of blockers of ionotropic glutamatergic and GABAergic synaptic transmission (6-cyano-7-nitroquinoxaline-2,3-dione [CNQX], 10 μM; D-AP5, 50 μM; gabazine, 5 μM), the excitatory effect of ocotillol on firing was abolished. Further experiments showed that the ocotillol-induced neuronal excitation persisted in the presence of GABA(A) receptor antagonist gabazine but was eliminated by applying AMPA/kainate receptor antagonist CNQX and N-methyl-d-aspartate (NMDA) receptor antagonist D-AP5, suggesting that ionotropic glutamate transmission was involved in mediating the effects of ocotillol. Bath application of ocotillol evoked an inward current as well as an increased frequency of spontaneous glutamatergic excitatory postsynaptic currents (EPSCs). Both the inward current and sEPSCs could be blocked by ionotropic glutamate receptor antagonists CNQX and D-AP5. These results indicate that the excitatory action of ocotillol on MCs was mediated by enhanced glutamate release. Behavioral experiments demonstrated that ocotillol increased locomotor activities of mice. Our results suggest that ocotillol-evoked neuronal excitability was mediated by increased release of glutamate, which may be responsible for the increased spontaneous locomotor activities in vivo.
Collapse
Affiliation(s)
- Z-J Wang
- Department of Anatomy, Howard University College of Medicine, 520 W Street North West, Washington, DC 20059, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Jiang S, Miao B, Song X, Jiang Z. Inactivation of GABA(A) receptor reduces ginsenoside Rb3 neuroprotection in mouse hippocampal slices after oxygen-glucose deprivation. JOURNAL OF ETHNOPHARMACOLOGY 2011; 133:914-916. [PMID: 20969942 DOI: 10.1016/j.jep.2010.10.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Revised: 10/09/2010] [Accepted: 10/13/2010] [Indexed: 05/30/2023]
Abstract
AIM OF THE STUDY To investigate the effect of ginsenoside Rb(3) on synaptic transmission after oxygen-glucose deprivation in vitro. MATERIALS AND METHODS The population spike (PS) was recorded in the stratum pyramidale of mouse hippocampal slices using extracellular recordings. RESULTS Ginsenoside Rb(3) depressed the basal synaptic transmission, which also promoted the recovery amplitude of PS after OGD in a concentration-dependent manner. The GABA(A) receptor agonist muscimol improved the recovery, which was similar to that of ginsenoside Rb(3). Moreover, the effect of ginsenoside Rb(3) in combination with muscimol was not additive. Treatment with the GABA(A) receptor antagonist bicuculline or picrotoxin, which prevented the depression of PS caused by ginsenoside Rb(3), also reduced the neuroprotection. CONCLUSION The results indicate that the activation of the GABA(A) receptor is correlated with the neuroprotective mechanisms of ginsenoside Rb(3).
Collapse
Affiliation(s)
- Shan Jiang
- Jiangsu Key Laboratory of Anesthesiology, Xuzhou Medical College, 99 Huaihai West Road, Xuzhou 221002, China. shan
| | | | | | | |
Collapse
|
16
|
Padilla A, Descorbeth M, Almeyda AL, Payne K, De Leon M. Hyperglycemia magnifies Schwann cell dysfunction and cell death triggered by PA-induced lipotoxicity. Brain Res 2010; 1370:64-79. [PMID: 21108938 DOI: 10.1016/j.brainres.2010.11.013] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Revised: 11/01/2010] [Accepted: 11/05/2010] [Indexed: 01/01/2023]
Abstract
Lipid overload resulting in lipotoxicity is prominent in a number of chronic diseases and has been associated with cellular dysfunction and cell death. This study characterizes palmitic acid-induced lipotoxicity (PA-LTx) in Schwann cell cultures grown in normal and high glucose concentrations. The study shows for the first time that Schwann cell (SC) cultures exposed to elevated levels of PA exhibit a dose- and time-dependent loss in cell viability. Hoescht and Annexin V/7AAD staining confirmed cell death through apoptosis and the lipotoxic effect was more dramatic in SC cultures grown under high glucose conditions. The first indication of cellular dysfunction in treated SC cultures was a decrease in Ca(++) levels in the endoplasmic reticulum (ER, [Ca(++)](ER)) observed five minutes following the initial challenge with PA. This decrease in [Ca(++) ](ER) was followed by a significant increase in the expression of ER stress signature genes CHOP, Xbp1 and GRP78. The early ER stress response induced by PA-LTx was followed by a strong mitochondrial membrane depolarization. Flow cytometry using 2', 7'-dichlorodihydrofluorescein diacetate (H(2)DCFDA) showed an increase in oxidative stress within three to six hours after PA treatment. Treatment of cultures undergoing PA-LTx with the calcium chelator BAPTA-AM and the anti-oxidant MCI-186 significantly reversed the lipotoxic effect by decreasing the generation of ROS and significantly increasing cell viability. We conclude that lipotoxicity in Schwann cells results in cellular dysfunction and cell death that involves a robust ER stress response, mitochondrial dysfunction and an augmented state of cellular oxidative stress (ASCOS).
Collapse
Affiliation(s)
- Amelia Padilla
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | | | | | | | | |
Collapse
|