1
|
Li Y, Pan L, Zhao Q, Xiong H, Fang X, Guo X, Wang Y, Su X, Liu P, Hao J, Wang L, Wang X, Dong Q, Li Z, Jin F. Tanshinone IIA + Osthole alleviates ferroptosis in LPS-induced acute lung injury by Keap1-Nrf2/HO-1 pathway. Microb Pathog 2025; 203:107347. [PMID: 40147558 DOI: 10.1016/j.micpath.2025.107347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 01/17/2025] [Accepted: 01/27/2025] [Indexed: 03/29/2025]
Abstract
BACKGROUND Acute lung injury (ALI) is associated with a high mortality rate and requires effective treatment. Tanshinone IIA (T) and Osthole (O) exhibit anti-inflammatory effects and have been used to protect against lipopolysaccharide (LPS)-induced lung injury in mice. However, the combined effects of T and O on lung injury protection and their potential protective mechanisms have not been studied. OBJECTIVE To assess the protective effects of TO on LPS-induced ALI in mice and BEAS-2B cell injury and to investigate the potential mechanisms underlying these protective effects. METHODS Models of ALI induced by LPS were established. The assessment encompassed the viability of BEAS-2B cells, cell count, myeloperoxidase (MPO) activity, protein content, as well as IL-6 and TNF-a levels in bronchoalveolar lavage fluid (BALF). Additionally, malondialdehyde (MDA), reactive oxygen species (ROS), and glutathione (GSH) levels in mouse lung tissue were measured. The effects of TO were assessed using immunofluorescence (IF), immunohistochemistry (IHC), Western Blot (WB), RT-PCR, and ELISA. Statistical analysis involved one-way ANOVA and t-test. RESULTS TO administration led to a significant reduction in lung edema (W/D), MDA, ROS, GSH, and superoxide dismutase (SOD) levels compared to the individual T or O groups, alleviating LPS-induced ALI. TO also significantly attenuated lung tissue damage, reduced inflammatory response, decreased Fe2+ and 4-HNE levels, and increased GPX4, SLC7A11, and Nrf2 gene expression in mice. Ultimately, TO alleviated ferroptosis in LPS-induced ALI by activating Nrf2 expression, and no markedly adverse reactions were observed. CONCLUSION TO alleviates LPS-induced ALI and effectively treats against LPS-induced ALI.
Collapse
Affiliation(s)
- Yujuan Li
- Department of Pulmonary and Critical Care Medicine, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710038, China
| | - Lei Pan
- Department of Pulmonary and Critical Care Medicine, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710038, China
| | - Qi Zhao
- Department of Pulmonary and Critical Care Medicine, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710038, China
| | - Huanqing Xiong
- Department of Pulmonary and Critical Care Medicine, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710038, China
| | - Xiaoan Fang
- Department of Pulmonary and Critical Care Medicine, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710038, China
| | - Xian Guo
- Department of Pulmonary and Critical Care Medicine, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710038, China
| | - Ying Wang
- Department of Pulmonary and Critical Care Medicine, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710038, China
| | - Xiaorong Su
- Department of Endocrinology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710038, China
| | - Pan Liu
- Department of Pulmonary and Critical Care Medicine, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710038, China
| | - Jing Hao
- Department of Pulmonary and Critical Care Medicine, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710038, China
| | - Lei Wang
- Department of Pulmonary and Critical Care Medicine, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710038, China
| | - Xinqun Wang
- Department of Pulmonary and Critical Care Medicine, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710038, China
| | - Quandi Dong
- General Surgery Department, 947 Army Hospital, China.
| | - Zhichao Li
- Department of Pulmonary and Critical Care Medicine, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710038, China.
| | - Faguang Jin
- Department of Pulmonary and Critical Care Medicine, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710038, China.
| |
Collapse
|
2
|
Wu Z, Xu Y, Guo X, Zhang Z, Wang J, Tang Y. Assessment of Tanshinone IIA Derivatives for Cardioprotection in Myocardial Ischemic Injury. PLANTA MEDICA 2025. [PMID: 40127683 DOI: 10.1055/a-2565-8285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Tanshinone ⅡA (TSA), a component of traditional Chinese medicine, effectively protects against myocardial injury. However, its clinical application is limited by poor water solubility and a short half-life. In this study, we report on four TSA derivatives designed and synthesized by our research group. The protective activity against hypoxia-reoxygenation injury in cells was evaluated, and derivative Ⅰ-3 was selected for in vivo experiments to verify its myocardial protective activity in rats with myocardial infarction. The results demonstrated that these four compounds could protect neonatal rat cardiomyocytes from hypoxia-reoxygenation injury. Among the derivatives, Ⅰ-3 showing superior protective effects, we found that Ⅰ-3 has enhanced metabolic stability and an extended half-life. Ⅰ-3 exhibited superior biological activity, effectively reducing the heart infarction area, alleviating myocardial hypertrophy, and enhancing cardiac pumping function. Ⅰ-3 reported in the present work represents a novel and effective derivative of TSA, showing great potential for the treatment of myocardial ischemia (MI).
Collapse
Affiliation(s)
- Zhiwu Wu
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, P. R. China
| | - Ying Xu
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, P. R. China
| | - Ximing Guo
- School of Pharmacy, China Pharmaceutical University, Nanjing, P. R. China
| | - Zhilan Zhang
- School of Pharmacy, China Pharmaceutical University, Nanjing, P. R. China
| | - Jinxin Wang
- School of Pharmacy, China Pharmaceutical University, Nanjing, P. R. China
| | - Yiqun Tang
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, P. R. China
| |
Collapse
|
3
|
Li Q, Ren C, Jiang B, Wang X, Wang C, Zhi X, Li L, Guo X, Zhao X, Li Y. Salvia miltiorrhiza Bunge root in the treatment of myocardial fibrosis: research progress and challenges. Front Pharmacol 2025; 16:1554696. [PMID: 40230703 PMCID: PMC11994599 DOI: 10.3389/fphar.2025.1554696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 03/19/2025] [Indexed: 04/16/2025] Open
Abstract
Myocardial fibrosis (MF) involves the activation and excessive proliferation of cardiac fibroblasts (CFs) in the extracellular matrix, leading to increased collagen expression that impairs cardiac function. Currently, there are no effective pharmacological treatments for MF. Traditional Chinese Medicine (TCM), particularly Salvia miltiorrhiza Bunge [Lamiaceae; Salviae miltiorrhizae radix et rhizoma], has gained attention for its potential in treating MF. Recent studies indicate significant therapeutic effects of its active metabolites, supporting its use in MF treatment and positioning it as a promising candidate for drug development. AIM OF THE REVIEW This article reviews the research and mechanisms of S. miltiorrhiza's effective metabolites and preparations in treating MF, providing a reference for future clinical treatments. A systematic literature search was conducted in PubMed, Web of Science, CNKI, and Google Scholar (January 2000-October 2024) using keywords: "myocardial fibrosis," "cardiac fibrosis," "Salvia miltiorrhiza Bunge," "extract," and "botanical drug." RESULTS The active metabolites of S. miltiorrhiza and its metabolite preparations exert anti-fibrotic effects through pleiotropic mechanisms, including suppression of ventricular remodeling, modulation of autophagy, inhibition of oxidative stress and cardiomyocyte apoptosis, and regulation of extracellular matrix homeostasis and immune-inflammatory responses. CONCLUSION Research indicates that S. miltiorrhiza is beneficial for managing MF, but further studies are needed to identify its chemical metabolites and regulatory mechanisms. Large-scale, multi-center clinical trials are also necessary to assess treatment safety. This review offers insights for developing new anti-MF pharmacotherapies.
Collapse
Affiliation(s)
- Qianrong Li
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- College of Integrated Traditional Chinese and Western Medicine, Gansu Province Key Laboratory of Chinese Medicine for the Prevention and Treatment of Chronic Diseases, Gansu University of Chinese Medicine, Lanzhou, China
- Key Clinical Specialty of the National Health Commission of the People’s Republic of China, Key Specialized Cardiovascular Laboratory National Administration of Traditional Chinese Medicine, Lanzhou, China
| | - Chunzhen Ren
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- College of Integrated Traditional Chinese and Western Medicine, Gansu Province Key Laboratory of Chinese Medicine for the Prevention and Treatment of Chronic Diseases, Gansu University of Chinese Medicine, Lanzhou, China
- Key Clinical Specialty of the National Health Commission of the People’s Republic of China, Key Specialized Cardiovascular Laboratory National Administration of Traditional Chinese Medicine, Lanzhou, China
| | - Bing Jiang
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- College of Integrated Traditional Chinese and Western Medicine, Gansu Province Key Laboratory of Chinese Medicine for the Prevention and Treatment of Chronic Diseases, Gansu University of Chinese Medicine, Lanzhou, China
- Key Clinical Specialty of the National Health Commission of the People’s Republic of China, Key Specialized Cardiovascular Laboratory National Administration of Traditional Chinese Medicine, Lanzhou, China
| | - Xuehan Wang
- College of Integrated Traditional Chinese and Western Medicine, Gansu Province Key Laboratory of Chinese Medicine for the Prevention and Treatment of Chronic Diseases, Gansu University of Chinese Medicine, Lanzhou, China
- Key Clinical Specialty of the National Health Commission of the People’s Republic of China, Key Specialized Cardiovascular Laboratory National Administration of Traditional Chinese Medicine, Lanzhou, China
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Chunling Wang
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- College of Integrated Traditional Chinese and Western Medicine, Gansu Province Key Laboratory of Chinese Medicine for the Prevention and Treatment of Chronic Diseases, Gansu University of Chinese Medicine, Lanzhou, China
- Key Clinical Specialty of the National Health Commission of the People’s Republic of China, Key Specialized Cardiovascular Laboratory National Administration of Traditional Chinese Medicine, Lanzhou, China
| | - Xiaodong Zhi
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- College of Integrated Traditional Chinese and Western Medicine, Gansu Province Key Laboratory of Chinese Medicine for the Prevention and Treatment of Chronic Diseases, Gansu University of Chinese Medicine, Lanzhou, China
- Key Clinical Specialty of the National Health Commission of the People’s Republic of China, Key Specialized Cardiovascular Laboratory National Administration of Traditional Chinese Medicine, Lanzhou, China
- Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China
| | - Linchan Li
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- College of Integrated Traditional Chinese and Western Medicine, Gansu Province Key Laboratory of Chinese Medicine for the Prevention and Treatment of Chronic Diseases, Gansu University of Chinese Medicine, Lanzhou, China
- Key Clinical Specialty of the National Health Commission of the People’s Republic of China, Key Specialized Cardiovascular Laboratory National Administration of Traditional Chinese Medicine, Lanzhou, China
- Oncology Department, Shaanxi Provincial Hospital of Chinese Medicine, Xi’an, China
| | - Xiaoying Guo
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- College of Integrated Traditional Chinese and Western Medicine, Gansu Province Key Laboratory of Chinese Medicine for the Prevention and Treatment of Chronic Diseases, Gansu University of Chinese Medicine, Lanzhou, China
- Key Clinical Specialty of the National Health Commission of the People’s Republic of China, Key Specialized Cardiovascular Laboratory National Administration of Traditional Chinese Medicine, Lanzhou, China
| | - Xinke Zhao
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- College of Integrated Traditional Chinese and Western Medicine, Gansu Province Key Laboratory of Chinese Medicine for the Prevention and Treatment of Chronic Diseases, Gansu University of Chinese Medicine, Lanzhou, China
- Key Clinical Specialty of the National Health Commission of the People’s Republic of China, Key Specialized Cardiovascular Laboratory National Administration of Traditional Chinese Medicine, Lanzhou, China
- Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China
| | - Yingdong Li
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- College of Integrated Traditional Chinese and Western Medicine, Gansu Province Key Laboratory of Chinese Medicine for the Prevention and Treatment of Chronic Diseases, Gansu University of Chinese Medicine, Lanzhou, China
- Key Clinical Specialty of the National Health Commission of the People’s Republic of China, Key Specialized Cardiovascular Laboratory National Administration of Traditional Chinese Medicine, Lanzhou, China
| |
Collapse
|
4
|
Shahrokhi H, Asili J, Tayarani-Najaran Z, Boozari M. Signaling pathways behind the biological effects of tanshinone IIA for the prevention of cancer and cardiovascular diseases. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03857-x. [PMID: 39937254 DOI: 10.1007/s00210-025-03857-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 01/24/2025] [Indexed: 02/13/2025]
Abstract
Tanshinone IIA (Tan IIA) is a well-known fat-soluble diterpenoid found in Salvia miltiorrhiza, recognized for its various biological effects. The molecular signaling pathways of Tan IIA have been investigated in different diseases, including the anti-inflammatory, hepatoprotective, renoprotective, neuroprotective effects, and fibrosis prevention. This article provides a brief overview of the signaling pathways related to anti-cancer and cardioprotective effects of Tan IIA. It shows that Tan IIAs anti-cancer ability has good expectation through multiplicity mechanisms affecting various aspects' tumor biology. The major pathways involved in its anti-cancer effects include inhibition of PI3/Akt, MAPK, and p53/p21 signaling which leads to enhancement of immune responses and increased radiation sensitivity. Some essential pathways responsible for cardioprotective effects induced by Tan IIA are PI3/AKT activation, MAPK, and SIRT1 promoting protection against ischemia/reperfusion injury in myocardial cells as well as inhibiting pathological remodeling processes. Finally, the article underscores the complex and specific signaling pathways influenced by Tan IIA. The PI3/Akt and MAPK pathways play critical roles in the anti-cancer and cardioprotective effects of Tan IIA. Particularly, Tan IIA suppresses the proliferation of malignancies in cancerous cells but stimulates protective mechanisms in normal cardiovascular cells. These findings highlight the importance of investigating molecular signaling pathways in evaluating the therapeutic potential of natural products. Studying about signaling pathways is vital in understanding the therapeutic aspects of Tan IIA and its derivatives as anti-cancer and cardio-protective agents. Further research is necessary to understand these complex mechanisms.
Collapse
Affiliation(s)
- Homa Shahrokhi
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Javad Asili
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Tayarani-Najaran
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Motahareh Boozari
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
5
|
Dabbaghi MM, Soleimani Roudi H, Safaei R, Baradaran Rahimi V, Fadaei MR, Askari VR. Unveiling the Mechanism of Protective Effects of Tanshinone as a New Fighter Against Cardiovascular Diseases: A Systematic Review. Cardiovasc Toxicol 2024; 24:1467-1509. [PMID: 39306819 DOI: 10.1007/s12012-024-09921-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/08/2024] [Indexed: 11/15/2024]
Abstract
Tanshinone, a natural compound found in the roots of Salvia miltiorrhiza, has been shown to possess various pharmacological properties, including anti-inflammatory, antioxidant, and cardiovascular protective effects. This article aims to review the literature on the cardiovascular protective effects of tanshinone and its underlying mechanisms. Tanshinone has been demonstrated to improve cardiac function, reduce oxidative stress, and inhibit inflammation in various animal models of cardiovascular diseases. Additionally, it has been shown to regulate multiple signaling pathways involved in the pathogenesis of cardiovascular diseases, such as the PI3K/AKT, MAPK, and NF-κB pathways. Clinical studies have also suggested that tanshinone may have therapeutic potential for treating cardiovascular diseases. In conclusion, tanshinone has emerged as a promising natural compound with significant cardiovascular protective effects, and further research is warranted to explore its potential clinical applications.
Collapse
Affiliation(s)
- Mohammad Mahdi Dabbaghi
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Azadi Sq, Vakil Abad Highway, Mashhad, 9177948564, Iran
| | - Hesan Soleimani Roudi
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Azadi Sq, Vakil Abad Highway, Mashhad, 9177948564, Iran
| | - Rozhan Safaei
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Azadi Sq, Vakil Abad Highway, Mashhad, 9177948564, Iran
| | - Vafa Baradaran Rahimi
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Fadaei
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Reza Askari
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Azadi Sq, Vakil Abad Highway, Mashhad, 9177948564, Iran.
| |
Collapse
|
6
|
Wang Y, Lai J, Chen Z, Sun L, Ma Y, Wu J. Exploring the therapeutic mechanisms of heart failure with Chinese herbal medicine: a focus on miRNA-mediated regulation. Front Pharmacol 2024; 15:1475975. [PMID: 39564110 PMCID: PMC11573571 DOI: 10.3389/fphar.2024.1475975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 10/23/2024] [Indexed: 11/21/2024] Open
Abstract
Heart failure (HF) is a clinical condition caused by abnormalities in the heart's structure or function, primarily manifested as diminished ability of the heart to pump blood, which leads to compensatory activation of neurohormones and increased left ventricular filling pressure. HF is one of the fastest-growing cardiovascular diseases globally in terms of incidence and mortality, negatively impacting patients' quality of life and imposing significant medical and economic burdens. Despite advancements in the treatment of HF, hospitalization and mortality remain rates high. In China, Chinese herbal medicine (CHM) has historically played a prominent role in addressing HF, with significant proven efficacy. MicroRNA (miRNA) exerts a pivotal regulatory influence on the maintenance of regular cardiac activity and the progression of HF. MiRNAs, a category of single-stranded RNA molecules, are characterized by their inability to code for proteins. They regulate gene expression by binding to the 3'-untranslated region (3'-UTR) of target mRNAs, thereby influencing the onset and progression of various diseases. Abnormal expression of specific miRNAs is closely associated with HF pathological processes, such as cardiomyocyte apoptosis, myocardial fibrosis, and cardiac hypertrophy. This abnormal expression can influence the pathological progression of HF through the regulation of miRNA expression. This article reviews the regulatory role of miRNAs in HF pathology discusses how CHM compounds and their active ingredients can ameliorate HF pathology through the regulation of miRNA expression. In conclusion, miRNAs represent promising therapeutic targets for HF, and CHM provides a novel strategy for treatment through the regulation of miRNA expression. Future studies must delve deeper into the precise mechanisms by which CHM modulates miRNAs and fully explore its potential for clinical application in HF treatment.
Collapse
Affiliation(s)
- Yang Wang
- Department of Postgraduate, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Junyu Lai
- Department of Cardiovascular, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Zhengtao Chen
- Department of Cardiovascular, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Liqiang Sun
- Department of Cardiovascular, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Yirong Ma
- Department of Postgraduate, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Jianguang Wu
- Department of Cardiovascular, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| |
Collapse
|
7
|
Dai G, Li M, Xu H, Quan N. Status of Research on Sestrin2 and Prospects for its Application in Therapeutic Strategies Targeting Myocardial Aging. Curr Probl Cardiol 2023; 48:101910. [PMID: 37422038 DOI: 10.1016/j.cpcardiol.2023.101910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/10/2023]
Abstract
Cardiac aging is accompanied by changes in the heart at the cellular and molecular levels, leading to alterations in cardiac structure and function. Given today's increasingly aging population, the decline in cardiac function caused by cardiac aging has a significant impact on quality of life. Antiaging therapies to slow the aging process and attenuate changes in cardiac structure and function have become an important research topic. Treatment with drugs, including metformin, spermidine, rapamycin, resveratrol, astaxanthin, Huolisu oral liquid, and sulforaphane, has been demonstrated be effective in delaying cardiac aging by stimulating autophagy, delaying ventricular remodeling, and reducing oxidative stress and the inflammatory response. Furthermore, caloric restriction has been shown to play an important role in delaying aging of the heart. Many studies in cardiac aging and cardiac aging-related models have demonstrated that Sestrin2 has antioxidant and anti-inflammatory effects, stimulates autophagy, delays aging, regulates mitochondrial function, and inhibits myocardial remodeling by regulation of relevant signaling pathways. Therefore, Sestrin2 is likely to become an important target for antimyocardial aging therapy.
Collapse
Affiliation(s)
- Gaoying Dai
- Department of Cardiovascular Center, The First Hospital of Jilin University, Changchun, China
| | - Meina Li
- Department of Infection Control, The First Hospital of Jilin University, Changchun, China
| | - He Xu
- Department of Integrative Medicine, Lequn Branch, The First Hospital of Jilin University, Changchun, China
| | - Nanhu Quan
- Department of Cardiovascular Center, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
8
|
Endothelial-cell-mediated mechanism of coronary microvascular dysfunction leading to heart failure with preserved ejection fraction. Heart Fail Rev 2023; 28:169-178. [PMID: 35266091 PMCID: PMC9902427 DOI: 10.1007/s10741-022-10224-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/23/2022] [Indexed: 02/07/2023]
Abstract
Although the prevalence of heart failure with preserved ejection fraction (HFpEF) is growing worldwide, its complex pathophysiology has yet to be fully elucidated, and multiple hypotheses have all failed to produce a viable target for therapeutic action or provide effective treatment. Cardiac remodeling has long been considered an important mechanism of HFpEF. Strong evidence has been reported over the past years that coronary microvascular dysfunction (CMD), manifesting as structural and functional abnormalities of coronary microvasculature, also contributes to the evolution of HFpEF. However, the mechanisms of CMD are still not well understood and need to be studied further. Coronary microvascular endothelial cells (CMECs) are one of the most abundant cell types in the heart by number and active players in cardiac physiology and pathology. CMECs are not only important cellular mediators of cardiac vascularization but also play an important role in disease pathophysiology by participating in the inception and progression of cardiac remodeling. CMECs are also actively involved in the pathogenesis of CMD. Numerous studies have confirmed that CMD is closely related to cardiac remodeling. ECs may serve a critical function in mediating the connection between CMD and HFpEF. It follows that CMECs participate in the mechanism of CMD leading to HFpEF. In this review article, we focus on the role of CMD in the pathogenesis of HFpEF resulting from cardiac remodeling and highlight the subsequent complexity of the EC-mediated correlation between CMD and HFpEF.
Collapse
|
9
|
Liu M, Long X, Xu J, Chen M, Yang H, Guo X, Kang J, Ouyang Y, Luo G, Yang S, Zhou H. Hypertensive heart disease and myocardial fibrosis: How traditional Chinese medicine can help addressing unmet therapeutical needs. Pharmacol Res 2022; 185:106515. [DOI: 10.1016/j.phrs.2022.106515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/07/2022] [Accepted: 10/13/2022] [Indexed: 11/26/2022]
|
10
|
Targeting Oxidative Stress and Endothelial Dysfunction Using Tanshinone IIA for the Treatment of Tissue Inflammation and Fibrosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2811789. [PMID: 35432718 PMCID: PMC9010204 DOI: 10.1155/2022/2811789] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 01/29/2022] [Accepted: 02/23/2022] [Indexed: 12/29/2022]
Abstract
Salvia miltiorrhiza Burge (Danshen), a member of the Lamiaceae family, has been used in traditional Chinese medicine for many centuries as a valuable medicinal herb with antioxidative, anti-inflammatory, and antifibrotic potential. Several evidence-based reports have suggested that Salvia miltiorrhiza and its components prevent vascular diseases, including myocardial infarction, myocardial ischemia/reperfusion injury, arrhythmia, cardiac hypertrophy, and cardiac fibrosis. Tanshinone IIA (TanIIA), a lipophilic component of Salvia miltiorrhiza, has gained attention because of its possible preventive and curative activity against cardiovascular disorders. TanIIA, which possesses antioxidative, anti-inflammatory, and antifibrotic properties, could be a key component in the therapeutic potential of Salvia miltiorrhiza. Vascular diseases are often initiated by endothelial dysfunction, which is accompanied by vascular inflammation and fibrosis. In this review, we summarize how TanIIA suppresses tissue inflammation and fibrosis through signaling pathways such as PI3K/Akt/mTOR/eNOS, TGF-β1/Smad2/3, NF-κB, JNK/SAPK (stress-activated protein kinase)/MAPK, and ERK/Nrf2 pathways. In brief, this review illustrates the therapeutic value of TanIIA in the alleviation of oxidative stress, inflammation, and fibrosis, which are critical components of cardiovascular disorders.
Collapse
|
11
|
Ma J, Chen Q, Ma S. Left atrial fibrosis in atrial fibrillation: Mechanisms, clinical evaluation and management. J Cell Mol Med 2021; 25:2764-2775. [PMID: 33576189 PMCID: PMC7957273 DOI: 10.1111/jcmm.16350] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 01/05/2021] [Accepted: 01/27/2021] [Indexed: 12/19/2022] Open
Abstract
Atrial fibrillation (AF), the commonest arrhythmia, shows associations with various disease conditions. Mounting evidence indicates that atrial fibrosis is an important part of the arrhythmogenic substrate, with an essential function in the generation of conduction abnormalities that underlie the transition from paroxysmal to persistent AF, which in turn contributes to AF perpetuation. Left atrial (LA) fibrosis is considered a possible major factor and predictor in AF treatment. The present review provides insights into LA fibrosis’ association with AF. The information is focused on clinical aspects and mechanisms, clinical evaluating methods that evaluate fibrosis changes and examining possible options for the prevention of atrial fibrosis.
Collapse
Affiliation(s)
- Jin Ma
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Qiuxiong Chen
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Shiyu Ma
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| |
Collapse
|
12
|
Feng J, Liu L, Yao F, Zhou D, He Y, Wang J. The protective effect of tanshinone IIa on endothelial cells: a generalist among clinical therapeutics. Expert Rev Clin Pharmacol 2021; 14:239-248. [PMID: 33463381 DOI: 10.1080/17512433.2021.1878877] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Tanshinone IIa (TSA) has been approved to treat cardiovascular diseases by the China State Food and Drug Administration. TSA has exhibited a variety of pharmacological effects, including vasodilator, antioxidant, anti-inflammatory, and anti-tumor properties. Endothelial cells play an important physiological role in vascular homeostasis and control inflammation, coagulation, and thrombosis. Accumulating studies have shown that TSA can improve endothelial function through various pathways. AREAS COVERED The PubMed database was reviewed for relevant papers published up to 2020. This review summarizes the current clinical and pharmaceutical studies to provide a systemic overview of the pharmacological and therapeutic effects of TSA on endothelial cells. EXPERT OPINION TSA is a representative monomeric compound extracted from Danshen and it exhibits significant pharmacological and therapeutic properties to improve endothelial cell function, including alleviating oxidative stress, attenuating inflammatory injury, modulating ion channels and so on. TSA represents a spectrum of agents that are extracted from plants and can restore the endothelial function to establish the beneficial and harmless molecular therapeutics. This also suggests the possible detection of endothelial cells for very early diagnosis of diseases. In future, precise therapeutic methods will be developed to repair endothelial cells injury and recover endothelial dysfunction.
Collapse
Affiliation(s)
- Jun Feng
- Department of Critical Care Medicine, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Lina Liu
- Department of Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fangfang Yao
- Department of Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Daixing Zhou
- Department of Critical Care Medicine, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Yang He
- Department of Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junshuai Wang
- Department of Critical Care Medicine, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
13
|
Ansari MA, Khan FB, Safdari HA, Almatroudi A, Alzohairy MA, Safdari M, Amirizadeh M, Rehman S, Equbal MJ, Hoque M. Prospective therapeutic potential of Tanshinone IIA: An updated overview. Pharmacol Res 2020; 164:105364. [PMID: 33285229 DOI: 10.1016/j.phrs.2020.105364] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/29/2020] [Accepted: 11/29/2020] [Indexed: 01/03/2023]
Abstract
In the past decades, the branch of complementary and alternative medicine based therapeutics has gained considerable attention worldwide. Pharmacological efficacy of various traditional medicinal plants, their products and/or product derivatives have been explored on an increasing scale. Tanshinone IIA (Tan IIA) is a pharmacologically active lipophilic component of Salvia miltiorrhiza extract. Tan IIA shares a history of high repute in Traditional Chinese Medicine. Reckoning with these, the present review collates the pharmacological properties of Tan IIA with a special emphasis on its therapeutic potential against diverse diseases including cardiovascular diseases, cerebrovascular diseases, cancer, diabetes, obesity and neurogenerative diseases. Further, possible applications of various therapeutic preparations of Tan IIA were discussed with special emphasis on nano-based drug delivery formulations. Considering the tremendous advancement in the field of nanomedicine and the therapeutic potential of Tan IIA, the convergence of these two aspects can be foreseen with great promise in clinical application.
Collapse
Affiliation(s)
- Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institutes for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1881, Dammam 31441, Saudi Arabia
| | - Farheen Badrealam Khan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 404, Taiwan
| | - Haaris Ahsan Safdari
- New Technology Center, University of Warsaw, Stefana Banacha 2c, 02-097 Warszawa, Poland
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Qassim 51431, Saudi Arabia
| | - Mohammad A Alzohairy
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Qassim 51431, Saudi Arabia
| | - Mohammadreza Safdari
- Imam Ali Hospital, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Mehran Amirizadeh
- Department of Pharmacotherapy, Faculty of Pharmacy, University of Medical Sciences, Khorramabad, Lorestan, Iran
| | - Suriya Rehman
- Department of Epidemic Disease Research, Institutes for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1881, Dammam 31441, Saudi Arabia
| | - Mohammad Javed Equbal
- Biomedical Institute for Regenerative Research, Texas A&M University Commerce, Commerce, TX 75429, United States.
| | - Mehboob Hoque
- Department of Biological Sciences, Aliah University, Kolkata 700 160, India.
| |
Collapse
|
14
|
Wei GW, Li KY, Tang KL, Shi CX. Tanshinone IIA alters the transforming growth factor- β1/Smads pathway in angiotensin II-treated rat hepatic stellate cells. J Int Med Res 2020. [PMCID: PMC7294483 DOI: 10.1177/0300060520926358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Objective To investigate the effects of tanshinone IIA on the transforming growth factor-β1 (TGF-β1)/Smads signaling pathway in angiotensin II-treated hepatic stellate cells (HSCs). Methods HSCs were cultured and treated with angiotensin II (10 μM) or angiotensin II (10 μM) plus tanshinone IIA (3, 10, or 30 μM). Cells were incubated for 48 hours and proliferation was determined with the Cell Counting Kit-8. The relative mRNA expression of TGF-β1, Smad4, and Smad7 was measured by quantitative real-time PCR, and the relative protein expression levels were investigated by western blotting. Results After angiotensin II treatment, cell proliferation was significantly accelerated. Furthermore, both the mRNA and protein expression of TGF-β1 and Smad4 was significantly up-regulated, while the mRNA and protein expression of Smad7 was significantly down-regulated compared with the control cells. Tanshinone IIA inhibited the observed effects of angiotensin II in a concentration-dependent manner, with significant inhibition exerted by tanshinone IIA at 10 and 30 μM. Conclusions Angiotensin II promotes the proliferation of HSCs, possibly by regulating the expression of components along the TGF-β1/Smads signaling pathway. Tanshinone IIA inhibits the angiotensin II-induced activation of this pathway, and may, therefore, have preventive and therapeutic effects in liver fibrosis.
Collapse
Affiliation(s)
- Guo-wei Wei
- Department of Comprehensive Ward, Guizhou Provincial People’s Hospital, Guiyang, Guizhou Province, China
| | - Ke-yue Li
- Department of Hepatobiliary Surgery, Guizhou Provincial People’s Hospital, Guiyang, Guizhou Province, China
| | - Ke-li Tang
- Department of Hepatobiliary Surgery, Guizhou Provincial People’s Hospital, Guiyang, Guizhou Province, China
| | - Cheng-Xian Shi
- Department of Hepatobiliary Surgery, Guizhou Provincial People’s Hospital, Guiyang, Guizhou Province, China
| |
Collapse
|
15
|
Chen T, Li M, Fan X, Cheng J, Wang L. Sodium Tanshinone IIA Sulfonate Prevents Angiotensin II-Induced Differentiation of Human Atrial Fibroblasts into Myofibroblasts. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:6712585. [PMID: 30140368 PMCID: PMC6081515 DOI: 10.1155/2018/6712585] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 06/25/2018] [Accepted: 07/05/2018] [Indexed: 02/06/2023]
Abstract
Differentiation of atrial fibroblasts into myofibroblasts plays a critical role in atrial fibrosis. Sodium tanshinone IIA sulfonate (DS-201), a water-soluble derivative of tanshinone IIA, has been shown to have potent antifibrotic properties. However, the protective effects of DS-201 on angiotensin II- (Ang II-) induced differentiation of atrial fibroblasts into myofibroblasts remain to be elucidated. In this study, human atrial fibroblasts were stimulated with Ang II in the presence or absence of DS-201. Then, α-smooth muscle actin (α-SMA), collagen I, and collagen III expression and reactive oxygen species (ROS) generation were measured. The expression of transforming growth factor-β1 (TGF-β1) and the downstream signaling of TGF-β1, such as phosphorylation of Smad2/3, were also determined. The results demonstrated that DS-201 significantly prevented Ang II-induced human atrial fibroblast migration and decreased Ang II-induced α-SMA, collagen I, and collagen III expression. Furthermore, increased production of ROS and expression of TGF-β1 stimulated by Ang II were also significantly inhibited by DS-201. Consistent with these results, DS-201 significantly inhibited Ang II-evoked Smad2/3 phosphorylation and periostin expression. These results and the experiments involving N-acetyl cysteine (antioxidant) and an anti-TGF-β1 antibody suggest that DS-201 prevent Ang II-induced differentiation of atrial fibroblasts to myofibroblasts, at least in part, through suppressing oxidative stress and inhibiting the activation of TGF-β1 signaling pathway. All of these data indicate the potential utility of DS-201 for the treatment of cardiac fibrosis.
Collapse
Affiliation(s)
- Tangting Chen
- Key Laboratory of Ministry of Education for Medical Electrophysiology and the Institute of Cardiovascular Research, Southwest Medical University, 319 Zhongshan Road, Luzhou, Sichuan 646000, China
| | - Miaoling Li
- Key Laboratory of Ministry of Education for Medical Electrophysiology and the Institute of Cardiovascular Research, Southwest Medical University, 319 Zhongshan Road, Luzhou, Sichuan 646000, China
| | - Xuehui Fan
- Key Laboratory of Ministry of Education for Medical Electrophysiology and the Institute of Cardiovascular Research, Southwest Medical University, 319 Zhongshan Road, Luzhou, Sichuan 646000, China
| | - Jun Cheng
- Key Laboratory of Ministry of Education for Medical Electrophysiology and the Institute of Cardiovascular Research, Southwest Medical University, 319 Zhongshan Road, Luzhou, Sichuan 646000, China
| | - Liqun Wang
- Drug Discovery Research Center, Southwest Medical University, 319 Zhongshan Road, Luzhou, Sichuan 646000, China
| |
Collapse
|
16
|
Scoparone attenuates angiotensin II-induced extracellular matrix remodeling in cardiac fibroblasts. J Pharmacol Sci 2018; 137:110-115. [DOI: 10.1016/j.jphs.2018.05.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 04/15/2018] [Accepted: 05/07/2018] [Indexed: 02/08/2023] Open
|
17
|
Li ZM, Xu SW, Liu PQ. Salvia miltiorrhizaBurge (Danshen): a golden herbal medicine in cardiovascular therapeutics. Acta Pharmacol Sin 2018; 39:802-824. [PMID: 29698387 PMCID: PMC5943903 DOI: 10.1038/aps.2017.193] [Citation(s) in RCA: 340] [Impact Index Per Article: 48.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 12/31/2017] [Indexed: 02/07/2023]
Abstract
Salvia miltiorrhiza Burge (Danshen) is an eminent medicinal herb that possesses broad cardiovascular and cerebrovascular protective actions and has been used in Asian countries for many centuries. Accumulating evidence suggests that Danshen and its components prevent vascular diseases, in particular, atherosclerosis and cardiac diseases, including myocardial infarction, myocardial ischemia/reperfusion injury, arrhythmia, cardiac hypertrophy and cardiac fibrosis. The published literature indicates that lipophilic constituents (tanshinone I, tanshinone IIa, tanshinone IIb, cryptotanshinone, dihydrotanshinone, etc) as well as hydrophilic constituents (danshensu, salvianolic acid A and B, protocatechuic aldehyde, etc) contribute to the cardiovascular protective actions of Danshen, suggesting a potential synergism among these constituents. Herein, we provide a systematic up-to-date review on the cardiovascular actions and therapeutic potential of major pharmacologically active constituents of Danshen. These bioactive compounds will serve as excellent drug candidates in small-molecule cardiovascular drug discovery. This article also provides a scientific rationale for understanding the traditional use of Danshen in cardiovascular therapeutics.
Collapse
Affiliation(s)
- Zhuo-ming Li
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences; National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-Sen University, Guangzhou 510006, China
| | - Suo-wen Xu
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York, 14642, USA
| | - Pei-qing Liu
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences; National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-Sen University, Guangzhou 510006, China
| |
Collapse
|
18
|
Feng J, Chen HW, Pi LJ, Wang J, Zhan DQ. Protective effect of tanshinone IIA against cardiac hypertrophy in spontaneously hypertensive rats through inhibiting the Cys-C/Wnt signaling pathway. Oncotarget 2018; 8:10161-10170. [PMID: 28053285 PMCID: PMC5354649 DOI: 10.18632/oncotarget.14328] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Accepted: 11/09/2016] [Indexed: 12/17/2022] Open
Abstract
The study aimed to investigate the protective effect of tanshinone IIA against cardiac hypertrophy in spontaneously hypertensive rats (SHRs) through the Cys-C/Wnt signaling pathway. Thirty SHRs were randomly divided into cardiac hypertrophy, low- and high-dose tanshinone IIA groups. Ten Wistar-Kyoto rats were selected as control group. The systolic blood pressure (SBP), heart weight (HW), left ventricular weight (LVW) and body weight (BW) of all rats were recorded. HE staining and qRT-PCR were applied to observe the morphology of myocardial tissue and mRNA expressions of COL1A1 and COL3A1. ELISA and Western blotting were used to measure the serum asymmetric dimethylarginine (ADMA), nitric oxide (NO) and cardiac troponin I (cTnI) levels, and the expressions of the Cys-C/Wnt signaling pathway-related proteins, eNOS and Nox4. Compared with the cardiac hypertrophy group, the SBP, HW/BW, LVW/BW, swelling degree of myocardial cells, COL1A1 and COL3A1 mRNA expressions, serum cTnI and ADMA levels, and the Cys-C/Wnt signaling pathway-related proteins and Nox4 expressions in the low- and high-dose tanshinone IIA groups were decreased, but the endothelial NO synthase (eNOS), phosphorylated eNOS (Ser1177) and NO expressions were increased. No significant difference was found between the low- and high-dose tanshinone IIA groups. Our study indicated a protective effect of tanshinone IIA against cardiac hypertrophy in SHRs through inhibiting the Cys-C/Wnt signaling pathway.
Collapse
Affiliation(s)
- Jun Feng
- Department of Emergency Medicine, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030, Hubei, P.R. China
| | - Hua-Wen Chen
- Department of Emergency Medicine, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030, Hubei, P.R. China
| | - Li-Juan Pi
- Department of Emergency Medicine, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030, Hubei, P.R. China
| | - Jin Wang
- Department of Emergency Medicine, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030, Hubei, P.R. China
| | - Da-Qian Zhan
- Department of Emergency Medicine, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030, Hubei, P.R. China
| |
Collapse
|
19
|
Chen YF, Lee NH, Pai PY, Chung LC, Shen CY, Rajendran P, Chen YF, Chen RJ, Padma Viswanadha V, Kuo WW, Huang CY. Tanshinone-induced ERs suppresses IGFII activation to alleviate Ang II-mediated cardiac hypertrophy. J Recept Signal Transduct Res 2017; 37:493-499. [DOI: 10.1080/10799893.2017.1360349] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Ya-Fang Chen
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
- Department of Obstetrics and Gynecology, Taichung Veteran’s General Hospital, Taichung, Taiwan
| | - Nien-Hung Lee
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Pei-Ying Pai
- Division of Cardiology, China Medical University Hospital, Taichung, Taiwan
| | - Li-Chin Chung
- Department of Hospital and Health Care Administration, Chia Nan University of Pharmacy & Science, Tainan County, Taiwan
| | - Chia-Yao Shen
- Department of Nursing, MeiHo University, Pingtung, Taiwan
| | - Peramaiyan Rajendran
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Yu-Feng Chen
- Division of Cardiology, Department of Internal Medicine, Armed Force Taichung General Hospital, Taichung, Taiwan
| | - Ray-Jade Chen
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | | | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Chih-Yang Huang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
- Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
| |
Collapse
|
20
|
Cao L, Huang B, Fu X, Yang J, Lin Y, Lin F. Effects of tanshinone IIA on the regulation of renal proximal tubular fibrosis. Mol Med Rep 2017; 15:4247-4252. [DOI: 10.3892/mmr.2017.6498] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 02/21/2017] [Indexed: 11/06/2022] Open
|
21
|
Dai H, Jia G, Lu M, Liang C, Wang Y, Wang H. Astragaloside IV inhibits isoprenaline‑induced cardiac fibrosis by targeting the reactive oxygen species/mitogen‑activated protein kinase signaling axis. Mol Med Rep 2017; 15:1765-1770. [PMID: 28260010 DOI: 10.3892/mmr.2017.6220] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 12/10/2017] [Indexed: 11/06/2022] Open
Abstract
Cardiac fibrosis is considered an important pathological mechanism in the progression of cardiac remodeling and heart failure. Astragaloside IV (AsIV) is a major active ingredient in Astragalus membranaceus. In a preliminary experiment, it was demonstrated that this naturally occurring substance exhibited cardioprotective effects via preventing cardiomyocyte hypertrophy and apoptosis. The present study aimed to investigate the effects of AsIV on β‑adrenergic receptor (β‑AR)‑mediated cardiac fibrosis, and the associated mechanism. Cell Counting Kit‑8 (CCK‑8) assay was used to examine the proliferation of rat cardiac fibroblast (CF) cultures. Collagen I secretion was detected by ELISA. Dihydroethidium was used to determine intracellular ROS levels. Western blotting was used to examine the expression level of total and phosphorylated mitogen‑activated protein kinases (MAPKs). In the present study, the effects of AsIV on β‑adrenergic receptor (β‑AR) ‑mediated cardiac fibrosis were investigated, and the associated mechanism was revealed. Isoprenaline (ISO) is a selective β‑AR agonist, and treatment with AsIV significantly inhibited (ISO)‑triggered cardiac fibroblast proliferation and type I collagen synthesis. In addition, ISO resulted in a significant elevation of reactive oxygen species (ROS) levels and phosphorylation of the three profibrotic MAPKs, namely extracellular signal‑regulated kinase, p38MAPK and c‑Jun N‑terminal kinase. AsIV effectively reversed the aforementioned ISO‑induced alterations. In addition, N‑acetylcysteine, a typical ROS scavenger, mimicked the inhibitory effects of AsIV on MAPK activation. The present study demonstrated that AsIV may inhibit ISO‑induced cardiac fibrosis by suppressing ROS‑mediated MAPK activation.
Collapse
Affiliation(s)
- Hongliang Dai
- Department of Community Health Nursing, School of Nursing, Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Guizhi Jia
- Department of Physiology, Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Meili Lu
- Department of Pharmacology, Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Chunguang Liang
- Department of Community Health Nursing, School of Nursing, Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Yue Wang
- Department of Community Health Nursing, School of Nursing, Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Hongxin Wang
- Department of Pharmacology, Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| |
Collapse
|
22
|
Lee WD, Liang YJ, Chen BH. Effects of tanshinone nanoemulsion and extract on inhibition of lung cancer cells A549. NANOTECHNOLOGY 2016; 27:495101. [PMID: 27834307 DOI: 10.1088/0957-4484/27/49/495101] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Danshen (Salvia miltiorrhiza), a Chinese medicinal herb, consists of several functional components including tanshinones responsible for prevention of several chronic diseases. This study intends to prepare tanshinone extract and nanoemulsion from danshen and determine their inhibition effect on lung cancer cells A549. A highly stable tanshinone nanoemulsion composed of Capryol 90, Tween 80, ethanol and deionized water with the mean particle size of 14.2 nm was successfully prepared. Tanshinone nanoemulsion was found to be more effective in inhibiting A549 proliferation than tanshinone extract. Both nanoemulsion and extract could penetrate into cytoplasm through endocytosis, with the former being more susceptible than the latter. A dose-dependent response in up-regulation of p-JNK, p53 and p21 and down-regulation of CDK2, cyclin D1 and cyclin E1 expressions was observed with the cell cycle arrested at G0/G1 phase. The cellular microcompartment change of A549 was also investigated. The study demonstrated that tanshinone nanoemulsion may be used as a botanic drug for treatment of lung cancer.
Collapse
Affiliation(s)
- W D Lee
- Department of Food Science, Fu Jen Catholic University, New Taipei City 24205, Taiwan
| | | | | |
Collapse
|
23
|
Oxidative Stress and Salvia miltiorrhiza in Aging-Associated Cardiovascular Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:4797102. [PMID: 27807472 PMCID: PMC5078662 DOI: 10.1155/2016/4797102] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 09/15/2016] [Indexed: 12/13/2022]
Abstract
Aging-associated cardiovascular diseases (CVDs) have some risk factors that are closely related to oxidative stress. Salvia miltiorrhiza (SM) has been used commonly to treat CVDs for hundreds of years in the Chinese community. We aimed to explore the effects of SM on oxidative stress in aging-associated CVDs. Through literature searches using Medicine, PubMed, EMBASE, Cochrane library, CINAHL, and Scopus databases, we found that SM not only possesses antioxidant, antiapoptotic, and anti-inflammatory effects but also exerts angiogenic and cardioprotective activities. SM may reduce the production of reactive oxygen species by inhibiting oxidases, reducing the production of superoxide, inhibiting the oxidative modification of low-density lipoproteins, and ameliorating mitochondrial oxidative stress. SM also increases the activities of catalase, manganese superoxide dismutase, glutathione peroxidase, and coupled endothelial nitric oxide synthase. In addition, SM reduces the impact of ischemia/reperfusion injury, prevents cardiac fibrosis after myocardial infarction, preserves cardiac function in coronary disease, maintains the integrity of the blood-brain barrier, and promotes self-renewal and proliferation of neural stem/progenitor cells in stroke. However, future clinical well-designed and randomized control trials will be necessary to confirm the efficacy of SM in aging-associated CVDs.
Collapse
|
24
|
Akaberi M, Iranshahi M, Mehri S. Molecular Signaling Pathways Behind the Biological Effects of Salvia Species Diterpenes in Neuropharmacology and Cardiology. Phytother Res 2016; 30:878-93. [PMID: 26988179 DOI: 10.1002/ptr.5599] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 01/29/2016] [Accepted: 02/02/2016] [Indexed: 12/14/2022]
Abstract
The genus Salvia, from the Lamiaceae family, has diverse biological properties that are primarily attributable to their diterpene contents. There is no comprehensive review on the molecular signaling pathways of these active components. In this review, we investigated the molecular targets of bioactive Salvia diterpenes responsible for the treatment of nervous and cardiovascular diseases. The effects on different pathways, including apoptosis signaling, oxidative stress phenomena, the accumulation of amyloid beta plaques, and tau phosphorylation, have all been considered to be mechanisms of the anti-Alzheimer properties of Salvia diterpenes. Additionally, effects on the benzodiazepine and kappa opioid receptors and neuroprotective effects are noted as neuropharmacological properties of Salvia diterpenes, including tanshinone IIA, salvinorin A, cryptotanshinone, and miltirone. Tanshinone IIA, as the primary diterpene of Salvia miltiorrhiza, has beneficial activities in heart diseases because of its ability to scavenge free radicals and its effects on transcription factors, such as nuclear transcription factor-kappa B (NF-κB) and the mitogen-activated protein kinases (MAPKs). Additionally, tanshinone IIA has also been proposed to have cardioprotective properties including antiarrhythmic activities and effects on myocardial infarction. With respect to the potential therapeutic effects of Salvia diterpenes, comprehensive clinical trials are warranted to evaluate these valuable molecules as lead compounds. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- M Akaberi
- Student Research Committee, Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - M Iranshahi
- Biotechnology Research Center and School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - S Mehri
- Pharmaceutical Research Center, Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
25
|
Al Disi SS, Anwar MA, Eid AH. Anti-hypertensive Herbs and their Mechanisms of Action: Part I. Front Pharmacol 2016; 6:323. [PMID: 26834637 PMCID: PMC4717468 DOI: 10.3389/fphar.2015.00323] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 12/30/2015] [Indexed: 12/27/2022] Open
Abstract
The use of herbal therapies for treatment and management of cardiovascular diseases (CVDs) is increasing. Plants contain a bounty of phytochemicals that have proven to be protective by reducing the risk of various ailments and diseases. Indeed, accumulating literature provides the scientific evidence and hence reason d'etre for the application of herbal therapy in relation to CVDs. Slowly, but absolutely, herbal remedies are being entrenched into evidence-based medical practice. This is partly due to the supporting clinical trials and epidemiological studies. The rationale for this expanding interest and use of plant based treatments being that a significant proportion of hypertensive patients do not respond to Modern therapeutic medication. Other elements to this equation are the cost of medication, side-effects, accessibility, and availability of drugs. Therefore, we believe it is pertinent to review the literature on the beneficial effects of herbs and their isolated compounds as medication for treatment of hypertension, a prevalent risk factor for CVDs. Our search utilized the PubMed and ScienceDirect databases, and the criterion for inclusion was based on the following keywords and phrases: hypertension, high blood pressure, herbal medicine, complementary and alternative medicine (CAM), nitric oxide, vascular smooth muscle cell (VSMC) proliferation, hydrogen sulfide, nuclear factor kappa-B, oxidative stress, and epigenetics/epigenomics. Each of the aforementioned keywords was co-joined with herb in question, and where possible with its constituent molecule(s). In this first of a two-part review, we provide a brief introduction of hypertension, followed by a discussion of the molecular and cellular mechanisms. We then present and discuss the plants that are most commonly used in the treatment and management of hypertension.
Collapse
Affiliation(s)
- Sara S. Al Disi
- Department of Biological and Environmental Sciences, Qatar UniversityDoha, Qatar
| | - M. Akhtar Anwar
- Department of Biological and Environmental Sciences, Qatar UniversityDoha, Qatar
| | - Ali H. Eid
- Department of Biological and Environmental Sciences, Qatar UniversityDoha, Qatar
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of BeirutBeirut, Lebanon
| |
Collapse
|
26
|
Abstract
Tanshinones are lipophilic compounds derived fromSalvia miltiorrhiza(Danshen) that has been widely used to treat coronary heart diseases in China. The cardioprotective actions of tanshinones have been extensively studied in various models of myocardial infarction, cardiac ischemia reperfusion injury, cardiac hypertrophy, atherosclerosis, hypoxia, and cardiomyopathy. This review outlines the recent development in understanding the molecular mechanisms and signaling pathways involved in the cardioprotective actions of tanshinones, in particular on mitochondrial apoptosis, calcium, nitric oxide, ROS, TNF-α, PKC, PI3K/Akt, IKK/NF-κB, and TGF-β1/Smad mechanisms, which highlights the potential of these compounds as therapeutic agents for treating cardiovascular diseases.
Collapse
|
27
|
Liu M, Yang J, Li M. Tanshinone IIA attenuates interleukin-17A-induced systemic sclerosis patient-derived dermal vascular smooth muscle cell activation via inhibition of the extracellular signal-regulated kinase signaling pathway. Clinics (Sao Paulo) 2015; 70:250-6. [PMID: 26017791 PMCID: PMC4418395 DOI: 10.6061/clinics/2015(04)06] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Accepted: 01/26/2015] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVE Salvia miltiorrhiza has long been used to treat systemic sclerosis. Tanshinone IIA, one of the phytochemicals derived from the roots of Salvia miltiorrhiza, exhibits multiple biological activities. The present study aimed to investigate whether tanshinone IIA has an effect on the interleukin-17A-induced functional activation of systemic sclerosis patient-derived dermal vascular smooth muscle cells. METHODS Systemic sclerosis patient-derived dermal vascular smooth muscle cells were incubated with various dosages of tanshinone IIA in the presence of interleukin-17A or the serum of systemic sclerosis patients. Cell proliferation was assessed using Cell Counting Kit-8. The expression of collagen 1 and 3 in cells was evaluated by immunofluorescence. Cell migration was measured using a transwell assay. The expression of phospho-extracellular signal-regulated kinase was detected by Western blotting. RESULTS Our data demonstrate that tanshinone IIA exerts an inhibitory effect on interleukin-17A-induced systemic sclerosis patient-derived dermal vascular smooth muscle cell proliferation, collagen synthesis and migration. CONCLUSION These findings suggest that tanshinone IIA might serve as a promising therapeutic agent for the treatment of systemic sclerosis.
Collapse
MESH Headings
- Abietanes/pharmacology
- Abietanes/therapeutic use
- Adult
- Anti-Inflammatory Agents, Non-Steroidal/pharmacology
- Anti-Inflammatory Agents, Non-Steroidal/therapeutic use
- Blotting, Far-Western
- Cell Migration Assays
- Cell Movement/drug effects
- Cell Proliferation/drug effects
- Cells, Cultured/drug effects
- Collagen Type I/analysis
- Collagen Type III/analysis
- Enzyme Activation/drug effects
- Extracellular Signal-Regulated MAP Kinases/drug effects
- Extracellular Signal-Regulated MAP Kinases/metabolism
- Female
- Fluorescent Antibody Technique
- Humans
- Interleukin-17/analysis
- Interleukin-17/metabolism
- Male
- Middle Aged
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Reproducibility of Results
- Salvia miltiorrhiza/chemistry
- Scleroderma, Systemic/drug therapy
- Scleroderma, Systemic/metabolism
- Statistics, Nonparametric
- Time Factors
Collapse
Affiliation(s)
- Mengguo Liu
- Fudan University, Zhongshan Hospital, Department of Dermatology, Shanghai, China
- Fudan University, Huashan Hospital, Department of Dermatology, Shanghai, China
| | - Ji Yang
- Fudan University, Zhongshan Hospital, Department of Dermatology, Shanghai, China
| | - Ming Li
- Fudan University, Zhongshan Hospital, Department of Dermatology, Shanghai, China
- E-mail:
| |
Collapse
|
28
|
He H, Tang H, Gao L, Wu Y, Feng Z, Lin H, Wu T. Tanshinone IIA attenuates bleomycin-induced pulmonary fibrosis in rats. Mol Med Rep 2015; 11:4190-6. [PMID: 25672255 PMCID: PMC4394983 DOI: 10.3892/mmr.2015.3333] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 12/19/2014] [Indexed: 11/06/2022] Open
Abstract
Idiopathic pulmonary fibrosis is a chronic and progressive fibrotic lung disorder with unknown etiology and a high mortality rate. Tanshinone IIA (Tan IIA) is a lipophilic diterpene extracted from the Chinese herb Salvia miltiorrhiza Bunge with diverse biological functions. The present study was conducted to evaluate the effects of Tan IIA on bleomycin (BLM)-induced pulmonary fibrosis in rats. Rats received an intraperitoneal injection of Tan IIA and normal rats were used as controls. Severe pulmonary edema, inflammation and fibrosis were observed in the BLM-treated rats and the counts of total cells, neutrophils and lymphocytes were significantly increased in the bronchoalveolar lavage fluids of those rats. These pathological changes were markedly attenuated by subsequent treatment with Tan IIA. In addition, BLM-induced increased expression of tumor necrosis factor-α, interleukin (IL)-1β, IL-6, cyclooxygenase-2, prostaglandin E2, malondialdehyde, inducible nitric oxide synthase and nitric oxide in rats, which was also suppressed by Tan IIA injection. The present findings suggest therapeutic potential of Tan IIA for pulmonary fibrosis.
Collapse
Affiliation(s)
- Huanyu He
- Department of Respiratory Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Haiying Tang
- Department of Respiratory Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Lili Gao
- Department of Respiratory Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Yun Wu
- Department of Respiratory Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Zhiqiang Feng
- Department of Respiratory Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Hongli Lin
- Department of Nephrology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Taihua Wu
- Department of Respiratory Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| |
Collapse
|
29
|
Wang X, Guo Z, Ding Z, Khaidakov M, Lin J, Xu Z, Sharma SG, Jiwani S, Mehta JL. Endothelin-1 upregulation mediates aging-related cardiac fibrosis. J Mol Cell Cardiol 2015; 80:101-9. [PMID: 25584774 DOI: 10.1016/j.yjmcc.2015.01.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 12/30/2014] [Accepted: 01/04/2015] [Indexed: 01/30/2023]
Abstract
Endothelin-1 (ET-1) plays a major role in regulating myocardial fibrosis in several pathological conditions, such as hypertension and diabetes. Aging is an independent risk factor for myocardial fibrosis. We hypothesized that ET-1 upregulation may be a basis of enhanced collagen synthesis in the senescent fibroblasts resulting in cardiac fibrosis with aging. To examine this hypothesis, we cultured mouse cardiac fibroblasts to passage-30 (P30). β-Galactosidase activity and several other aging markers were markedly increased in P30 (vs. P3) fibroblasts, indicating that these cells were indeed undergoing senescence. Importantly, ET-1 expression was markedly upregulated in P30 (vs. P3) fibroblasts. Of note, estrogen receptor-α (ER-α), an important negative regulator of ET-1, was downregulated in P30 fibroblasts. We also studied aged (130-weeks old, female) mice hearts, and observed that ET-1 was upregulated and ER-α was downregulated in these hearts (vs. 6-week old mice hearts, female). Similar observations were made in the fibroblasts isolated from aged mice hearts. ET-1 upregulation with aging was also seen in ≈70-year old (vs. ≈30-year old) human heart sections. In concert with ET-1 upregulation, the expression of fibronectin and collagens was found to be markedly increased in P30 cardiac fibroblasts in culture, fibroblasts isolated from the aged mice hearts, and in aged human hearts. Interestingly, inhibition of ET-1 in the senescent P30 fibroblasts by 2 different strategies (the use of siRNA and the use of endothelin converting enzyme inhibitors) markedly suppressed expression of fibrosis signals. Further, treatment with synthetic ET-1 enhanced fibronectin and collagen expression in P3 cardiac fibroblasts. These observations in mice and human hearts suggest that aging-related cardiac fibrosis is, at least partially, dependent on the upregulation of ET-1.
Collapse
Affiliation(s)
- Xianwei Wang
- Central Arkansas Veterans Healthcare System, Division of Cardiology, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Key Laboratory of Henan province for Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, Henan, China.
| | - Zhikun Guo
- Key Laboratory of Henan province for Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, Henan, China
| | - Zufeng Ding
- Central Arkansas Veterans Healthcare System, Division of Cardiology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Magomed Khaidakov
- Central Arkansas Veterans Healthcare System, Division of Cardiology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Juntang Lin
- Key Laboratory of Henan province for Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, Henan, China
| | - Zhenping Xu
- Key Laboratory of Henan province for Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, Henan, China
| | - Shree G Sharma
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Shahanawaz Jiwani
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Jawahar L Mehta
- Central Arkansas Veterans Healthcare System, Division of Cardiology, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
30
|
Yiqihuoxuejiedu formula inhibits vascular remodeling by reducing proliferation and secretion of adventitial fibroblast after balloon injury. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:849167. [PMID: 24987435 PMCID: PMC4058465 DOI: 10.1155/2014/849167] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 03/28/2014] [Accepted: 04/30/2014] [Indexed: 11/18/2022]
Abstract
Vascular remodeling occurs in atherosclerosis, hypertension, and restenosis after percutaneous coronary intervention. Adventitial remodeling may be a potential therapeutic target. Yiqihuoxuejiedu formula uses therapeutic principles from Chinese medicine to supplement Qi, activate blood circulation, and resolve toxin and it has been shown to inhibit vascular stenosis. To investigate effects and mechanisms of the formula on inhibiting vascular remodeling, especially adventitial remodeling, rats with a balloon injury to their common carotid artery were used and were treated for 7 or 28 days after injury. The adventitial area and α -SMA expression increased at 7 days after injury, which indicated activation and proliferation of adventitial fibroblasts. Yiqihuoxuejiedu formula reduced the adventitial areas at 7 days, attenuated the neointima and vessel wall area, stenosis percent, and α -SMA expression in the neointima, and reduced collagen content and type I/III collagen ratio in the adventitia at 28 days. Yiqihuoxuejiedu formula had more positive effects than Captopril in reducing intimal proliferation and diminishing stenosis, although Captopril lowered neointimal α -SMA expression and reduced the collagen content at 28 days. Yiqihuoxuejiedu formula has inhibitory effects on positive and negative remodeling by reducing adventitial and neointimal proliferation, reducing content, and elevating adventitial compliance.
Collapse
|
31
|
Wen XD, Wang CZ, Yu C, Zhang Z, Calway T, Wang Y, Li P, Yuan CS. Salvia miltiorrhiza (dan shen) significantly ameliorates colon inflammation in dextran sulfate sodium induced colitis. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2014; 41:1097-108. [PMID: 24117071 DOI: 10.1142/s0192415x13500742] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Inflammatory bowel disease increases the risks of human colorectal cancer. In this study, the effects of Salvia miltiorrhiza extract (SME) on chemically-induced colitis in a mouse model were evaluated. Chemical composition of SME was determined by HPLC analysis. A/J mice received a single injection of AOM 7.5 mg/kg. After one week, these mice received 2.5% DSS for eight days, or DSS plus SME (25 or 50 mg/kg). DSS-induced colitis was scored with the disease activity index (DAI). Body weight and colon length were also measured. The severity of inflammatory lesions was further evaluated by colon tissue histological assessment. HPLC assay showed that the major constituents in the tested SME were danshensu, protocatechuic aldehyde, salvianolic acid D, and salvianolic acid B. In the model group, the DAI score reached its highest level on Day 8, while the SME group on both doses showed a significantly reduced DAI score (both p < 0.01). As an objective index of the severity of inflammation, colon length was significantly shorter in the model group than the vehicle group. Treatment with 25 and 50 mg/kg of SME inhibited the shortening of colon in a dose-related manner (p < 0.05 and p < 0.01, respectively). SME groups also significantly reduced weight reduction (p < 0.05). Colitis histological data supported the pharmacological observations. Thus, Salvia miltiorrhiza could be a promising candidate in preventing and treating colitis and in reducing the risks of inflammation-associated colorectal cancer.
Collapse
Affiliation(s)
- Xiao-Dong Wen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University Nanjing 210009, China , Tang Center for Herbal Medicine Research, University of Chicago, Chicago, IL 60637, USA , Department of Anesthesia and Critical Care, University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Pang H, Han B, Yu T, Peng Z. The complex regulation of tanshinone IIA in rats with hypertension-induced left ventricular hypertrophy. PLoS One 2014; 9:e92216. [PMID: 24647357 PMCID: PMC3960224 DOI: 10.1371/journal.pone.0092216] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 02/20/2014] [Indexed: 02/07/2023] Open
Abstract
Tanshinone IIA has definite protective effects on various cardiovascular diseases. However, in hypertension-induced left ventricular hypertrophy (H-LVH), the signaling pathways of tanshinone IIA in inhibition of remodeling and cardiac dysfunction remain unclear. Two-kidney, one-clip induced hypertensive rats (n = 32) were randomized to receive tanshinone IIA (5, 10, 15 mg/kg per day) or 5% glucose injection (GS). Sham-operated rats (n = 8) received 5%GS as control. Cardiac function and dimensions were assessed by using an echocardiography system. Histological determination of the fibrosis and apoptosis was performed using hematoxylin eosin, Masson's trichrome and TUNEL staining. Matrix metalloproteinase 2 (MMP2) and tissue inhibitor of matrix metalloproteinases type 2 (TIMP2) protein expressions in rat myocardial tissues were detected by immunohistochemistry. Rat cardiomyocytes were isolated by a Langendorff perfusion method. After 48 h culture, the supernatant and cardiomyocytes were collected to determine the potential related proteins impact on cardiac fibrosis and apoptosis. Compared with the sham rats, the heart tissues of H-LVH (5%GS) group suffered severely from the oxidative damage, apoptosis of cardiomyocytes and extracellular matrix (ECM) deposition. In the H-LVH group, tanshinone IIA treated decreased malondialdehyde (MDA) content and increased superoxide dismutase (SOD) activity. Tanshinone IIA inhibited cardiomyocytes apoptosis as confirmed by the reduction of TUNEL positive cardiomyocytes and the down-regulation of Caspase-3 activity and Bax/Bcl-2 ratio. Meanwhile, plasma apelin level increased with down-regulation of APJ receptor. Tanshinone IIA suppressed cardiac fibrosis through regulating the paracrine factors released by cardiomyocytes and the TGF-β/Smads signaling pathway activity. In conclusion, our in vivo study showed that tanshinone IIA could improve heart function by enhancing myocardial contractility, inhibiting ECM deposition, and limiting apoptosis of cardiomyocytes and oxidative damage.
Collapse
Affiliation(s)
- Hui Pang
- Department of Cardiovascular Medicine, Central Hospital of Xuzhou, Xuzhou Clinical School of Xuzhou Medical College, Affiliated Hospital of Southeast University, Xuzhou, Jiangsu, China
| | - Bing Han
- Department of Cardiovascular Medicine, Central Hospital of Xuzhou, Xuzhou Clinical School of Xuzhou Medical College, Affiliated Hospital of Southeast University, Xuzhou, Jiangsu, China
| | - Tao Yu
- Department of Cardiovascular Medicine, Central Hospital of Xuzhou, Xuzhou Clinical School of Xuzhou Medical College, Affiliated Hospital of Southeast University, Xuzhou, Jiangsu, China
| | - Zhen Peng
- Department of Ultrasonography, Central Hospital of Xuzhou, Xuzhou Clinical School of Xuzhou Medical College, Affiliated Hospital of Southeast University, Xuzhou, Jiangsu, China
| |
Collapse
|
33
|
Chen YS, Lee SM, Lin YJ, Chiang SH, Lin CC. Effects of Danshensu and Salvianolic Acid B from Salvia miltiorrhiza Bunge (Lamiaceae) on cell proliferation and collagen and melanin production. Molecules 2014; 19:2029-41. [PMID: 24531218 PMCID: PMC6271020 DOI: 10.3390/molecules19022029] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 02/01/2014] [Accepted: 02/08/2014] [Indexed: 01/27/2023] Open
Abstract
Danshensu (DSU) and salvianolic acid B (SAB) are the primary water-soluble compounds of Salvia miltiorrhiza Bunge (Lamiaceae). In this study, we analyzed the effects of DSU, SAB and a S. miltiorrhiza extract (SME) on cell proliferation. Additionally, the effects of DSU and SAB on collagen synthesis in Detroit 551 human normal fibroblast cells and on melanin production in B16 melanoma cells were verified. The results demonstrated that SME can enhance the proliferation of Detroit 551 cells and that this boost may be caused by DSU and SAB. This research showed that SME, DSU and SAB all have the ability to increase the production of collagen in Detroit 551 cells. The results also confirmed that DSU and SAB can attenuate the α-MSH-stimulated melanin production of B16 cells by inhibiting tyrosinase activity. Therefore, SME, DSU and SAB each have the potential to be utilized as active ingredients in wound healing or cosmetic treatments. In the future, DSU and SAB could also be used as functional components for treating hyperpigmentation.
Collapse
Affiliation(s)
- Yi-Shyan Chen
- Department of Cosmetic Science, Providence University, 200 Chung-Chi Road, Shalu, Taichung 43301, Taiwan.
| | - Shu-Mei Lee
- Department of Cosmetic Science and Management, Mackay Medicine, Nursing and Management College, 92 Shengjing Road, Beitou, Taipei 11260, Taiwan.
| | - Ying-Ju Lin
- Department of Medical Research, China Medical University Hospital, 2 Yuh-Der Road, Taichung 40447, Taiwan.
| | - Shu-Hua Chiang
- Department of Food and Beverage Management, Taiwan Hospitality and Tourism College, 268 Chong-Hsing St., Feng-Shan Village, Shou-Feng County, Hualien 974, Taiwan.
| | - Chih-Chien Lin
- Department of Cosmetic Science, Providence University, 200 Chung-Chi Road, Shalu, Taichung 43301, Taiwan.
| |
Collapse
|
34
|
Li ZY, Gu J, Yan J, Wang JJ, Huang WH, Tan ZR, Zhou G, Chen Y, Zhou HH, Ouyang DS. Hypertensive Cardiac Remodeling Effects of Lignan Extracts from Eucommia ulmoides Oliv. Bark — A Famous Traditional Chinese Medicine. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2013; 41:801-15. [PMID: 23895153 DOI: 10.1142/s0192415x13500547] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The lignan extracts from the tree bark of Eucommia ulmoides Oliv., a famous traditional Chinese medicine, have been demonstrated to have inhibitory effects on aldose reductase activity in spontaneously hypertensive rat myocardium. This study was aimed to investigate the hypertensive cardiac remodeling effects of the lignan extracts together with epalrestat. Ten-week-old male spontaneously hypertensive rats were randomly divided into three groups (n = 12, each) and administered 100 mg/kg/d of captopril (angiotensin converting enzyme inhibitor), 100 mg/kg/d of epalrestat (aldose reductase inhibitor) or 300 mg/kg/d of lignan extracts by gavage for 16 weeks. Sex-, age-, and number-matched normotensive Wistar Kyoto rats with spontaneously hypertensive rats were treated with distilled water (vehicle) as controls. Systolic blood pressures were measured periodically. Echocardiography examination was taken when rats were 24 weeks old. We found that both captopril and lignan extracts lowered blood pressure, and inhibited aldose reductase activity similarly to epalrestat. Echocardiography examination and histomorphometry indices were improved in all treated groups (p < 0.05). Therefore, lignan extracts could prevent hypertensive cardiac remodeling, which is likely related to aldose reductase inhibition.
Collapse
Affiliation(s)
- Zhen-Yu Li
- Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, China
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Juan Gu
- 521 Hospital, Research Institute of China Weapons Industry, Xi'an, Shanxi, China
| | - Jin Yan
- The Third Affiliated Teaching Hospital, Central South University, Changsha, Hunan, China
| | - Jun-Jie Wang
- Department of Pharmacology, Xiangnan University, Chenzhou, Hunan, China
| | - Wei-Hua Huang
- Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, China
| | - Zhi-Rong Tan
- Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, China
| | - Gan Zhou
- Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, China
| | - Yao Chen
- Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, China
| | - Hong-Hao Zhou
- Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, China
| | - Dong-Sheng Ouyang
- Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, China
| |
Collapse
|
35
|
Luo Y, Xu DQ, Dong HY, Zhang B, Liu Y, Niu W, Dong MQ, Li ZC. Tanshinone IIA inhibits hypoxia-induced pulmonary artery smooth muscle cell proliferation via Akt/Skp2/p27-associated pathway. PLoS One 2013; 8:e56774. [PMID: 23437233 PMCID: PMC3578942 DOI: 10.1371/journal.pone.0056774] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 01/15/2013] [Indexed: 11/18/2022] Open
Abstract
We previously showed that tanshinone IIA ameliorated the hypoxia-induced pulmonary hypertension (HPH) partially by attenuating pulmonary artery remodeling. The hypoxia-induced proliferation of pulmonary artery smooth muscle cells (PASMCs) is one of the major causes for pulmonary arterial remodeling, therefore the present study was performed to explore the effects and underlying mechanism of tanshinone IIA on the hypoxia-induced PASMCs proliferation. PASMCs were isolated from male Sprague-Dawley rats and cultured in normoxic (21%) or hypoxic (3%) condition. Cell proliferation was measured with 3 - (4, 5 - dimethylthiazal - 2 - yl) - 2, 5 - diphenyltetrazoliumbromide assay and cell counting. Cell cycle was measured with flow cytometry. The expression of of p27, Skp-2 and the phosphorylation of Akt were measured using western blot and/or RT-PCR respectively. The results showed that tanshinone IIA significantly inhibited the hypoxia-induced PASMCs proliferation in a concentration-dependent manner and arrested the cells in G1/G0-phase. Tanshinone IIA reversed the hypoxia-induced reduction of p27 protein, a cyclin-dependent kinase inhibitor, in PASMCs by slowing down its degradation. Knockdown of p27 with specific siRNA abolished the anti-proliferation of tanshinone IIA. Moreover, tanshinone IIA inhibited the hypoxia-induced increase of S-phase kinase-associated protein 2 (Skp2) and the phosphorylation of Akt, both of which are involved in the degradation of p27 protein. In vivo tanshinone IIA significantly upregulated the hypoxia-induced p27 protein reduction and downregulated the hypoxia-induced Skp2 increase in pulmonary arteries in HPH rats. Therefore, we propose that the inhibition of tanshinone IIA on hypoxia-induce PASMCs proliferation may be due to arresting the cells in G1/G0-phase by slowing down the hypoxia-induced degradation of p27 via Akt/Skp2-associated pathway. The novel information partially explained the anti-remodeling property of tanshinone IIA on pulmonary artery in HPH.
Collapse
Affiliation(s)
- Ying Luo
- Department of Pathology, Xijing Hospital, Fourth Military Medical University, Xi’an, People’s Republic of China
- Department of Pathology and Pathophysiology, Fourth Military Medical University, Xìan, People’s Republic of China
| | - Dun-Quan Xu
- Department of Pathology and Pathophysiology, Fourth Military Medical University, Xìan, People’s Republic of China
| | - Hai-Ying Dong
- Department of Pathology and Pathophysiology, Fourth Military Medical University, Xìan, People’s Republic of China
| | - Bo Zhang
- Department of Pathology and Pathophysiology, Fourth Military Medical University, Xìan, People’s Republic of China
| | - Yi Liu
- Department of Pathology and Pathophysiology, Fourth Military Medical University, Xìan, People’s Republic of China
| | - Wen Niu
- Department of Pathology and Pathophysiology, Fourth Military Medical University, Xìan, People’s Republic of China
| | - Ming-Qing Dong
- Department of Pathology and Pathophysiology, Fourth Military Medical University, Xìan, People’s Republic of China
| | - Zhi-Chao Li
- Department of Pathology, Xijing Hospital, Fourth Military Medical University, Xi’an, People’s Republic of China
- Department of Pathology and Pathophysiology, Fourth Military Medical University, Xìan, People’s Republic of China
| |
Collapse
|
36
|
Wang J, Jiang Q, Wan L, Yang K, Zhang Y, Chen Y, Wang E, Lai N, Zhao L, Jiang H, Sun Y, Zhong N, Ran P, Lu W. Sodium tanshinone IIA sulfonate inhibits canonical transient receptor potential expression in pulmonary arterial smooth muscle from pulmonary hypertensive rats. Am J Respir Cell Mol Biol 2012; 48:125-34. [PMID: 23065131 DOI: 10.1165/rcmb.2012-0071oc] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Danshen, the dried root of Salvia miltiorrhiza, is widely used in clinics in China for treating various diseases, including cardiovascular diseases. Sodium tanshinone IIA sulfonate (STS), a water-soluble derivative of tanshinone IIA isolated as the major active component from Danshen, was recently reported to be effective in attenuating the characteristic pulmonary vascular changes associated with chronically hypoxic pulmonary hypertension (CHPH); however, the underlying detailed mechanisms are poorly understood. In this study, we investigated the effects of STS on basal intracellular Ca(2+) concentration ([Ca(2+)](i)) and store-operated Ca(2+) entry (SOCE) in distal pulmonary arterial smooth muscle cells (PASMCs) exposed to prolonged hypoxia or isolated from CHPH rats. SOCE measured by Mn(2+) quenching of Fura-2 fluorescence in PASMCs from rats exposed to chronic hypoxia (10% O(2), 21 d) was increased by 59%, and basal [Ca(2+)](i) was increased by 119%; this effect was inhibited by intraperitoneal injection of STS. These inhibitory effects of STS on hypoxic increases of SOCE and basal [Ca(2+)](i) were associated with reduced expression of canonical transient receptor potential (TRPC)1 and TRPC6 in distal pulmonary arterial smooth muscle and decreases on right ventricular pressure, right ventricular hypertrophy, and peripheral pulmonary vessel thickening. In ex vivo cultured distal PASMCs from normoxic rats, STS (0-25 μM) dose-dependently inhibited hypoxia-induced cell proliferation and migration, paralleled with attenuation in increases of basal [Ca(2+)](i), SOCE, mRNA, and protein expression of TRPC1 and TRPC6. STS also relieved right ventricular systolic pressure, right ventricular hypertrophy, and TRPC1 and TRPC6 protein expression in distal pulmonary arteries in a monocrotaline-induced rat model of pulmonary arterial hypertension. These results indicate that STS prevents pulmonary arterial hypertension development likely by inhibiting TRPC1 and TRPC6 expression, resulting in normalized basal [Ca(2+)](i) and attenuated proliferation and migration of PASMCs.
Collapse
Affiliation(s)
- Jian Wang
- Guangzhou Institute of Respiratory Diseases, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Chan P, Chen YC, Lin LJ, Cheng TH, Anzai K, Chen YH, Liu ZM, Lin JG, Hong HJ. Tanshinone IIA Attenuates H₂O₂ -induced injury in human umbilical vein endothelial cells. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2012; 40:1307-1319. [PMID: 23227799 DOI: 10.1142/s0192415x12500966] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The injury of endothelial cell is the critical event of vascular disease. In endothelial cell, oxidative stress is regarded as critical to pathogenic factors in endothelial cell injury and apoptosis. Tanshinone IIA is the main effective component of Salvia miltiorrhiza known as "Danshen" in traditional Chinese medicine for treating cardiovascular disorders, but the mechanism by which it exerts the protective effect is not well established. The present study was designed to test the hypothesis that tanshinone IIA can inhibit hydrogen peroxide ( H(2)O(2) )-induced injury and unravel its intracellular mechanism in human umbilical vein endothelial cells (HUVECs). In this study, HUVECs were treated with tanshinone IIA in the presence/absence of H(2)O(2) . The protective effects of tanshinone IIA against H(2)O(2) were evaluated. Our results show that HUVECs incubated with 200 μM H(2)O(2) had significantly decreased the viability of endothelial cells, which was accompanied with apparent cell apoptosis, the activation of caspase-3 and the upregulation of p53 expression, which was known to play a key role in H(2)O(2) -induced cell apoptosis. However, pretreatment with tanshinone IIA (3-10 μM) resulted in a significant resistance to H(2)O(2) -induced apoptosis. In addition, pretreatment with tanshinone IIA decreased the activity of caspase-3 and p53 expression. Tanshinone IIA also induced activating transcription factor (ATF) 3 expression; while knockdown of ATF-3 with ATF-3 siRNAsignificantly reduced tanshinone IIA's protective effect. In conclusion, the present study shows that tanshinone IIA can protect endothelial cells against oxidative injury induced by H(2)O(2) , suggesting that this compound may constitute a promising intervention against cardiovascular disorders and ATF-3 may play an important role in this process.
Collapse
Affiliation(s)
- Paul Chan
- Division of Cardiovascular Medicine, Department of Internal Medicine, Taipei Medical University, Taipei, Taiwan, R.O.C
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Cardiovascular actions and therapeutic potential of tanshinone IIA. Atherosclerosis 2012; 220:3-10. [DOI: 10.1016/j.atherosclerosis.2011.06.041] [Citation(s) in RCA: 247] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Revised: 06/19/2011] [Accepted: 06/20/2011] [Indexed: 11/20/2022]
|