1
|
Lin D, Rezaei MJ. Plant polysaccharides and antioxidant benefits for exercise performance and gut health: from molecular pathways to clinic. Mol Cell Biochem 2024:10.1007/s11010-024-05178-8. [PMID: 39692997 DOI: 10.1007/s11010-024-05178-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 11/26/2024] [Indexed: 12/19/2024]
Abstract
In the last three decades, our understanding of how exercise induces oxidative stress has significantly advanced. Plant polysaccharides, such as dietary fibers and resistant starches, have been shown to enhance exercise performance by improving energy metabolism, reducing fatigue, increasing strength and stamina, mitigating oxidative stress post-exercise, facilitating muscle recovery, and aiding in detoxification. Moreover, antioxidants found in plant-based foods play a crucial role in protecting the body against oxidative stress induced by intense physical activity. By scavenging free radicals and reducing oxidative damage, antioxidants can improve exercise endurance, enhance recovery, and support immune function. Furthermore, the interaction between plant polysaccharides and antioxidants in the gut microbiota can lead to synergistic effects on overall health and performance. This review provides a comprehensive overview of the current research on plant polysaccharides and antioxidants in relation to exercise performance and gut health.
Collapse
Affiliation(s)
- Di Lin
- School of Sports, Zhengzhou Shengda University, Zhengzhou, 451191, Henan, China.
| | - Mohammad J Rezaei
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Li T, Zhang G, Zhou X, Guan J, Zhao W, Zheng Y, Lee J, Wang P, Zhao Y. Cedrol in ginger (Zingiber officinale) as a promising hair growth drug: The effects of oral and external administration on hair regeneration and its mechanism. Bioorg Chem 2024; 151:107709. [PMID: 39137599 DOI: 10.1016/j.bioorg.2024.107709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 08/15/2024]
Abstract
Ginger is an important cooking spice and herb worldwide, and scientific research has gradually confirmed the effect of ginger on preventing hair loss. Cedrol (CE) is a small sesquiterpene molecule in ginger and its external administration (EA) has shown hope in promoting hair growth, and alternative administration mode has become a potential treatment scheme to improve the efficacy of CE. The purpose of this study is to evaluate the effects of oral administration (OA) and EA of CE on hair regeneration of C57BL/6 alopecia areata (AA) mice induced by cyclophosphamide (CP) and to clarify the potential hair growth mechanism of CE in AA model in vitro and in vivo. The results showed that CE-OA has a shorter hair-turning black time and faster hair growth rate, and can lessen hair follicle damage induced by CP and promote hair follicle cell proliferation. Its effect is superior to CE-EA. At the same time, CE can increase the cytokines IFN-γ, IL-2, and IL-7 in the serum of mice, and decrease the expression of adhesion factors ICAM-1 and ELAM-1, thus alleviating the immunosuppression induced by CP. Mechanism research shows that CE regulates the JAK3/STAT3 signaling pathway, activates the Wnt3α/β-catenin germinal center, and ameliorates oxidative stress induced by CP, thus promoting the proliferation of hair follicle cells and reversing AA. These results provide a theoretical basis for understanding the anti-AA mechanism of CE-OA, indicating that CE can be used as raw material for developing oral hair growth drugs.
Collapse
Affiliation(s)
- Tao Li
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China
| | - Guiming Zhang
- Liaoning Xinzhong Modern Medicine Co., Ltd., Benxi 117002, China
| | - Xinyang Zhou
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China
| | - Jian Guan
- Liaoning Xinzhong Modern Medicine Co., Ltd., Benxi 117002, China
| | - Wenjie Zhao
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China
| | - Yifei Zheng
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China
| | - Jungjoon Lee
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China
| | - Peng Wang
- ORxes Therapeutics (Shanghai) Co., Ltd., Shanghai, 200120, China.
| | - Yuqing Zhao
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China.
| |
Collapse
|
3
|
Mostafa RM, Baz MM, Ebeed HT, Essawy HS, Dawwam GE, Darwish AB, Selim A, El-Shourbagy NM. Biological effects of Bougainvillea glabra, Delonix regia, Lantana camara, and Platycladus orientalis extracts and their possible metabolomics therapeutics against the West Nile virus vector, Culex pipiens (Diptera: Culicidae). Microb Pathog 2024; 195:106870. [PMID: 39163920 DOI: 10.1016/j.micpath.2024.106870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/15/2024] [Accepted: 08/17/2024] [Indexed: 08/22/2024]
Abstract
Plants are a treasure trove of biological materials containing a wide range of potential phytochemicals that are target-specific, rapidly biodegradable, and environmentally friendly, with multiple medicinal effects. Unfortunately, the development of resistance to synthetic pesticides and antibiotics led to the discovery of new antibiotics, antioxidants, and biopesticides. This has also led to the creation of new medications that work very well. The current study aimed to prove that ornamental plants contain specialized active substances that are used in several biological processes. Mosquitoes, one of the deadliest animals on the planet, cause millions of fatalities each year by transmitting several human illnesses. Phytochemicals are possible biological agents for controlling pests that are harmful. The potential of leaf extracts of Bougainvillea glabra, Delonix regia, Lantana camara, and Platycladus orientalis against Culex pipiens and microbial agents was evaluated. Acetone extracts had more toxic effects against Cx. pipiens larvae (99.0-100 %, 72 h post-treatment), and the LC50 values were 142.8, 189.5, 95.4, and 71.1 ppm for B. glabra, D. regia, L. camara, and P. orientalis, respectively. Plant extracts tested in this study showed high insecticidal, antimicrobial, and antioxidant potential. GC-MS and HPLC analyses showed a higher number of terpenes, flavonoids, and phenolic compounds. The ADME analysis of element, caryophyllene oxide, caryophyllene, and copaene showed that they were similar to drugs and that they were better absorbed by the body and able to pass through the blood-brain barrier. Our results confirm the ability of ornamental plants to have promising larvicidal and antimicrobial activity and biotechnology.
Collapse
Affiliation(s)
- Reham M Mostafa
- Botany and Microbiology Department, Faculty of Science, Benha University, Benha, Qalyubiya, 13518, Egypt
| | - Mohamed M Baz
- Entomology Department, Faculty of Science, Benha University, Benha, 13518, Egypt.
| | - Heba Talat Ebeed
- Botany and Microbiology Department, Faculty of Science, Damietta University, Damietta, 34517, Egypt; National Biotechnology Network of Expertise (NBNE), Academy of Scientific Research and Technology (ASRT), Cairo, Egypt
| | - Heba S Essawy
- Botany and Microbiology Department, Faculty of Science, Benha University, Benha, Qalyubiya, 13518, Egypt
| | - Ghada E Dawwam
- Botany and Microbiology Department, Faculty of Science, Benha University, Benha, Qalyubiya, 13518, Egypt
| | - Ahmed B Darwish
- Zoology Department, Faculty of Science, Suez University, Suez, 43518, Egypt
| | - Abdelfattah Selim
- Department of Animal Medicine (Infectious Diseases), College of Veterinary Medicine, Benha University Toukh, 13736, Egypt.
| | - Nancy M El-Shourbagy
- Entomology Department, Faculty of Science, Benha University, Benha, 13518, Egypt
| |
Collapse
|
4
|
Liang P, Bi T, Zhou Y, Wang C, Ma Y, Xu H, Shen H, Ren W, Yang S. Carbonized Platycladus orientalis Derived Carbon Dots Accelerate Hemostasis through Activation of Platelets and Coagulation Pathways. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303498. [PMID: 37607318 DOI: 10.1002/smll.202303498] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/14/2023] [Indexed: 08/24/2023]
Abstract
Achieving rapid and effective hemostasis remains a multidisciplinary challenge. Here, distinctive functional carbon dots derived from carbonized Platycladus orientalis (CPO-CDs) are developed using one-step hydrothermal method. The negatively charged surface of CPO-CDs retains partial functional groups from CPO precursor, exhibiting excellent water solubility and high biocompatibility. Both rat liver injury model and tail amputation model have confirmed the rapid and effective hemostatic performance of CPO-CDs on exogenous hemorrhage. Further, on endogenous blood-heat hemorrhage syndrome rat model, CPO-CDs could inhibit hemorrhage and alleviate inflammation response. Interestingly, the excellent hemostasis performance of CPO-CDs is ascribed to activate exogenous coagulation pathway and common coagulation pathway. More importantly, metabolomics of rat plasma suggests that the hemostasis effect of CPO-CDs is closely related to platelet functions. Therefore, the designed in vitro experiments are performed and it is discovered that CPO-CDs significantly promote platelets adhesion, activation, and aggregation. Further, the underlying mechanism investigation suggests that Src/Syk signal pathway plays a key role in platelets activation triggered by CPO-CDs. Overall, CPO-CDs with rapid and excellent hemostatic performance are discovered for the first time, which could be an excellent candidate for the treatment of hemorrhagic diseases.
Collapse
Affiliation(s)
- Pan Liang
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, China
- State Key Laboratories for Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, 646000, China
| | - Tao Bi
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, 646000, China
| | - Yanan Zhou
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, 646000, China
| | - Chengmei Wang
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, 646000, China
| | - Yining Ma
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, 646000, China
| | - Houping Xu
- Preventive Treatment Center, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Hongping Shen
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, 646000, China
| | - Wei Ren
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, 646000, China
| | - Sijin Yang
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, China
- State Key Laboratories for Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, 646000, China
| |
Collapse
|
5
|
Li X, Chen X, Yuan W, Zhang X, Mao A, Zhao W, Yao N, Deng X, Xu C. Effects of Platycladus orientalis Leaf Extract on the Growth Performance, Fur-Production, Serum Parameters, and Intestinal Microbiota of Raccoon Dogs. Animals (Basel) 2023; 13:3151. [PMID: 37835757 PMCID: PMC10571531 DOI: 10.3390/ani13193151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/29/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
Platycladus orientalis leaves are rich in flavonoids and polysaccharides, which offer high medicinal and nutritional benefits. This study aimed to investigate the impact of P. orientalis leaf extract (PLE) on the growth performance, fur quality, serum parameters, and intestinal microbiota of raccoon dogs. Sixty healthy male black raccoon dogs, aged 85 (±5) days, were randomly assigned to four groups and fed a basal diet supplemented with 0, 0.25, 0.50, and 1.00 g/kg PLE for 125 days (designated as groups P0, P1, P2, and P3, respectively). The results revealed that the raccoon dogs in group P1 exhibited increased average daily gain and underfur length while showing a decreased feed/gain ratio compared to group P0 (p < 0.05). However, the heart index in group P2 was significantly lower than in group P0 (p < 0.05), and the kidney index and serum alanine aminotransferase activities in group P3 were higher than in groups P2 and P0 (p < 0.05), suggesting potential adverse effects at higher PLE dosages. Notably, dietary PLE supplementation led to a reduction in serum glucose concentrations (p < 0.05), which may have implications for glucose regulation. Furthermore, the study explored the impact of dietary supplementation with 0.25 g/kg PLE on the raccoon dogs' intestinal microbiota using high-throughput sequencing. The results showed significant alterations in the microbial community structure, with a notable decrease in the abundance of Prevotella copri in response to 0.25 g/kg PLE supplementation (p < 0.05). In conclusion, supplementing raccoon dogs' diet with 0.25 g/kg PLE can lead to improved growth performance and a positive influence on the intestinal microbiota. However, caution should be exercised regarding higher dosages, as they may have adverse effects on certain parameters. As a result, PLE holds promise as a potential feed additive for fur animal production.
Collapse
Affiliation(s)
- Xiao Li
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, 4899 Juye Street, Changchun 130112, China; (X.L.)
- Innovation Center for Feeding and Utilization of Special Animals in Jinlin Province and Research Center for Microbial Feed Engineering of Special Animals in Jilin Province, 4899 Juye Street, Changchun 130112, China
| | - Xiaoli Chen
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, 4899 Juye Street, Changchun 130112, China; (X.L.)
- Innovation Center for Feeding and Utilization of Special Animals in Jinlin Province and Research Center for Microbial Feed Engineering of Special Animals in Jilin Province, 4899 Juye Street, Changchun 130112, China
| | - Weitao Yuan
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, 4899 Juye Street, Changchun 130112, China; (X.L.)
- Innovation Center for Feeding and Utilization of Special Animals in Jinlin Province and Research Center for Microbial Feed Engineering of Special Animals in Jilin Province, 4899 Juye Street, Changchun 130112, China
| | - Xiuli Zhang
- College of Veterinary Medicine, Jilin University, Changchun 130062, China; (X.Z.); (X.D.)
| | - Aipeng Mao
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, 4899 Juye Street, Changchun 130112, China; (X.L.)
- Innovation Center for Feeding and Utilization of Special Animals in Jinlin Province and Research Center for Microbial Feed Engineering of Special Animals in Jilin Province, 4899 Juye Street, Changchun 130112, China
| | - Weigang Zhao
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, 4899 Juye Street, Changchun 130112, China; (X.L.)
- Innovation Center for Feeding and Utilization of Special Animals in Jinlin Province and Research Center for Microbial Feed Engineering of Special Animals in Jilin Province, 4899 Juye Street, Changchun 130112, China
| | - Naiquan Yao
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Xuming Deng
- College of Veterinary Medicine, Jilin University, Changchun 130062, China; (X.Z.); (X.D.)
| | - Chao Xu
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, 4899 Juye Street, Changchun 130112, China; (X.L.)
- Innovation Center for Feeding and Utilization of Special Animals in Jinlin Province and Research Center for Microbial Feed Engineering of Special Animals in Jilin Province, 4899 Juye Street, Changchun 130112, China
| |
Collapse
|
6
|
Combined analysis of transcriptomics and metabolomics revealed complex metabolic genes for diterpenoids biosynthesis in different organs of Anoectochilus roxburghii. CHINESE HERBAL MEDICINES 2022. [DOI: 10.1016/j.chmed.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
7
|
Zhao S, Shan C, Wu Z, Feng M, Song L, Wang Y, Gao Y, Guo J, Sun X. Fermented Chinese herbal preparation: Impacts on milk production, nutrient digestibility, blood biochemistry, and antioxidant capacity of late-lactation cows under heat stress. Anim Feed Sci Technol 2022. [DOI: 10.1016/j.anifeedsci.2022.115448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
8
|
Comparative Analysis of In Vitro Enzyme Inhibitory Activities and Phytochemicals from Platycladus orientalis (L.) Franco via Solvent Partitioning Method. Appl Biochem Biotechnol 2022; 194:3621-3644. [PMID: 35476189 DOI: 10.1007/s12010-022-03921-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2022] [Indexed: 11/27/2022]
Abstract
The extraction of plant bioactive compounds from Platycladus orientalis (L.) Franco remains a great challenge due to the different chemical groups. This study aimed to compare the bioactive compounds with enzyme inhibitory effect from P. orientalis via solvent partitioning method. Dried leaf samples were macerated and fractionated with six solvents of different polarities. The phenolic, flavonoid, tannin, saponin, alkaloid and pharmacological activities including anti-inflammatory, anti-diabetic, antioxidant and anti-glycation potential were compared across the six plant fractions. Toxicity assessment was performed with an in vivo brine shrimp model. The varying levels of bioactive compounds in ethyl acetate (phenolics, flavonoids), hexane (saponins, tannins) and chloroform (alkaloids) fractions clearly demonstrated the significant impact of solvent polarity on the extraction of bioactive compounds. The reducing potential (r = 0.67), IC50 of α-amylase inhibition (r = -0.71), IC50 of advanced glycation end-product inhibition (r = -0.93) and dicarbonyl compound inhibition (r = 0.57) in the plant fractions were correlated (p<0.05) with the flavonoids. Besides, the alkaloid, saponin and tannin were associated with cyclooxygenase-1 inhibitory activity. Principal component analysis confirmed that solvent polarity (23.9%) and plant extraction yield (37.1%) collectively contributed to 61% of bioactivity variation in P. orientalis. Among the six plant fractions, ethyl acetate fraction exhibited relatively high anti-inflammatory, anti-diabetic, antioxidant and anti-glycation potential while the non-toxic methanolic and aqueous fractions displayed optimal hyaluronidase and lipoxygenase inhibitory activities, respectively. The current study has identified semi-polar ethyl acetate fraction of P. orientalis as a good alternative source of bioactive compounds for future pharmaceutical product development.
Collapse
|
9
|
Bae S, Han JW, Dang QL, Kim H, Choi GJ. Plant Disease Control Efficacy of Platycladus orientalis and Its Antifungal Compounds. PLANTS 2021; 10:plants10081496. [PMID: 34451541 PMCID: PMC8400505 DOI: 10.3390/plants10081496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/14/2021] [Accepted: 07/17/2021] [Indexed: 11/16/2022]
Abstract
Plants contain a number of bioactive compounds that exhibit antimicrobial activity, which can be recognized as an important source of agrochemicals for plant disease control. In searching for natural alternatives to synthetic fungicides, we found that a methanol extract of the plant species Platycladus orientalis suppressed the disease development of rice blast caused by Magnaporthe oryzae. Through a series of chromatography procedures in combination with activity-guided fractionation, we isolated and identified a total of eleven compounds including four labdane-type diterpenes (1-4), six isopimarane-type diterpenes (5-10), and one sesquiterpene (11). Of the identified compounds, the MIC values of compounds 1, 2, 5 & 6 mixture, 9, and 11 ranged from 100 to 200 μg/mL against M. oryzae, whereas the other compounds were over 200 μg/mL. When rice plants were treated with the antifungal compounds, compounds 1, 2, and 9 effectively suppressed the development of rice blast at all concentrations tested by over 75% compared to the non-treatment control. In addition, a mixture of compounds 5 & 6 that constituted 66% of the P. orientalis ethyl acetate fraction also exhibited a moderate disease control efficacy. Together, our data suggest that the methanol extract of P. orientalis including terpenoid compounds has potential as a crop protection agent.
Collapse
Affiliation(s)
- Sohyun Bae
- Center for Eco-Friendly New Materials, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea;
- Department of Medicinal Chemistry and Pharmacology, University of Science and Technology, Daejeon 34113, Korea;
| | - Jae Woo Han
- Department of Medicinal Chemistry and Pharmacology, University of Science and Technology, Daejeon 34113, Korea;
| | - Quang Le Dang
- Research and Development Center of Bioactive Compounds, Vietnam Institute of Industrial Chemistry, Hanoi 100000, Vietnam;
| | - Hun Kim
- Center for Eco-Friendly New Materials, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea;
- Department of Medicinal Chemistry and Pharmacology, University of Science and Technology, Daejeon 34113, Korea;
- Correspondence: (H.K.); (G.J.C.)
| | - Gyung Ja Choi
- Center for Eco-Friendly New Materials, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea;
- Department of Medicinal Chemistry and Pharmacology, University of Science and Technology, Daejeon 34113, Korea;
- Correspondence: (H.K.); (G.J.C.)
| |
Collapse
|
10
|
Darwish RS, Hammoda HM, Ghareeb DA, Abdelhamid ASA, Harraz FM, Shawky E. Seasonal dynamics of the phenolic constituents of the cones and leaves of oriental Thuja ( Platycladus orientalis L.) reveal their anti-inflammatory biomarkers. RSC Adv 2021; 11:24624-24635. [PMID: 35481004 PMCID: PMC9036908 DOI: 10.1039/d1ra01681d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/28/2021] [Indexed: 11/22/2022] Open
Abstract
In this study, the seasonal dynamics of the flavonoids in the cones and leaves of oriental Thuja (Platycladus orientalis L. Franco) as well as the in vitro anti-inflammatory activity of their extracts were investigated. The important chemical markers of the studied extracts were determined using untargeted HPTLC profiling, which was further utilized to assess the seasonality effect on the composition of these metabolites over three seasonal cycles. A quantitative HPTLC method was developed and validated for the identified chemical markers of oriental Thuja: hyperoside, quercetrin, isoscutellarein-7-O-β-xyloside, cupressuflavone, hinokiflavone, sotetsuflavone and isoscutellarein-8-methyl ether. The highest amounts of flavonoids were observed during the summer and winter seasons, where the leaves possessed higher contents of flavonoids compared to cones. Flavone glycosides are a major class of flavones encountered in leaves, while the cones mainly accumulated biflavones. The results showed that the effect of seasonal variation on the accumulation of flavonoids within the cones was less pronounced than in the leaves. The summer leaves showed a remarkable reduction in the levels of INF-γ, where the value decreased to 80.7 ± 1.25 pg mL-1, a significantly lower level than that obtained with piroxicam (180 ± 1.47 pg mL-1); this suggests a noteworthy anti-inflammatory potential. OPLS (orthogonal projection to latent structures) models showed that flavonoidal glycosides, quercetrin, hyperoside and isoscutellarein-7-O-β-xyloside were the most contributing biomarkers to the reduction in pro-inflammatory mediators in LPS-stimulated WBCs. The results obtained in the study can thus be exploited to establish the best organs as well as the optimal periods of the year for collecting and obtaining certain biomarkers at high concentrations to guarantee the efficacy of the obtained extracts.
Collapse
Affiliation(s)
- Reham S Darwish
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University Alkhartoom Square Alexandria 21521 Egypt +20-34871668-4873273
| | - Hala M Hammoda
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University Alkhartoom Square Alexandria 21521 Egypt +20-34871668-4873273
| | - Doaa A Ghareeb
- Biological Screening and Preclinical Trial Laboratory, Department of Biochemistry, Faculty of Science, Alexandria University Alexandria Egypt
- Pharmaceutical and Fermentation Industries Development Centre, City of Scientific Research and Technological Applications (SRTA-City) Borg Al-Arab Alexandria Egypt
| | - Ali S A Abdelhamid
- Pharmaceutical and Fermentation Industries Development Centre, City of Scientific Research and Technological Applications (SRTA-City) Borg Al-Arab Alexandria Egypt
| | - Fathallah M Harraz
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University Alkhartoom Square Alexandria 21521 Egypt +20-34871668-4873273
| | - Eman Shawky
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University Alkhartoom Square Alexandria 21521 Egypt +20-34871668-4873273
| |
Collapse
|
11
|
Li J, Luo H, Liu X, Zhang J, Zhou W, Guo S, Chen X, Liu Y, Jia S, Wang H, Li B, Cheng G, Wu J. Dissecting the mechanism of Yuzhi Zhixue granule on ovulatory dysfunctional uterine bleeding by network pharmacology and molecular docking. Chin Med 2020; 15:113. [PMID: 33110441 PMCID: PMC7584092 DOI: 10.1186/s13020-020-00392-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/07/2020] [Indexed: 02/06/2023] Open
Abstract
Background Yuzhi Zhixue Granule (YZG) is a traditional Chinese patent medicine for treating excessive menstrual flow caused by ovulatory dysfunctional uterine bleeding (ODUB) accompanied by heat syndrome. However, the underlying molecular mechanisms, potential targets, and active ingredients of this prescription are still unknown. Therefore, it is imperative to explore the molecular mechanism of YZG. Methods The active compounds in YZG were screened by the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP). The putative targets of YZG were collected via TCMSP and Search Tool for Interacting Chemicals (STITCH) databases. The Therapeutic Target Database (TTD) and Pharmacogenomics Knowledgebase (PharmGKB) databases were used to identify the therapeutic targets of ODUB. A protein–protein interaction (PPI) network containing both the putative targets of YZG and known therapeutic targets of ODUB was built. Furthermore, bioinformatics resources from the database for annotation, visualization and integrated discovery (DAVID) were utilized for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. Finally, molecular docking was performed to verify the binding effect between the YZG screened compounds and potential therapeutic target molecules. Results The study employed a network pharmacology method, mainly containing target prediction, network construction, functional enrichment analysis, and molecular docking to systematically research the mechanisms of YZG in treating ODUB. The putative targets of YZG that treat ODUB mainly involved PTGS1, PTGS2, ALOX5, CASP3, LTA4H, F7 and F10. The functional enrichment analysis suggested that the produced therapeutic effect of YZG against ODUB is mediated by synergistical regulation of several biological pathways, including apoptosis arachidonic acid (AA) metabolism, serotonergic synapse, complement and coagulation cascades and C-type lectin receptor signaling pathways. Molecular docking simulation revealed good binding affinity of the seven putative targets with the corresponding compounds. Conclusion This novel and scientific network pharmacology-based study holistically elucidated the basic pharmacological effects and the underlying mechanisms of YZG in the treatment of ODUB.
Collapse
Affiliation(s)
- Jialin Li
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, No. 11 of North Three-ring East Road, Chao Yang District, Beijing, 100102 China
| | - Hua Luo
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Xinkui Liu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, No. 11 of North Three-ring East Road, Chao Yang District, Beijing, 100102 China
| | - Jingyuan Zhang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, No. 11 of North Three-ring East Road, Chao Yang District, Beijing, 100102 China
| | - Wei Zhou
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, No. 11 of North Three-ring East Road, Chao Yang District, Beijing, 100102 China
| | - Siyu Guo
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, No. 11 of North Three-ring East Road, Chao Yang District, Beijing, 100102 China
| | - Xiuping Chen
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Yingying Liu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, No. 11 of North Three-ring East Road, Chao Yang District, Beijing, 100102 China
| | - Shanshan Jia
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, No. 11 of North Three-ring East Road, Chao Yang District, Beijing, 100102 China
| | - Haojia Wang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, No. 11 of North Three-ring East Road, Chao Yang District, Beijing, 100102 China
| | - Bingbing Li
- State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Linyi, 276000 China
| | - Guoliang Cheng
- State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Linyi, 276000 China
| | - Jiarui Wu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, No. 11 of North Three-ring East Road, Chao Yang District, Beijing, 100102 China
| |
Collapse
|
12
|
Al-Mahmood OA, Aboalhaija NH, Abaza IF, Talib WH, Afifi FU. Investigations on the spontaneous emitted and hydrodistilled volatiles of Platycladus orientalis (L.) Franco grown in four different biogeographic zones of Jordan. BIOCHEM SYST ECOL 2020. [DOI: 10.1016/j.bse.2020.104109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
13
|
Ahn JH, Park YE, Kim B, Park CW, Sim TH, Lee TK, Lee JC, Park JH, Kim JD, Lee HS, Won MH. Hair Growth is Promoted in Mouse Dorsal Skin by a Mixture of Platycladus orientalis (L.) Franco Leaf Extract and Alpha-Terpineol by Increasing Growth Factors and wnt3/β-Catenin. Nat Prod Commun 2020. [DOI: 10.1177/1934578x20951433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In this study, we investigated the effect of a mixture of Platycladus orientalis (L.) Franco leaf extract and α-terpineol, a natural monoterpene alcohol (PEaT), on hair growth and its mechanisms. C57/BL6 mice (total n = 14) in the telogen phase of hair growth were used. Either distilled water as vehicle or PEaT was topically applied to the dorsal skin for 17 days. Chronological hair growth change was examined by hair growth-promoting scores. In addition, to find out mechanisms of PEaT on hair growth, insulin-like growth factor-1 (IGF-1), vascular endothelial growth factor (VEGF), Ki-67, wnt3, and β-catenin expressions were investigated by using immunohistochemistry. We found that PEaT remarkably promoted hair growth by inducing early anagen transition compared with the control group. In addition, treatment with PEaT significantly increased numbers of Ki-67-positive cells and expressions of IGF-1, VEGF, wnt3, and β-catenin in the outer root sheath. These results indicate that PEaT used in this study might be a good hair growth promoter, showing that PEaT treatment increased growth factors and cell proliferation through upregulation of wnt3 and β-catenin expressions.
Collapse
Affiliation(s)
- Ji Hyeon Ahn
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon, Republic of Korea
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon, Republic of Korea
| | - Young Eun Park
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon, Republic of Korea
| | - Bora Kim
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon, Republic of Korea
| | - Cheol Woo Park
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon, Republic of Korea
| | - Tae Heung Sim
- Leefarm Co. Ltd., Hongcheon, Gangwon, Republic of Korea
| | - Tae-Kyeong Lee
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon, Republic of Korea
| | - Jae-Chul Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon, Republic of Korea
| | - Joon Ha Park
- Department of Anatomy, College of Korean Medicine, Dongguk University, Gyeongju, Gyeongbuk, Republic of Korea
| | - Jong-Dai Kim
- Division of Food Biotechnology, School of Biotechnology, Kangwon National University, Chuncheon, Gangwon, Republic of Korea
| | - Hyun Sam Lee
- Leefarm Co. Ltd., Hongcheon, Gangwon, Republic of Korea
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon, Republic of Korea
| |
Collapse
|
14
|
Hsu CY, Lin GM, Chang ST. Hypoglycemic activity of extracts of Chamaecyparis obtusa var. formosana leaf in rats with hyperglycemia induced by high-fat diets and streptozotocin. J Tradit Complement Med 2020; 10:389-395. [PMID: 32695656 PMCID: PMC7365784 DOI: 10.1016/j.jtcme.2019.11.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 11/28/2019] [Accepted: 11/28/2019] [Indexed: 11/26/2022] Open
Abstract
Chamaecyparis obtusa var. formosana is a species indigenous to Taiwan and has been used as a medicinal plant. It has been claimed that the hot water extracts of C. obtusa var. formosana leaves (CoLE) with flavonoids and proanthocyanidins have anti-oxidant and anti-hyperglycemic activities in vitro. This study further examines the anti-hyperglycemic activity of CoLE and its possible mechanisms in hyperglycemic rats. Hyperglycemia of rats was induced by streptozotocin (STZ) and high-fat diets (HFD). Hyperglycemic rats treated orally with 30 and 150 mg/kg CoLE were classified into LCO and HCO groups, respectively. After three-month treatment, both LCO and HCO groups showed improved glucose metabolism in oral glucose tolerance and postprandial blood glucose tests. Decrease in HOMA-IR, leptin and adiponectin levels of the HCO group revealed amelioration of insulin and leptin resistance. Obesity and accumulation of visceral fats induced by STZ and HFD could be alleviated in both HCO and LCO groups. These anti-diabetic effects might be contributed by inhibition of intestinal digested enzymes and protein tyrosine phosphatases (PTPases). Although other studies are necessary, these findings suggest that CoLE could be potentially used as a health complement for treating diabetes without significant toxicity.
Collapse
Affiliation(s)
- Chia-Yun Hsu
- School of Forestry and Resource Conservation, National Taiwan University, #1, Sec. 4, Roosevelt Rd., Taipei, 10617, Taiwan
| | - Gong-Min Lin
- School of Forestry and Resource Conservation, National Taiwan University, #1, Sec. 4, Roosevelt Rd., Taipei, 10617, Taiwan
| | - Shang-Tzen Chang
- School of Forestry and Resource Conservation, National Taiwan University, #1, Sec. 4, Roosevelt Rd., Taipei, 10617, Taiwan
| |
Collapse
|
15
|
Huo X, Meng Q, Wang C, Wu J, Zhu Y, Sun P, Ma X, Sun H, Liu K. Targeting renal OATs to develop renal protective agent from traditional Chinese medicines: Protective effect of Apigenin against Imipenem-induced nephrotoxicity. Phytother Res 2020; 34:2998-3010. [PMID: 32468621 DOI: 10.1002/ptr.6727] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 04/11/2020] [Accepted: 04/25/2020] [Indexed: 12/11/2022]
Abstract
Imipenem (Imp) is a widely used broad-spectrum antibiotic. However, renal adverse effects limit its clinical application. We previously reported that organic anion transporters (OATs) facilitated the renal transport of Imp and contributed its nephrotoxicity. Natural flavonoids exhibited renal protective effect. Here, we aimed to develop potent OAT inhibitors from traditional Chinese medicines (TCMs) and to evaluate its protective effect against Imp-induced nephrotoxicity. Among 50 TCMs, Tribuli Fructus, Platycladi Cacumen, and Lycopi Herba exhibited potent inhibition on OAT1/3. After screening their main components, Apigenin strongly inhibited Imp uptake by OAT1/3-HEK293 cells with IC50 values of 1.98 ± 0.36 μM (OAT1) and 2.29 ± 0.88 μM (OAT3). Moreover, Imp exhibited OAT1/3-dependent cytotoxicity, which was alleviated by Apigenin. Furthermore, Apigenin ameliorated Imp-induced nephrotoxicity in rabbits, and reduced the renal secretion of Imp. Apigenin inhibited intracellular accumulation of Imp and sequentially decreased the nephrocyte toxicity in rabbit primary proximal tubule cells (rPTCs). Apigenin, a flavone widely distributed in TCMs, was a potent OAT1/3 inhibitor. Through OAT inhibition, at least in part, Apigenin decreased the renal exposure of Imp and consequently protected against the nephrotoxicity of Imp. Apigenin can be used as a promising agent to reduce the renal adverse reaction of Imp in clinic.
Collapse
Affiliation(s)
- Xiaokui Huo
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China.,College (Institute) of Integrative Medicine, Dalian Medical University, Dalian, China.,Provincial Key Laboratory for Pharmacokinetics and Transport Liaoning, Dalian Medical University, Dalian, China
| | - Qiang Meng
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China.,College (Institute) of Integrative Medicine, Dalian Medical University, Dalian, China.,Provincial Key Laboratory for Pharmacokinetics and Transport Liaoning, Dalian Medical University, Dalian, China
| | - Changyuan Wang
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China.,College (Institute) of Integrative Medicine, Dalian Medical University, Dalian, China.,Provincial Key Laboratory for Pharmacokinetics and Transport Liaoning, Dalian Medical University, Dalian, China
| | - Jingjing Wu
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Yanna Zhu
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Pengyuan Sun
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Xiaodong Ma
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Huijun Sun
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China.,College (Institute) of Integrative Medicine, Dalian Medical University, Dalian, China.,Provincial Key Laboratory for Pharmacokinetics and Transport Liaoning, Dalian Medical University, Dalian, China
| | - Kexin Liu
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China.,College (Institute) of Integrative Medicine, Dalian Medical University, Dalian, China.,Provincial Key Laboratory for Pharmacokinetics and Transport Liaoning, Dalian Medical University, Dalian, China
| |
Collapse
|
16
|
Fei J, Shi S, Zu G, Han G, Lai Z, Cao T. Characterization of the complete chloroplast genome of Platycladus orientalis (Cupressaceae), an herb to treat lumbar tuberculosis in China. Mitochondrial DNA B Resour 2019; 5:222-223. [PMID: 33366496 PMCID: PMC7748822 DOI: 10.1080/23802359.2019.1699471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Platycladus orientalis belongs to the family Cupressaceae that the branches and leaves is an important Traditional Chinese Medicine in China. In this article, the complete chloroplast genome of P. orientalis was studied and illustrated to add the more genetic information. The chloroplast genome of Platycladus orientalis is 1127,113 bp in length as the circular, which exhibits 120 genes, including 83 protein-coding genes (PCG), 33 transfer RNA genes (tRNAs) and 4 ribosomal RNA genes (rRNAs). The overall nucleotide composition of chloroplast genome is: 32.1% of A, 33.2% of T, 17.9% of C, 16.8% of G and the total AT content of 65.3% and GC of 34.7%. Phylogenetic relationship shown that Platycladus orientalis is more closely related to Thuja standishii on genetic relationship using the Maximum-Likelihood (ML) method. The chloroplast genome may contribute to the medicinal valuable and evolutionary studies of this species.
Collapse
Affiliation(s)
- Jun Fei
- Department of Orthopaedics, Zhejiang Integrated Traditional Chinese and Western Medicine Hospital, Hangzhou, China
| | - Shiyuan Shi
- Department of Orthopaedics, Zhejiang Integrated Traditional Chinese and Western Medicine Hospital, Hangzhou, China
| | - Gang Zu
- Department of Orthopaedics, Zhejiang Integrated Traditional Chinese and Western Medicine Hospital, Hangzhou, China
| | - Guihe Han
- Department of Orthopaedics, Zhejiang Integrated Traditional Chinese and Western Medicine Hospital, Hangzhou, China
| | - Zhen Lai
- Department of Orthopaedics, Zhejiang Integrated Traditional Chinese and Western Medicine Hospital, Hangzhou, China
| | - Tianyi Cao
- Department of Orthopaedics, Zhejiang Integrated Traditional Chinese and Western Medicine Hospital, Hangzhou, China
| |
Collapse
|
17
|
Liu H, Lian T, Liu Y, Hong Y, Sun D, Li Q. Plant-Mediated Synthesis of Au Nanoparticles: Separation and Identification of Active Biomolecule in the Water Extract of Cacumen Platycladi. Ind Eng Chem Res 2017. [DOI: 10.1021/acs.iecr.7b00064] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Hai Liu
- Department
of Chemical and Biochemical Engineering, College of Chemistry and
Chemical Engineering, Fujian Provincial Key Laboratory of Chemical
Biology, Xiamen University, Xiamen, 361005, PR China
- College
of Chemistry and Chemical Engineering, Beifang University of Nationalities, Yinchuan, Ningxia, 750021, PR China
| | - Ting Lian
- Department
of Chemical and Biochemical Engineering, College of Chemistry and
Chemical Engineering, Fujian Provincial Key Laboratory of Chemical
Biology, Xiamen University, Xiamen, 361005, PR China
| | - Yang Liu
- Department
of Chemical and Biochemical Engineering, College of Chemistry and
Chemical Engineering, Fujian Provincial Key Laboratory of Chemical
Biology, Xiamen University, Xiamen, 361005, PR China
| | - Yingling Hong
- Department
of Chemical and Biochemical Engineering, College of Chemistry and
Chemical Engineering, Fujian Provincial Key Laboratory of Chemical
Biology, Xiamen University, Xiamen, 361005, PR China
| | - Daohua Sun
- Department
of Chemical and Biochemical Engineering, College of Chemistry and
Chemical Engineering, Fujian Provincial Key Laboratory of Chemical
Biology, Xiamen University, Xiamen, 361005, PR China
| | - Qingbiao Li
- Department
of Chemical and Biochemical Engineering, College of Chemistry and
Chemical Engineering, Fujian Provincial Key Laboratory of Chemical
Biology, Xiamen University, Xiamen, 361005, PR China
| |
Collapse
|
18
|
Li S, Xutian S. New Development in Traditional Chinese Medicine: Symbolism-Digit Therapy as a Special Naturopathic Treatment. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2016; 44:1311-1323. [DOI: 10.1142/s0192415x16500737] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Traditional Chinese medicine (TCM) grew out of traditional Chinese culture. For example, the eight-diagram symbol is composed of the Yang and the Yin. According to oriental philosophy, everything in the universe has a two-sided property, namely an image (or symbol) and a number (or digit). This paper introduces the new concept and historical background of symbolism-digit therapy (SDT), which is a natural therapy for the treatment of various kinds of diseases. SDT is of TCM heritage, which can be traced back to the ancient publications such as Yi Jing, and this heritage has been incorporated into modern development and practices. The successful treatments using SDT presented in this paper use formulas and/or prescriptions in accordance with TCM. All materials presented in this paper come from first-hand clinical observations, which are supported by TCM theories. Effects of SDT treatments are straightforward and worthy of broader and deeper investigation. SDT and other relevant therapies motivate the further exploration of the essence of TCM to improve the understanding of TCM principles.
Collapse
Affiliation(s)
- Shanyu Li
- The Shanyu Naturopathic Institute, Qingdao, China
| | - Stevenson Xutian
- Canadian Institute of Complementary and Alternative Medicine, Edmonton, Canada
| |
Collapse
|
19
|
Cellular Metabolomics Revealed the Cytoprotection of Amentoflavone, a Natural Compound, in Lipopolysaccharide-Induced Injury of Human Umbilical Vein Endothelial Cells. Int J Mol Sci 2016; 17:ijms17091514. [PMID: 27618027 PMCID: PMC5037791 DOI: 10.3390/ijms17091514] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 08/01/2016] [Accepted: 09/05/2016] [Indexed: 12/19/2022] Open
Abstract
Amentoflavone is one of the important bioactive flavonoids in the ethylacetate extract of “Cebaiye”, which is a blood cooling and hematostatic herb in traditional Chinese medicine. The previous work in our group has demonstrated that the ethylacetate extract of Cebaiye has a notable antagonistic effect on the injury induced by lipopolysaccharide (LPS) to human umbilical vein endothelial cells (HUVECs). The present investigation was designed to assess the effects and possible mechanism of cytoprotection of amentoflavone via metabolomics. Ultra-performance liquid chromatography/quadrupole time of flight-mass spectrometry (UPLC/QTOF-MS) coupled with multivariate data analysis was used to characterize the variations in the metabolites of HUVECs in response to exposure to LPS and amentoflavone treatment. Seven putative metabolites (glycine, argininosuccinic acid, putrescine, ornithine, spermidine, 5-oxoproline and dihydrouracil) were discovered in cells incubated with LPS and/or amentoflavone. Functional pathway analysis uncovered that the changes of these metabolites related to various significant metabolic pathways (glutathione metabolism, arginine and proline metabolism, β-alanine metabolism and glycine, serine and threonine metabolism), which may explain the potential cytoprotection function of amentoflavone. These findings also demonstrate that cellular metabolomics through UPLC/QTOF-MS is a powerful tool for detecting variations in a range of intracellular compounds upon toxin and/or drug exposure.
Collapse
|
20
|
Isolation of high-quality RNA from Platycladus orientalis and other Cupressaceae plants. ELECTRON J BIOTECHN 2016. [DOI: 10.1016/j.ejbt.2016.08.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
21
|
Fong P, Tong HHY, Ng KH, Lao CK, Chong CI, Chao CM. In silico prediction of prostaglandin D2 synthase inhibitors from herbal constituents for the treatment of hair loss. JOURNAL OF ETHNOPHARMACOLOGY 2015; 175:470-80. [PMID: 26456343 DOI: 10.1016/j.jep.2015.10.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 09/16/2015] [Accepted: 10/02/2015] [Indexed: 05/22/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Many herbal topical formulations have been marketed worldwide to prevent hair loss or promote hair growth. Certain in vivo studies have shown promising results among them; however, the effectiveness of their bioactive constituents remains unknown. AIM OF THE STUDY Recently, prostaglandin D2 (PGD2) inhibition has been discovered as a pharmacological mechanism for treating androgenic alopecia (AGA). This present study was aimed to identify prostaglandin D2 synthase (PTGDS) inhibitors in traditional Chinese medicines (TCMs) for treating AGA. MATERIALS AND METHODS In this study, 389 constituents of 12 selected herbs were docked into 6 different crystal structures of PTGDS. The accuracy of the docking methods was successfully validated with experimental data from the ZINC In Man (Zim) database using receiver operating characteristic (ROC) studies. Seven essential drug properties were predicted for topical formulation: skin permeability, sensitisation, irritation, corrosion, mutagenicity, tumorigenicity and reproductive effects. RESULTS Many constituents of the twelve herbs were found to have more advanced binding energies than the experimentally proved PTGDS inhibitors, but many of them were indicative of at least one type of skin adverse reactions, and exhibited poor skin permeability. CONCLUSIONS Overall, ricinoleic acid, acteoside, amentoflavone, quercetin-3-O-rutinoside and hinokiflavone were predicted to be PTGDS inhibitors with good pharmacokinetic properties and minimal adverse skin reactions. These compounds have the highest potential for further in vitro and in vivo investigation with the aim of developing safe and high-efficacy hair loss treatment.
Collapse
Affiliation(s)
- Pedro Fong
- School of Health Sciences, Macao Polytechnic Institute, Macao, China.
| | - Henry H Y Tong
- School of Health Sciences, Macao Polytechnic Institute, Macao, China
| | - Kin H Ng
- School of Health Sciences, Macao Polytechnic Institute, Macao, China
| | - Cheng K Lao
- School of Health Sciences, Macao Polytechnic Institute, Macao, China
| | - Chon I Chong
- School of Health Sciences, Macao Polytechnic Institute, Macao, China
| | - Chi M Chao
- School of Health Sciences, Macao Polytechnic Institute, Macao, China
| |
Collapse
|
22
|
Li J, Zhang F, Li J. The Immunoregulatory Effects of Traditional Chinese Medicine on Treatment of Asthma or Asthmatic Inflammation. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2015; 43:1059-81. [PMID: 26364661 DOI: 10.1142/s0192415x15500615] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Asthma is a chronic respiratory symptoms with variable airflow limitation and airway hyperresponsiveness (AHR), and causes high economic burden. Traditional Chinese medicine (TCM) has a long-lasting history of using herbal medicine in the treatment of various respiratory diseases including asthma. In the last several decades, an increasing number of herbs have been shown to be effective in the treatment of asthma in clinical trials or asthmatic inflammation in animal models. Literature about the effects of TCM on the immune system were searched in electronic databases such as PubMed, Google Scholar and Scopus from 2000 to 2014. 'TCM' and 'asthma' were used as keywords for the searches. Over 400 literatures were searched and the literatures about the immune system were selected and reviewed. We only reviewed literatures published in English. Accumulating evidence suggests that TCM can directly inhibit the activation and migration of inflammatory cells, regulate the balance of Th1/Th2 responses, and suppress allergic hyperreactivity through inducing regulatory T cells or attenuating the function of dendritic cells (DCs). These studies provided useful information to facilitate the use of TCM to treat asthma. This review was conducted to classify the findings based on their possible mechanisms of action reported.
Collapse
Affiliation(s)
- Jinyu Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Fuchun Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Jinyao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| |
Collapse
|