1
|
Zagórska J, Pietrzak K, Kukula-Koch W, Czop M, Wojtysiak K, Koch W. Influence of Thermal Treatment on the Composition of Alpinia officinarum Rhizome. Int J Mol Sci 2024; 25:3625. [PMID: 38612437 PMCID: PMC11012154 DOI: 10.3390/ijms25073625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
Alpinia officinarum is a representative of the Zingiberaceae family, which is known for its wide use in the food and pharmaceutical industries also due to its precious pharmacological potential. The major aim of the present study was to evaluate the influence of thermal treatment on the composition of the rhizome of Alpinia officinarum and its antioxidant activity. The fresh rhizome was subjected to various thermal treatment processes-boiling, frying and microwave heating during various time intervals-and their composition and antioxidant activity were determined using chromatographic (HPLC - High Performance Liquid Chromatography and HPLC-MS - High Performance Liquid Chromatography Mass Spectrometry) and spectrophotometric (DPPH and TPC - Total Phenolic Content) methods. Pinobanksin was the main compound found in the extract of the fresh rhizome (537.79 mg/kg), followed by galangin (197.7 mg/kg) and zingerone (185.5 mg/kg). The effect of thermal treatment on the rhizome composition was varied. In general, thermal processing significantly decreased the content of active compounds in the rhizome. However, there were some exceptions-boiling for 4 min significantly increased the content of pinobanksin (1162.4 mg/kg) and galangin (280.7 mg/kg), and microwave processing for 4 min increased the content of pinocembrin (213 mg/kg). It was found that boiling and microwave treatment significantly increased the antioxidant activity of the processed rhizomes.
Collapse
Affiliation(s)
- Justyna Zagórska
- Department of Food and Nutrition, Medical University of Lublin, 4a Chodzki Str., 20-093 Lublin, Poland; (J.Z.); (K.P.); (K.W.)
| | - Karolina Pietrzak
- Department of Food and Nutrition, Medical University of Lublin, 4a Chodzki Str., 20-093 Lublin, Poland; (J.Z.); (K.P.); (K.W.)
| | - Wirginia Kukula-Koch
- Department of Pharmacognosy with Medical Plants Garden, Medical University of Lublin, 1 Chodzki Str., 20-093 Lublin, Poland;
| | - Marcin Czop
- Department of Clinical Genetics, Medical University of Lublin, 11 Radziwiłłowska Str., 20-080 Lublin, Poland;
| | - Karolina Wojtysiak
- Department of Food and Nutrition, Medical University of Lublin, 4a Chodzki Str., 20-093 Lublin, Poland; (J.Z.); (K.P.); (K.W.)
| | - Wojciech Koch
- Department of Food and Nutrition, Medical University of Lublin, 4a Chodzki Str., 20-093 Lublin, Poland; (J.Z.); (K.P.); (K.W.)
| |
Collapse
|
2
|
Galangin inhibits lipopolysaccharide-induced inflammation and stimulates osteogenic differentiation of bone marrow mesenchymal stem cells via regulation of AKT/mTOR signaling. Allergol Immunopathol (Madr) 2023; 51:133-139. [PMID: 36617832 DOI: 10.15586/aei.v51i1.741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 08/05/2022] [Indexed: 01/03/2023]
Abstract
BACKGROUND Bone marrow mesenchymal stem cells (BMSCs), with the abilities of multidirectional differentiation and self-renewal, have been widely used in bone repair and regeneration of inflammation-stimulated oral diseases. Galangin is a flavonoid isolated from Alpinia officinarum, exerts anti-obesity, antitumor, and anti-inflammation pharmacological effects. The roles of galangin in lipopolysaccharide-induced inflammation and osteogenic differentiation of BMSCs were investigated. METHODS BMSCs were isolated from rat bone marrow and identified by flow cytometry. The isolated BMSCs were treated with 1 μg/mL lipopolysaccharides or cotreated with lipopolysaccharides and different concentrations of galangin. Cell viability and apoptosis were detected by MTT (tetrazolium component) and flow cytometry. ELISA was used to detect inflammation. Alizarin red staining was used to investigate osteogenic differentiation. RESULTS The rat BMSCs showed negative rate of CD34, and positive rate of CD29 and CD44. Lipopolysaccharides treatment reduced cell viability of BMSCs, and promoted the cell apoptosis. Incubation with galangin enhanced cell viability of lipopolysaccharide-stimulated BMSCs, and suppressed the cell apoptosis. Galangin decreased levels of TNF-α, IL-1β, and IL-6 in lipopolysaccharide-stimulated BMSCs through down-regulation of NF-κB phosphorylation (p-NF-κB). Galangin up-regulated expression of osteo-specific proteins, collagen type I alpha 1 (COL1A1), osteopontin (OPN), and runt-related transcription factor 2 (RUNX2), to promote the osteogenic differentiation of lipopolysaccharide-stimulated BMSCs. Protein expression of p-AKT and p-mTOR in lipopolysaccharide-stimulated BMSCs were increased by galangin treatment. CONCLUSION Galangin exerted an anti-inflammatory effect against lipopolysaccharide- stimulated BMSCs and promoted osteogenic differentiation through the activation of AKT/ mTOR signaling.
Collapse
|
3
|
Antiosteoporosis Studies of 20 Medicine Food Homology Plants Containing Quercetin, Rutin, and Kaempferol: TCM Characteristics, In Vivo and In Vitro Activities, Potential Mechanisms, and Food Functions. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:5902293. [PMID: 35399639 PMCID: PMC8989562 DOI: 10.1155/2022/5902293] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/28/2022] [Accepted: 03/05/2022] [Indexed: 11/24/2022]
Abstract
Dietary nutraceutical compounds have been evidenced as backbone for bone health in recent years. It is reported that medicine food homology (MFH) plants have multiple nutraceutical compounds. Based on our literature research, 20 MFH plants caught our attention because they contain three popular antiosteoporosis compounds simultaneously: quercetin, rutin, and kaempferol. According to traditional Chinese medicine (TCM), their characteristics including natures, flavors, attributive to meridian tropism, and efficacies were listed. The relationships between TCM efficacies, such as “heat clearing,” “tonic,” and “the interior warming,” and antiosteoporosis pharmacological actions such as antioxidant and immune regulation were discussed. The in vivo antiosteoporosis effects of the 20 MFH plants were summarized. The in vitro antiosteoporosis activities and related mechanisms of the 20 plants and quercetin, rutin, kaempferol were detailed. The TGF-β-Smad signaling, fibroblast growth factor, and Wnt/β-catenin signaling on bone formation and the RANKL signaling, NF-κB signaling, and macrophage-colony-stimulating factor on bone resorption were identified. From food point, these 20 MFH plants could be classified as condiment, vegetable, fruit, tea and related products, beverage, etc. Based on the above discussion, these 20 MFH plants could be used as daily food supplements for the prevention and treatment against osteoporosis.
Collapse
|
4
|
Lee G, Shin J, Jo A, Lm S, Kim MR, Shoi Y, Yun H, Bae D, Kim J, Choi CY. Antipostmenopausal effects of Stauntonia hexaphylla and Vaccinium bracteatum fruit combination in estrogen-deficient rats. Food Nutr Res 2020; 64:5233. [PMID: 33240033 PMCID: PMC7672482 DOI: 10.29219/fnr.v64.5233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/20/2020] [Accepted: 09/05/2020] [Indexed: 12/30/2022] Open
Abstract
Background Climacterium is a series of physical and mental symptoms occurring in women and men due to decreased levels of sex hormones. Women lose the ability to become pregnant due to decreased ovarian estrogen production; the initial symptom being hot flushes. In addition, urogenital atrophy, sexual dysfunction, mood changes, and osteoporosis occur. Extracts of Stauntonia hexaphylla (SH) and Vaccinium bracteatum (VB) fruits, with a wide range of biological activities, are widely used in traditional herbal medicine. Objective The purpose of this study was to investigate the mitigation of menopausal symptoms, such as hot flushes and postmenopausal osteoporosis after combinatorial treatment with SH and VB (SHVB) of ovariectomized (OVX) rats. Design We measured the bone regenerative effect of SHVB on receptor activator of nuclear factor-κB (NF-κB) ligand-induced osteoclast differentiation in vitro and on ovariectomy-induced osteoporosis in vivo. We investigated the effect of SHVB in a rat model of menopausal hot flushes, in which the tail skin temperature increases following ovariectomy-induced rapid decline in estrogen levels. Results SHVB inhibited osteoclast formation and tartrate-resistant acid phosphatase activity in primary mouse bone marrow-derived cells. In an estrogen deficiency-induced rat model, measurement of serum bone turnover factors showed that treatment with SHVB lowered the increased bone turnover. Additionally, SHVB decreased OVX-induced bone loss of the total femur. SHVB inhibited osteoclast differentiation, prevented bone mass reduction, and improved trabecular bone structure and biochemical markers in OVX-induced osteoporosis. In addition, administration of SHVB significantly ameliorated the changes in skin temperature in OVX rats. Conclusion SHVB improved the symptoms of menopause. These results provide the foundation for developing SHVB as a natural substance to replace hormones in the future.
Collapse
Affiliation(s)
- Gyuok Lee
- Jeonnam Bioindustry Foundation, Jeonnam Institute of Natural Resources Research (JINR), Jeollanamdo, Republic of Korea
| | - Jawon Shin
- Jeonnam Bioindustry Foundation, Jeonnam Institute of Natural Resources Research (JINR), Jeollanamdo, Republic of Korea
| | - Ara Jo
- Jeonnam Bioindustry Foundation, Jeonnam Institute of Natural Resources Research (JINR), Jeollanamdo, Republic of Korea
| | - Sojeong Lm
- Jeonnam Bioindustry Foundation, Jeonnam Institute of Natural Resources Research (JINR), Jeollanamdo, Republic of Korea
| | - Mi-Ri Kim
- Jeonnam Bioindustry Foundation, Jeonnam Institute of Natural Resources Research (JINR), Jeollanamdo, Republic of Korea
| | - Yunhee Shoi
- Jeonnam Bioindustry Foundation, Jeonnam Institute of Natural Resources Research (JINR), Jeollanamdo, Republic of Korea
| | - Hyojeong Yun
- Jeonnam Bioindustry Foundation, Jeonnam Institute of Natural Resources Research (JINR), Jeollanamdo, Republic of Korea
| | - Donghyuck Bae
- Jeonnam Bioindustry Foundation, Jeonnam Institute of Natural Resources Research (JINR), Jeollanamdo, Republic of Korea
| | - Jaeyong Kim
- Jeonnam Bioindustry Foundation, Jeonnam Institute of Natural Resources Research (JINR), Jeollanamdo, Republic of Korea
| | - Chul-Yung Choi
- Jeonnam Bioindustry Foundation, Jeonnam Institute of Natural Resources Research (JINR), Jeollanamdo, Republic of Korea
| |
Collapse
|
5
|
Biomolecule from Trigonella stellata from Saudi Flora to Suppress Osteoporosis via Osteostromal Regulations. PLANTS 2020; 9:plants9111610. [PMID: 33233530 PMCID: PMC7699612 DOI: 10.3390/plants9111610] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 10/27/2020] [Accepted: 11/02/2020] [Indexed: 12/23/2022]
Abstract
Trigonella stellata has used in folk medicine as palatable and nutraceutical herb. It also regulates hypocholesterolemia, hypoglycemia, and has showed anti-inflammatory activities as well as antioxidants efficacy. Osteoporosis is a one of bone metabolic disorders and is continuously increasing worldwide. In the present study, caffeic acid was isolated from Trigonella stellata and identified using 1 D- and 2 D-NMR spectroscopic data. Caffeic acid was investigated on osteoblast and osteoclast in vitro using mice bone marrow-derived mesenchymal cells. Caffeic acid played reciprocal proliferation between osteoblast and osteoclast cells and accelerated the bone mineralization. It was confirmed by cytotoxicity, alkaline phosphatase (ALP), alizarin red S (ARS), and Tartrate resistant acid phosphatase (TRAP) assay. Caffeic acid regulated the osteogenic marker and upregulated the osteopontin, osteocalcin, and bone morphogenic proteins (BMP). Quantitative real time PCR and Western blot were used to quantify the mRNA and protein markers. It also regulated the matrix metalloprotease-2 (MMP-2) and cathepsin-K proteolytic markers in osteoclast cells. In addition, caffeic acid inhibited bone resorption in osteoclast cells. On the other hand, it upregulate osteoblast differentiation through stimulation of extracellular calcium concentrations osteoblast differentiation, respectively. The results also were confirmed through in silico docking of caffeic acid against cathepsin-B and cathepsin-K markers. These findings revealed that caffeic acid has a potential role in bone-metabolic disorder through its multifaceted effects on osteoblast and osteoclast regulations and controls osteoporosis.
Collapse
|
6
|
Kim JH, Kim M, Jung HS, Sohn Y. Leonurus sibiricus L. ethanol extract promotes osteoblast differentiation and inhibits osteoclast formation. Int J Mol Med 2019; 44:913-926. [PMID: 31524244 PMCID: PMC6657961 DOI: 10.3892/ijmm.2019.4269] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 07/05/2019] [Indexed: 12/11/2022] Open
Abstract
Leonurus sibiricus L. (LS) is a medicinal plant used in East Asia, Europe and the USA. LS is primarily used in the treatment of gynecological diseases, and recent studies have demonstrated that it exerts anti-inflammatory and antioxidant effects. To the best of our knowledge, the present study demonstrated for the first time that LS may promote osteoblast differentiation and suppress osteoclast differentiation in vitro, and that it inhibited lipopolysaccharide (LPS)-induced bone loss in a mouse model. LS was observed to promote the osteoblast differentiation of MC3T3-E1 cells and upregulate the expression of runt-related transcription factor 2 (RUNX2), a key gene involved in osteoblast differentiation. This resulted in the induction of the expression of various osteogenic genes, including alkaline phosphatase (ALP), osteonectin (OSN), osteopontin (OPN), type I collagen (COL1) and bone sialoprotein (BSP). LS was also observed to inhibit osteoclast differentiation and bone resorption. The expression levels of nuclear factor of activated T-cells 1 (NFATc1) and c-Fos were inhibited following LS treatment. NFATc1 and c-Fos are key markers of osteoclast differentiation that inhibit receptor activator of nuclear factor-κB ligand (RANKL)-induced mitogen-activated protein kinase (MAPKs) and nuclear factor (NF)-κB. As a result, LS suppressed the expression of osteoclast-associated genes, such as matrix metallopeptidase-9 (MMP-9), cathepsin K (Ctsk), tartrate-resistant acid phosphatase (TRAP), osteoclast-associated immunoglobulin-like receptor (OSCAR), c-src, c-myc, osteoclast stimulatory transmembrane protein (OC-STAMP) and ATPase H+ transporting V0 subunit d2 (ATP6v0d2). Consistent with the in vitro results, LS inhibited the reduction in bone mineral density and the bone volume/total volume ratio in a mouse model of LPS-induced osteoporosis. These results suggest that LS may be a valuable agent for the treatment of osteoporosis and additional bone metabolic diseases.
Collapse
Affiliation(s)
- Jae-Hyun Kim
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Minsun Kim
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hyuk-Sang Jung
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Youngjoo Sohn
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
7
|
Abubakar IB, Malami I, Yahaya Y, Sule SM. A review on the ethnomedicinal uses, phytochemistry and pharmacology of Alpinia officinarum Hance. JOURNAL OF ETHNOPHARMACOLOGY 2018; 224:45-62. [PMID: 29803568 DOI: 10.1016/j.jep.2018.05.027] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 05/18/2018] [Accepted: 05/18/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Alpinia officinarum Hance is a perennial plant that has been traditionally used for many decades to treat several ailments including inflammation, pain, stomach-ache, cold, amongst others. Pharmacological studies over the years have demonstrated remarkable bioactivities that could be further explored for development of new therapeutic agents against various ailments. AIM OF THE STUDY The paper critically reviewed the ethno-medicinal uses, pharmacology, and phytochemistry of A. officinarum. METHODS Keywords including A. officinarum and its synonyms were searched using electronic databases including ISI web of knowledge, Science direct, Scopus, PubMed, Google scholar and relevant database for Masters and Doctoral theses. RESULTS A. officinarum is prepared in Asia, Turkey, Morocco and Iran as a decoction, infusion or juice as a single preparation or in combination with other herbs, food or drinks for the treatment of general health problems including cold, inflammation, digestive disorders, etc. Pharmacological studies revealed the potent in vitro and in vivo bioactivities of various parts of A. officinarum that include anti-inflammatory, cytotoxicity, homeostasis, lipid regulation, antioxidant, antiviral, antimicrobial, antiosteoporosis, etc. Over 90 phytochemical constituents have been identified and isolated from A. officinarum comprising vastly of phenolic compounds especially diarylheptanoids isolated from the rhizome and considered the most active bioactive components. CONCLUSION In vitro and in vivo studies have confirmed the potency of A. officinarum. However, further studies are required to establish the mechanisms mediating its bioactivities in relation to the medicinal uses as well as investigating any potential toxicity for future clinical studies.
Collapse
Affiliation(s)
- Ibrahim Babangida Abubakar
- Department of Biochemistry, Faculty of Science, Kebbi State University of Science and Technology, PMB 1144 Aliero, Nigeria.
| | - Ibrahim Malami
- Department of Pharmacognosy and Ethnopharmacy, Faculty of Pharmaceutical Sciences, Usmanu Danfodiyo University, PMB 2346 Sokoto, Nigeria.
| | - Yakubu Yahaya
- Department of Pure and Applied Chemistry, Faculty of Science, Kebbi State University of Science and Technology, PMB 1144 Aliero, Nigeria.
| | - Sahabi Manga Sule
- Department of Biological Sciences, Faculty of Science, Kebbi State University of Science and Technology, PMB 1144 Aliero, Nigeria.
| |
Collapse
|
8
|
Liu S, Yang L, Mu S, Fu Q. Epigallocatechin-3-Gallate Ameliorates Glucocorticoid-Induced Osteoporosis of Rats in Vivo and in Vitro. Front Pharmacol 2018; 9:447. [PMID: 29867459 PMCID: PMC5954082 DOI: 10.3389/fphar.2018.00447] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 04/17/2018] [Indexed: 11/13/2022] Open
Abstract
Background: Prolonged administration of overdoses of glucocorticoids results in increased bone remodeling, leading to glucocorticoid-induced osteoporosis (GIO), which is primarily due to the dysfunction and apoptosis of osteoblasts. The present study investigated the therapeutic effect and molecular mechanism of action of epigallocatechin-3-gallate (EGCG), a bioactive catechin in green tea, in high-dose dexamethasone-induced osteoblast differentiation in vivo and in vitro. Methods: The anti-dexamethasone (DEX) effects of EGCG on primary osteoblasts were determined on the basis of cell viability and alkaline phosphatase (ALP) and total cellular superoxide dismutase (SOD) activities. Flow cytometry and Western blot analysis were also used to evaluate the expression of related biomarkers in vitro, and bone microarchitecture was also extensively examined in a rat model in vivo. Results: The results showed that EGCG pretreatment significantly increased osteoblast viability and ALP and SOD activities when cells were exposed to DEX. Alizarin red staining indicated that there was more mineralization with EGCG pretreatment, countering DEX effects. EGCG reduced DEX-induced reactive oxygen species at both the mitochondrial and cellular levels in osteoblasts by activating the nuclear factor erythroid-derived 2-like-2 (Nrf2) pathway. In addition, EGCG protected osteoblasts from apoptosis. EGCG also regulated the formation of active glucocorticoid by 11β-hydroxysteroid dehydrogenase activity. Furthermore, femoral micro-computed tomography scans revealed that EGCG improved bone microstructure and mitigated DEX-induced deterioration of bone quality. Conclusion: These findings suggested that EGCG reversed GIO in rats by protecting osteoblasts by activating the Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Shengye Liu
- Department of Spine and Joint Surgery, ShengJing Hospital of China Medical University, Shenyang, China
| | - Liyu Yang
- Department of Spine and Joint Surgery, ShengJing Hospital of China Medical University, Shenyang, China
| | - Shuai Mu
- Department of Spine and Joint Surgery, ShengJing Hospital of China Medical University, Shenyang, China
| | - Qin Fu
- Department of Spine and Joint Surgery, ShengJing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
9
|
Kim JH, Kang HM, Yu SB, Song JM, Kim CH, Kim BJ, Park BS, Shin SH, Kim IR. Cytoprotective effect of flavonoid-induced autophagy on bisphosphonate mediated cell death in osteoblast. J Cell Biochem 2018; 119:5571-5580. [PMID: 29380898 PMCID: PMC6001630 DOI: 10.1002/jcb.26728] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 01/24/2018] [Indexed: 11/26/2022]
Abstract
With rapid economic growth and further developments in medical science, the entry into the aging population is currently increasing, as is the number of patients with metabolic diseases, such as hypertension, hyperlipidemia, heart disease, and diabetes. The current treatments for metabolic bone diseases, which are also on the rise, cause negative side effects. Bisphosphonates, which are used to treat osteoporosis, inhibit the bone resorption ability of osteoclasts and during prolonged administration, cause bisphosphonate‐related osteonecrosis of the jaw (BRONJ). Numerous studies have shown the potential role of natural plant products as flavonoids in the protection against osteoporosis and in the influence of bone remodeling. Autophagy occurs after the degradation of cytoplasmic components within the lysosome and serves as an essential cytoprotective response to pathologic stress caused by certain diseases. In the present study, we hypothesized that the cytoprotective effects of flavonoids might be related to those associated with autophagy, an essential cytoprotective response to the pathologic stress caused by certain diseases, in osteoblasts. We demonstrated the cytoprotective effect of flavonoid‐induced autophagy against the toxicity of zoledronate and the induction of autophagy by flavonoids to support osteogenic transcription factors, leading to osteoblast differentiation and bone formation. Further studies are necessary to clarify the connections between autophagy and osteogenesis. It would be helpful to shed light on methodological challenges through molecular biological studies and new animal models. The findings of the current study may help to delineate the potential role of flavonoids in the treatment of metabolic bone disease.
Collapse
Affiliation(s)
- Jung-Han Kim
- Department of Oral and Maxillofacial Surgery, Pusan National University Dental Hospital, Yangsan-si, Gyeongsangnam-do, South Korea.,Department of Oral and Maxillofacial Surgery, Medical center, Dong-A University, Seo-gu, Busan, South Korea
| | - Hae-Mi Kang
- Department of Oral Anatomy, School of Dentistry, Pusan National University, Busandaehak-ro, Yangsan-si, Gyeongsangnam-do, South Korea.,BK21 PLUS Project, School of Dentistry, Pusan National University, Busandaehak-ro, Yangsan-si, Gyeongsangnam-do, South Korea
| | - Su-Bin Yu
- Department of Oral Anatomy, School of Dentistry, Pusan National University, Busandaehak-ro, Yangsan-si, Gyeongsangnam-do, South Korea.,BK21 PLUS Project, School of Dentistry, Pusan National University, Busandaehak-ro, Yangsan-si, Gyeongsangnam-do, South Korea
| | - Jae-Min Song
- Department of Oral and Maxillofacial Surgery, Pusan National University Dental Hospital, Yangsan-si, Gyeongsangnam-do, South Korea
| | - Chul-Hoon Kim
- Department of Oral and Maxillofacial Surgery, Medical center, Dong-A University, Seo-gu, Busan, South Korea
| | - Bok-Joo Kim
- Department of Oral and Maxillofacial Surgery, Medical center, Dong-A University, Seo-gu, Busan, South Korea
| | - Bong-Soo Park
- Department of Oral Anatomy, School of Dentistry, Pusan National University, Busandaehak-ro, Yangsan-si, Gyeongsangnam-do, South Korea.,BK21 PLUS Project, School of Dentistry, Pusan National University, Busandaehak-ro, Yangsan-si, Gyeongsangnam-do, South Korea
| | - Sang-Hun Shin
- Department of Oral and Maxillofacial Surgery, Pusan National University Dental Hospital, Yangsan-si, Gyeongsangnam-do, South Korea
| | - In-Ryoung Kim
- Department of Oral Anatomy, School of Dentistry, Pusan National University, Busandaehak-ro, Yangsan-si, Gyeongsangnam-do, South Korea
| |
Collapse
|
10
|
Gastrodin alleviates glucocorticoid induced osteoporosis in rats via activating the Nrf2 signaling pathways. Oncotarget 2018; 9:11528-11540. [PMID: 29545917 PMCID: PMC5837737 DOI: 10.18632/oncotarget.23936] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 10/31/2017] [Indexed: 12/16/2022] Open
Abstract
Background Prolonged and over-dosed administration of glucocorticoids results in more bone remodeling, leading to glucocorticoid-induced osteoporosis, which is primarily due to dysfunction and apoptosis of osteoblasts. The present study investigated the therapeutic effect and molecular mechanism of gastrodin, a natural bioactive compound isolated from the traditional Chinese herbal agent Gastrodia elata, on osteoblastic cells in vivo and in vitro. Materials and Methods The anti-dexamethasone (DEX) effects of gastrodin on primary osteoblasts were measured by cell viability, flow cytometry, and western blot analysis in vitro, and also extensively examined in a rat model in vivo. Results The results show that gastrodin pretreatment significantly increased osteoblast viability and alkaline phosphatase activity when exposed to DEX. Alizarin Red staining indicated more calcium deposits formed in the gastrodin pretreatment against DEX group. Gastrodin alleviated DEX-induced reactive oxygen species at both the mitochondrial and cellular levels in osteoblasts. In addition, gastrodin protected primary osteoblasts from caspase3-related apoptosis by reducing the loss in the mitochondrial membrane potential and decreasing the release of DEX-induced cytochrome-C, bax, and apoptosis inducing factor. Gastrodin also antagonized upregulated endoplasmic reticulum stress signals induced by DEX, including the expression of GRP78, CHOP, and phosphorylated eIF2α. Furthermore, gastrodin protected osteoblasts by activating the nuclear factor erythroid derived 2-related factor-2 (Nrf2) pathway. Furthermore, femoral micro-computed tomography scans and biomechanical tests revealed that gastrodin improved bone microstructure and mitigated DEX-induced deterioration in bone quality. Conclusions These findings suggest that gastrodin alleviated glucocorticoid-induced osteoporosis in rats by protecting osteoblasts via the Nrf2 regulated mitochondrial and ER stress-related signaling pathways.
Collapse
|